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Jim’s descent from the Bernoullis

Jakob Bernoulli (Basel, 1676)
Johann Bernoulli (Basel, 1694)

Leonard Euler (Basel, 1726)
Joseph-Louis Lagrange (Torino, 1811)
Siméon Poisson (Polytechnique, 1800)
Michel Chasles (Polytechnique, 1814)

A. H. Newton (Yale, 1850)
E. H. Moore (Yale, 1885)

George Birkoff (Chicago, 1907)
Marshall Stone (Harvard, 1926)

Richard Kadison (Chicago, 1950)
Jim Glimm (Columbia, 1959)

many of YOU

12 academic 
generations,

~350 years



Our common blessing from Jim

THEOREM 1  
We are all young.

PROOF
We are all younger than Jim.  
Jim is young. 
Transitivity. 



BS Eng (1956), PhD Math (1959) at Columbia

“I have always been interested in mathematics, physics 
and engineering. While I was a student, I felt it very difficult 
to choose among these interests. As it turns out, I have 
managed to do all three, mostly by choice of projects and 
goals that rotated among these choices. The mixture of 
these topics especially when combined with computing 
is very powerful, as it allows one to address a very wide 
range of problems.”



My intersection with Jim



Jim and SciDAC

Jim led the front tracking pillar of TSTT (Terascale Simulation 
Tools and Technology)

Phil led APDEC (Applied Partial Differential Equations Center)

Yours truly led TOPS (Terascale Optimal PDE Solvers)



Speakers at Jim’s 70th at Stonybrook, 3-5 Aug 2004

Chi-Wang
Constantine
Gretar
Gui-Qiang
Phil
Snezhana
Yours truly

Out of 36 presenters overall 
spanning three days
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Alternative titles

“How to get four Gordon Bell 
Prize Finalist nominations
out of one simple idea”

“Do linear algebra; 
see the world!”

Earl Blossom, 1891-1970



Conclusions, up front

As computational infrastructure demands a growing sector of research 
budgets and global energy expenditure, we must address the need for 
greater efficiency

As a community, we have excelled at this historically in three aspects:
• architectures
• applications (redefining actual outputs of interest)
• algorithms

There are new algorithmic opportunities in:
• reduced rank representations
• reduced precision representations



Our journey in tuned approximation began in 2018 with 
these time traces for tile low-rank (TLR) Cholesky

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

• TLR may score a lower percentage of peak (after squeezing out flops)
• TLR may have poorer load balance (a higher percentage of idle time 

(red) vs. computation (green))
• TLR may scale less efficiently (less able to cover data motion with 

computation) 
• TLR is, however, 10X superior in time for required application 

accuracy, at about 65% of average power compared to dense

18.1 s
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Cholesky 
factorization

(HiCMA)

… for factorization of a dense 54K covariance matrix on four 32-core nodes of a Cray XC-40
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Computational efficiency through tuned approximation: 
a journey with tile low rank and mixed precision

business as usual

Don’t oversolve: maintain just enough accuracy for the application purpose
Economize on storage: no extra copies of the original matrix

Dense DP

la renaissance

Dense DP

Dense SP

Dense HP

TLR DP

TLR SP

Dense DP

TLR DP

Dense DP

TLR DP

Dense DP

Dense SP

Dense HP

Dense DP

Dense SP

Dense HP

Now using four 
precisions: FP64, 
FP32, FP16 & FP8



Efficiency (“science per Joule”) improvement in HPC?

• We consider 3 categories of efficiency 
improvement

- from architectures, applications, algorithms
• In 2022, 2023, and a pair of 2024 Gordon 

Bell finalist papers
• Through efficiency improvements in inner 

linear algebra operations from exploiting 
- rank structure (related to correlation 

smoothness)
- precision structure (related to correlation 

magnitudes)

time series evapotranspiration



Time-to-solution addresses the energy “elephant”

Frontier (#1 on Top500) delivers about 1 Exaflop/s at about 50 Gigaflop/s per Watt
• 20 MegaWatts consumed continuously
Representative electricity cost in US is $ 0.20 per KiloWatt-hour
• $ 200 per MegaWatt-hour
Powering an exaflop/s system costs about $ 4,000 per hour
• 10 Kilohour per year (8,760, to be more precise)
→ $40 million annual electricity bill for an exaflop/s system
Carbon footprint of a KiloWatt-hour is about 0.5 kg CO2-equivalent 
• 10,000 kg CO2e hourly carbon footprint for an exaflop/s system
• 100,000 metric tons CO2e annually 
→ equivalent to 20,000 typical passenger cars in the USA

A 10% improvement: 
    saves $4M/year 
    takes 2,000 cars off the road

A 10X improvement: 
    saves $36M/year 
    takes 18,000 cars off the road

10X is actually 
achievable in many 
use cases



CO2 production equivalents

“Science per Joule” 
is a matter of 

planetary 
stewardship



Running on Frontier versus flying commercially

• Carbon footprint of a KiloWatt-hour is 0.5 kg CO2-equivalent
- 10,000 kg CO2e hourly carbon footprint for an exaflop/s system (10 metric 

tons)
• Carbon footprint of one passenger-hour of commercial cruise 

Mach flight is about 0.25 metric tons CO2e
- 1 hour of exaflop/s is roughly equivalent to 40 passenger-hours of flight

Flying these 39 passengers costs 
about the same per hour as Frontier Carbon offset your 

next flight by efficient 
programming!

Better yet, please 
justify my flight here 
to give this talk J



Architecture efficiency tracked by the Green 500

https://en.wikipedia.org/wiki/Green500

Gigaflop/s per Watt 
for #1 on the Green 500

15X in ten years
& 72.3 GF/s/W at ISC’24!



Application “efficiency” from redefining the objective
Sometimes, the output of interest from a 
computation is not a solution to high 
accuracy everywhere, but a functional of 
the solution to a specified accuracy, e.g.
• compute the convective heat flux 

across a fluid-solid boundary, 
obtainable without globally uniform 
accuracy

• use low fidelity surrogates in early 
inner iterations of “outer loop 
problems”

temperature 
contour

conservative 
mesh

output bound 
mesh (flux to 1%)

Machiels, Peraire & Patera, A posteriori FE Output Bounds for the 
Incompressible NS Equations,  (2001), J. Comp. Phys. 172:401



HPC algorithmic efficiency tracked by Poisson solvers

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann & Goldstine n5 n7

1950 Optimal SOR Young n3 n4 log n

1971/77 MILU-CG Reid/Van der Vorst n3 n3.5 log n

1984 Full MG Brandt n3 n3

*Six months is reduced to 1 second  (recall: 3.154 x 107 seconds per year) 
*If  n = 64, this implies an overall reduction in flops of ~16 million

Consider a Poisson solve in a 3D  n x n x n box; natural ordering gives bandwidth of n2



“Algorithmic Moore’s Law”

HPC progresses even 
faster in algorithms 
than in hardware: 
example of Poisson’s 
equation in a 3D box
with 2nd-order FD

O(N)

O(N 7/3)

Ñ2u=f 64

64
64

Keyes et al., SCaLeS Rpt. Vol. 1 (2003), https://www.pnnl.gov/scales/

N = n3 = (1/h)3

36 years means 
24 doublings =
16 million-fold



“Algorithmic Moore’s Law” for fusion energy simulations

“Semi-implicit”:

All waves treated 
implicitly, but still 
stability-limited by 
transport

“Partially implicit”:

Fastest waves 
filtered, but still 
stability-limited by 
slower waves

Keyes et al., SCaLeS Rpt. Vol 2 (2004), https://www.pnnl.gov/scales/

GKT in 
red

MHD in 
green

Moore’s 
Law in 
blue



“Algorithmic Moore’s Law” for combustion simulations
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Algorithms improve exponents; Moore only adjusts the base 

• To scale to extremes, one must start with algorithms with optimal 
asymptotic complexity, O(N logp N), p = 0, 1, 2

• These are typically (not exclusively) recursively hierarchical
• Some such algorithms through the decades:

– Fast Fourier Transform (1960’s):   N2 → N log N
– Multigrid (1970’s):                      N4/3 log N → N
– Fast Multipole (1980’s):    N2 → N 
– Sparse Grids (1990’s):     Nd → N (log N)d-1

– H matrices (2000’s):     N3 → k2 N (log N)2
– Multilevel Monte Carlo (2000’s):   N3/2 → N (log N)2

– Randomized matrix algorithms (2010’s): N3 → N2 log k
– ??? (2020’s):       ??? → ??? (your challenge!)



Hints for contributions for the 2020’s

You are going to replace inefficient first-order convergent 
neural network training methods by, e.g.,

– communication-reducing hierarchically preconditioned 
second-order methods

– matrix-free nonlinear acceleration methods (e.g., Anderson)

“With great computational power comes great algorithmic responsibility.” 
– Longfei Gao, ALCF (PhD 2013, KAUST)

You are going replace inefficient ML inference by, e.g.,
– by pruned, compressed forms of “attention”  



Hints for contributions for the 2020’s

You are going to attach QPUs to classical supercomputers to 
farm out tasks that offer exponential speedup over their 
classical counterparts (O(N) → O(log(N)))

– when offered sufficiently many sufficiently reliable qubits to 
confer quantum advantage

“With great computational power comes great algorithmic responsibility.” 
– Longfei Gao, ALCF (PhD 2013, KAUST)

You are going master hybridized mod-sim/ML/QC workflows
– using few instances of high fidelity, high resolution simulations 

supplemented by many instances of machine-learned surrogates
– each modality being employed where it is the most energy 

efficient



Science per Joule – summary so far

Improving the  “science per Joule” (or per unit time) involves: 

In a fortunate world, these are orthogonal: the desired app can 
employ the best algorithm on the most efficient hardware.

application algorithm/software

Dense DP

Dense SP

Dense HP

TLR DP

TLR SP

architecture



Algorithmic “secret sauce”

Where possible, without losing accuracy:

• Replace default double precision (64-bit IEEE standard) with lower 
precisions
• Save storage
• Save data motion
• Exploit special-purpose hardware optimized for low precision

• Replace default full rank blocks of discrete linear operators or 
discrete field data with lower rank blocks
• Save storage
• Save data motion
• Exploit special-purpose hardware optimized for BLAS3



Two natural questions

• How did double precision become the default for scientific 
computing in the first place?  
- When should we be cautious of low precision?

• What is the intuition behind low-rank approximation?  
- When should we expect it to be practical?



Lessons from the 1D Laplacian

Two concepts we need to understand in our pursuit of computational 
efficiency in linear algebra:
• conditioning (implications on precision)
• rank structure (implications on sparsification)
can be motivated with reference to the 1D Laplacian (to be precise, its 
negative –Δ ), discretized here to second-order in FD, FE, or FV:



Laplacian ill-conditioned stresses precision

Let n = 1/h and consider Dirichlet end conditions with n-1 interior points. Then: 
     λ1   = 2 [1 - cos π/n]          ~  (π/n)2

     λn-1 = 2 [1 - cos (n-1)π/n]  ~  4
As n gets large and the mesh resolves more Fourier components, the condition number 
grows like the square of the matrix dimension (inverse mesh parameter):
     κ    =  λn-1 / λ1  ~  (4/π2) n2

In single precision real arithmetic, κ approaches the reciprocal of macheps (10-7) for an 
n as small as 210 (~ 103).  Laplacian-like operators arise throughout modeling and 
simulation (diffusion, electrostatics, gravitation, stress, graphs, etc.), implying O(1) 
error in the result, so HPC has traditionally demanded double precision by default. 
GPUs were accepted only when they offered hardware DP (2008, NVIDIA GTX 280).

For the biharmonic, even double precision gives out at n = 210 .  Some multiscale codes 
require quadruple precision, often available only in software.  



3/
2

7/
8

2

Its inverse is 
dense, but it 
inherits the 
same rank 
structure

Laplacian off-diagonal smoothness relaxes ranks

A is full-rank, but 
its off-diagonal 
blocks have low 
rank



A renaissance in numerical linear algebra (1)

It turns out that many formally dense matrices arising 
from

• integral equations with smooth Green’s functions
• covariances in statistics
• Schur complements within discretizations of PDEs
• Hessians from PDE-constrained optimization
• nonlocal operators from fractional differential 

equations
• radial basis functions from unstructured meshing
• kernel matrices from GWAS & machine learning 

applications
have exploitable low-rank structure in “most” their off-
diagonal blocks (if well ordered)



A renaissance in numerical linear algebra (2)

It turns out that many matrices arising in 
applications have blocks of relatively small norm 
and can be replaced with reduced precision.

Mixed precision algorithms have a long history, 
e.g., iterative refinement (1963, Wilkinson), where 
multiple copies of the matrix are kept in different 
precisions for different purposes.

There are many such new algorithms; see Higham 
& Mary, Mixed precision algorithms in numerical 
linear algebra, Acta Numerica (2022).



A renaissance in numerical linear algebra (3)

Moreover, these ideas can be combined, 
as in this 1M x 1M dense symmetric 
covariance matrix:
• Original in DP: 4 TB
• Replacement: 0.915 TB
Smaller workingsets mean larger 
problems fit in GPUs and last-level caches 
on CPUs, for data movement savings
• Also, net computational savings
• Data structures and programs are 

more complex



Rank: a tuning knob

• Replace dense blocks with reduced rank representations, whether “born 
dense” or as arising during matrix operations
- use high accuracy (high rank) to build “exact” solvers
- use low accuracy (low rank) to build preconditioners

• Consider hardware parameters in tuning block sizes and maximum rank 
parameters, to complement mathematical considerations
- e.g., cache sizes, warp sizes

• Select from already broad and ever broadening algorithmic menu to form 
low-rank blocks (next slide)
- traditionally a flop-intensive vendor-optimized GEMM-based flat algorithm

• Implement in “batches” of leaf blocks
- flattening trees in the case of hierarchical methods



Low-rank approximations for compressible tiles

Options for forming data sparse representations of the amenable 
off-diagonal blocks
• standard SVD: O(n3), too expensive, especially for repeated compressions 

after additive tile manipulations
• randomized SVD (Halko et al., 2011): O(n2 log k) for rank k, requires only a 

small number of passes over the data, saving over the SVD in memory 
accesses as well as operations

• adaptive cross approximation (ACA) (Bebendorf, 2000):  O(k2n log n), 
motivated by integral equation kernels

• matrix skeletonization (representing a matrix by a representative collection 
of row and columns), such as CUR, sketching, or interpolatory 
decompositions based on proxies



With such new algorithms, today’s HPC can extend many applications 
that possess

• memory capacity constraints (e.g., geospatial statistics,     
PDE-constrained optimization)

• power constraints (e.g., remote telescopes)
• real-time constraints (e.g., wireless communication)
• running time constraints (e.g., chemistry, materials,      

genome-wide associations)

Application opportunities



Example: covariance matrices from spatial statistics

• Climate and weather applications have many measurements located regularly 
or irregularly in a region; prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial random field, with 
parameters to be fit

• Leads to evaluating, inside an optimization loop, the log-likelihood function 
involving a large dense (but data sparse) covariance matrix 𝛴

• Apply inverse 𝛴-1 and determinant | 𝛴 | with Cholesky



Synthetic scaling test

Random coordinate generation within the unit square or unit cube with 
Matérn kernel decay, each pair of points connected by square exponential 
decay, aij ~ exp (-c|xi - xj|2)

2D 3D



O(n2)

O(n3)

TLR vs. Intel MKL on shared memory
Red arrows: 
speedups from 
hardware, 
same algorithm

Green arrows: 
speedups from 
algorithm, 
same hardware

Blue arrow:
from both

classical

tile low rank
w/StarPU

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

NB: log scale

• Gaussian kernel to accuracy 1.0e-8 in each tile
• Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
• Two generations of linear algebra (classical dense and tile low rank) 

HiCMA TLR vs. Intel MKL on shared memory



4 TB

1 to 2 orders of 
magnitude less, 
depending upon 
accuracy (x-axis)

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, EuroPar 2018

NB: log scale

Memory footprint for TLR fully DP matrix of size 1M



Nearly 2 orders of 
magnitude for 0.5M size 
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memory

Green arrow: 
speedup from 
algorithm, 
same 16 nodes

NB: log scale

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Shaheen II at KAUST: a Cray XC40 system with 6,174 compute nodes, each of which has two 16-core Intel Haswell CPUs 
running at 2.30 GHz and 128 GB of DDR4 main memory

HiCMA TLR vs. ScaLAPACK on distributed memory



64000

Cholesky factorization of a TLR matrix derived from Gaussian covariance of random 
distributions, up to 42M DOFs, on up to 4096 nodes (131,072 cores) of a Cray XC40
• would require 7.05 PetaBytes in dense DP (using symmetry)
• would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

Millions of DOFs
Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky Factorization Toward Climate 
and Weather Prediction Applications. PASC‘20 (ACM)

NB: log scale

Extreme Tile Low Rank

Fully dense 
computation 
would have cost 
about $1.03M in 
electricity and 
generated about 
2500 metric tons 
of CO2e



Peak Performance in TF/s V100 NVLink A100 NVLink H100 SXM

FP64 7.5 9.7 34

FP32 19.5 67

FP64 Tensor Core 15 19.5 67

FP32 Tensor Core 156 495

FP16 Tensor Core 120 312 989

Two motivations for mixed precision
• Mathematical: (much) better than “no precision”

– Statisticians often approximate remote diagonals as zero after performing a diagonally clustered 
space-filling curve ordering, so their coefficients must be orders of magnitude down from the 
diagonals

– not just smoothly decaying in the low-rank sense, but actually small
• Computational: faster time to solution

– hence lower energy consumption and higher performance, especially by exploiting heterogeneity

16x8x 16x

rel. 2017                    rel. 2020                  rel. 2023



Mixed precision geospatial statistics on GPUs

• Gaussian kernel to accuracy 1.0e-9 in each tile 
• Three generations of NVIDIA GPU (Pascal, Volta, Ampere)
• Two generations of linear algebra (double precision and mixed DP/HP) 

Ltaief, Genton, Gratadour, K. & Ravasi, 2022, Responsibly Reckless Matrix Algorithms for HPC Scientific 
Applications, Computing in Science and Engineering



2022 Gordon Bell Finalist justification



2022 Gordon Bell Finalist attributes



GB’22 collaborators

Qinglei Cao                   Yu Pei                 George Boslica  Jack Dongarra

Rabab Alomairy            Pratik Nag             Sameh Abdulah          Hatem Ltaief                 Ying Sun                Marc Genton

KAUST Supercomputing Core Lab, HLRS-Stuttgart, Oak Ridge LCF, RIKEN, and:



Space and space-time modeling using Maximum Likelihood Estimation 
(MLE) on two environmental datasets

App: spatial & spatio-temporal environmental statistics
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• Predicts quantities directly from data (e.g., weather, climate)
– assumes a correlation model
– data may be from observations or from first-principles simulations
– statistical alternative to large-ensemble simulation averages

• Relied upon for economic and policy decisions
– predicting demands, engineering safety margins, mitigating hazards, 

siting renewable resources, etc.
– such applications are among principal supercomputing workloads

• Whereas simulations based on PDEs are usually memory 
bandwidth-bound, emulations based on covariance matrices are 
usually compute-bound (achieve a high % of bandwidth peak)

Statistical “emulation” (complementary to simulation)



• Contemporary observational datasets can be huge
– Collect p observations at each of n locations Zp(xn,yn,zn,tn)
– Find optimal fit of the observations Z to a plausible function
– Infer values at missing locations of interest

• Maximum Likelihood Estimate (MLE)
– model for estimating parameters required to perform inference

• Complexity:
– Arithmetic cost: solve systems with and calculate determinant of n-by-n 

covariance matrix
– 𝑂((𝑝𝑛)!)	floating-point operations and 𝑂((𝑝𝑛)")	memory
– Memory footprint: 10# locations require 4 TB memory (double precision, 

invoking symmetry, for p	=1)

The computational challenge



• Contemporary observational datasets can be huge
– Collect p observations at each of n locations Zp(xn,yn,zn,tn)
– Find optimal fit of the observations Z to a plausible function
– Infer values at missing locations of interest

• Maximum Likelihood Estimate (MLE)
– model for estimating parameters required to perform inference

• Complexity:
– Arithmetic cost: solve systems with and calculate determinant of n-by-n 

covariance matrix
– 𝑂((𝑝𝑛)!)	floating-point operations and 𝑂((𝑝𝑛)")	memory
– Memory footprint: 10# locations require 4 TB memory (double precision, 

invoking symmetry, for p	=1)

The computational challenge opportunity



Motivation: High Performance Computational Statistics (HPCS)

“Increasing amounts of data are being produced (e.g., by remote 
sensing instruments and numerical models), while techniques to 
handle millions of observations have historically lagged behind… 
Computational implementations that work with irregularly-spaced 
observations are still rare.”  - Dorit Hammerling, NCAR, July 2019

1M ✕ 1M dense sym DP matrix requires 4 TB,  N3 ~ 1018 Flops 

Traditional approaches:
Global low rank
Zero outer diagonals

Better approaches:
Hierarchical low rank
Reduced precision outer 

diagonals



https://github.com/ecrc/exageostat

Prediction Accuracy using Space-Time model

• Supports large-scale geo-spatial datasets (univariate/bivariate).
• Estimates the maximum likelihood using synthetic and real datasets.
• Leverages the data sparsity structure of the matrix operator.
• Performs matrix computations at tunable accuracies using Diagonal

Super-Tile (DST) and Tile Low-Rank (TLR) approximations as well as
mixed-precision (MP) calculations.

• Predicts observations using dense, DST, TLR, and MP techniques
and reveals insights from environmental Big Data applications.

A collaboration with With support from Sponsored by

HIGH PERFORMANCE UNIFIED SOFTWARE 
FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The ExaGeoStat project is a high performance software package for computational geostatistics on many-core systems. The Maximum
Likelihood Estimation (MLE) method is used to optimize the likelihood function for a given spatial set. MLE provides an efficient way to
predict missing observations in the context of climate/weather forecasting applications. This machine learning framework deploys a
unified software stack to target various hardware architectures with a single-source simulation code, from commodity x86 to GPU-
based shared and distributed-memory systems. At large-scale problem sizes, ExaGeoStat further exploits the data sparsity of the
covariance matrix to address the curse of dimensionality. In particular, ExaGeoStat supports Tile Low-Rank (TLR) approximation and
mixed-precision computations to model univariate, multivariate space and space-time problems. This translates into a reduction of the
memory footprint and the algorithmic complexity of the MLE operation, while still maintaining the overall fidelity of the underlying model.

ExaGeoStat v1.1.0
Dense

TLR Accuracy Impact on Parameter Estimates, Bivariate Case

4096 Shaheen-II Cray XC40 Nodes 1536 Hawk AMD EPYC Nodes

• Support for out-of-core algorithms.

• Assist the convergence of MLE
with a prediction phase.

• Deploy the PaRSEC runtime system.

• Combine TLR with MP to accelerate
MLE for larger problem sizes.

• Model space-time, non-Gaussian,
and non-stationary geospatial data.

Computing the Cholesky-Based MLE Method

• Real dataset: (MERRA-2) re-analyses dataset of hourly PM 2.5 measurements from NASA Earth data.
• Data description: an hourly dataset for four years (2016- 2019) with a total size of 550 spatial locations.
• Extreme Gaussian geostatistical spatio-temporal computations.

Software Infrastructure

Samples of the Training Datasets (Year: 2016)

Space-Time Modeling Prediction

Mixed-Precision Performance on Distributed-Memory Systems

128 Summit IBM/NVIDIA V100 Nodes

TLR Multivariate Spatial Modeling Performance and Accuracy

Current Research

DST TLR MP

ER=0.1 ER=0.3 ER=0.7

Acc=1e-5 Acc=1e-7 Acc=1e-9 Dense

128 Shaheen-II Cray XC40 Nodes

References
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems. 29(12):2771-84. 2018.
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-Scale Geostatistics Simulations. IEEE International Conference on Cluster Computing. pp. 98-108. 2018.
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. Geostatistical Modeling and Prediction Using Mixed Precision Tile Cholesky Factorization. IEEE 26th International Conference on High Performance Computing, Data, and Analytics. pp. 152-162. 2019.
Ø S. Abdulah, Y. Li, J. Cao, H. Ltaief, D.E. Keyes, M.G. Genton, Y. Sun. ExaGeoStatR: A Package for Large-Scale Geostatistics in R. arXiv preprint arXiv:1908.06936. 2019.
Ø M.L. Salvaña, S. Abdulah, H. Huang, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. High Performance Multivariate Spatial Modeling for Geostatistical Data on Manycore Systems. arXiv preprint arXiv:2008.07437. 2020.

Sameh Abdulah, 
Research Scientist 

ECRC, KAUST



• Synthetic Dataset Generator
– Generates large-scale geospatial datasets which 

can be used separately as benchmark datasets 
for other software packages

• Maximum Likelihood Estimator (MLE)
– Evaluates the maximum likelihood function on 

large-scale geospatial datasets
– Supports dense full machine precision, Tile Low-

Rank (TLR) approximation, low-precision 
approximation accuracy, and now TLR-MP

•  ExaGeoStat Predictor
– Infers unknown measurements at new geospatial 

locations from the MLE model

ExaGeoStat’s 3-fold framework



The portable ExaGeoStat software stack

#141 Shaheen-2Intel X86

#4 Fugaku
Fujitsu A64FX

#7 SummitNVIDIA V100

#1 Frontier
AMD EPYC

Nov 2023
Top500 data



• The log-likelihood function:

• Optimization over 𝜽	to maximize the likelihood function estimation 
until convergence
– generate the covariance matrix 𝞢(𝝷 ) using a specified kernel
– evaluate the log determinant and the inverse operations, which require 

a Cholesky factorization of the given covariance matrix
– update 𝝷

• NLOPT* is typically used to maximize the likelihood
• Parallel PSwarm optimization algorithm runs several likelihood 

estimation steps at the same time (an embarrassingly parallel outer 
loop)

Maximum Likelihood Estimator (MLE)

*open-source library by Prof. Steve Johnson of MIT



Covariance functions supported in ExaGeoStat

Univariate Matern Kernel

Multivariate Parsimonious Kernel 

Space/Time Nonseparable Kernel 

Tukey g-and-h Non-Gaussian Field with Kernel 

Multivariate Flexible Kernel Powered Exponential Kernel

(6 parameters to fit, add: time-range, time-smoothness, and separability)(3 parameters to fit: variance, range, smoothness)



How to choose the rank?

• Tiles are compressed to low rank based on user-supplied tolerance 
parameter, based on the first neglected singular value-vector pair.

• A tile-centric, structure-aware heuristic decides at runtime whether 
the tile should remain in low rank form or converted back to dense, 
based on estimates of the overheads of maintaining and operating 
with the compressed form.

• The structure-aware runtime decision is based only the estimated 
number of flops and time to solution, while the precision-aware 
runtime decision (next slide) is based only on the accuracy 
requirements of representing the matrix in the Frobenius norm.



How to choose the precision?

Higham & Mary, Mixed Precision Algorithms in Numerical Linear Algebra (2022), Acta Numerica, pp. 347-414

• Consider 2-precision case, with machine epsilons (unit roundoffs) uhigh and 
ulow , resp.

• Let  || A ||F  be the Frobenius norm of the global matrix square matrix A, 
which is computable by streaming A through just once

• Let nT be the number of tiles in each dimension of A
• Then any tile Aij such that 
                              || Aij ||F / (|| A ||F / nT )  <  uhigh / ulow  

         is stored in low precision; otherwise kept in high
• The mixed precision tiled matrix  A   thus formed satisfies 
                                           ||A  - A ||F <  uhigh || A ||F 

• Generalizes to multiple precisions
• Tiles can be converted dynamically at runtime
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Accuracy on real 3D (2D space + time) dataset

mean-square 
prediction error



Performance on up to 16K nodes of Fugaku

~3x less time for same size

~3x greater size for same time

To be improved:

Still tuning runtime 
system PaRSEC on 
Fugaku’s 32GB/node



Tile map for 2D space kernel with ~1M points
370 tiles of size 2700 in each dimension

memory footprint 
1.6 TB

memory footprint 
0.9 TB

memory footprint 
3.8 TB

memory footprint 
1.8 TB

default dense double is ~4 TB

weak correlation strong correlation



Impact for spatial statistics

The potential for this combination in spatial statistics 
generally is high… The authors have demonstrated 
controllable and high accuracy typical of universal 
double precision, while exploiting mostly half precision, 
and keeping relatively few tiles clustered around the 
diagonal in their original fully dense format.  The result 
is reduction in time to solution of an order of magnitude 
or more, with the ratio of improvement growing with 
problem size, but already transformative.  
-- Professor Sudipto Banerjee, UCLA



The innovations described in numerical linear algebra and in 
dynamic runtime task scheduling deliver an order of magnitude 
or more of reduction in execution time for a sufficiently large 
spatial or spatial-temporal data set using the Maximum 
Likelihood Estimation (MLE) and kriging paradigm.  Perhaps 
more importantly, by reducing the memory footprint of such 
models, they allow much larger datasets to be 
accommodated within given computational resources.  The 
advance this creates for spatial statisticians – geophysical and 
otherwise – is potentially immense, given that this result is 
now available through ExaGeoStat.
-- Professor Doug Nychka, Colorado School of Mines

Impact for spatial statistics



An especially attractive aspect of the submission is the 
innovation that it required in the a64fx ARM architecture of 
Fugaku, namely the accumulation in 32 bits of the 16-bit 
floating point multiply. I regard this aspect of the KAUST-UT-
RIKEN collaboration of abiding benefit beyond the particular 
application of this submission.  
As you know, my mottos for data science are that “Statistics is 
the ‘Physics’ of Data” and “Statistics is to Machine Learning as 
Physics is to Engineering.”  Your Gordon Bell campaign is 
accelerating the use of spatial statistics to allow it to keep 
up with exascale hardware.
-- Dr. George Ostrouchov, ORNL

Impact for spatial statistics



2023 Gordon Bell Finalist justification



2023 Gordon Bell Finalist attributes



GB’23 collaborators

Leighton Wilson         Mathias Jacquelin

Yuxi Hong                   Hatem Ltaief             Matteo Ravasi

Group42 (Abu Dhabi), KAUST Supercomputing Core Lab and:



Cerebras CS-2 Wafer-Scale Engine (WSE)

Hamburg, May 2022



2023 Gordon Bell submission



2023 Gordon Bell submission

Roofline 
models of 

6 CS-2’s
compared 
with other 
solutions

Roofline 
models of 
 48 CS-2’s 
compared 
with top 5
(Nov 2023) 



Impact for geophysical imaging

For the past 3 decades, we have needed large-scale 
convolutions for multiple applications to tackle subsurface 
challenges – which are now greater than ever for the energy 
transition, such as rapid, wide-scale monitoring of subsurface 
hydrogen storage – but have never achieved it due to the 
unsurmountable bottleneck imposed by the size of datasets 
(starting at TBs). 
This project, with its balanced focus on accuracy and 
practical performance, is likely to finally break through a 
decades-old barrier in geophysical imaging. 
– Dr. Ivan Vasconcelos, Shearwater Geoservices



Impact for geophysical imaging

The impact that the efficient implementation of multi-
dimensional convolution with low-rank tiles that Ltaief and co-
authors have developed is better understood if we bear in mind 
that multidimensional convolution and deconvolution are 
ubiquitous operations in seismic processing. 

This new implementation may lead to a drastic reduction of the 
turnaround time of seismic data processing projects. The 
consequence is that the decision-makers, regardless of whether 
they use seismic images for conventional hydrocarbon exploration 
or for other applications, will receive valuable information in a 
timely manner. 
– Dr. Claudio Bagaini, SLB (Schlumberger)



Impact for geophysical imaging

Conventional algorithms for MDD would not have mapped onto the 
Cerebras CS-2 engines because their N3 arithmetic complexity is 
prohibitive. Only the algebraically compressed form of the problem 
fits. All parts of this interdisciplinary project are thus necessary for 
its success.
As the title indicates, this team is ‘scaling the memory wall’ that 
has loomed over computational science & engineering at the 
high end for, by now, three decades. Their algorithms and CS-2 
implementation have enormous implications for our community, 
since their application is representative of many important CS&E 
problems.
– Professor Omar Ghattas, U Texas



2024 Gordon Bell Climate Finalist justification



2024 Gordon Bell Climate Finalist attributes



GB’24 climate prize collaborators

Sameh Abdulah          Marc Genton           Zubair Khalid             Hatem Ltaief                 Yan Song                 Ying Sun

KAUST Supercomputing Core Lab, Oak Ridge LCF, CSCS Alps, CINECA Leonardo, and:

Allison Baker          George Boslica      Qinglei Cao          Stefano Castruccio    Gera Stenchikov



Motivation for climate emulation

• 45-institution Coupled Model Intercomparison Project (CMIP) 
• CMIP6 campaign recently generated 28 PB of data, at a cost of $45/TB/year
• emulation trained on simulation generates realizations with same statistics
• efficient basis for compact storage, e.g., spherical harmonics



Expanding emulation capabilities



Performance on four Top10 systems (eff. Pflops/s)



Per node performance on a 1024-node subsystem



2024 Gordon Bell Prize Finalist justification



2024 Gordon Bell Prize Finalist attribution



GB’24 prize collaborators

Rached Abdelkhalek   Rabab Alomairy          Qinglei Cao        Benedikt Dorschner  Thorsten Kurth           Lotfi Slim

KAUST Supercomputing Core Lab, Oak Ridge LCF, CSCS Alps, CINECA Leonardo, and:

Salim Bougaffa          Hatem Ltaief                  Jie Ren



Motivation for epistatic genome association studies

• Train statistical model on genotype/environmental-to-phenotype data  
• Use to predict disease and other genetic/environmental characteristics
• Ridge regression is a linear association that considers individual SNPs
• Kernel ridge regression is correlates instances of multiple SNPs



Submitted to the 2024 Gordon Bell Prize

epistatic



Motivation for epistatic genome association studies

• Train statistical model on genotype/environmental to phenotype data  
• Use to predict disease and other genetic/environmental characteristics
• Ridge regression is a linear association that considers individual SNPs
• Kernel ridge regression is correlates instances of multiple SNPs

osteoarthritis depression



Kernel Ridge Regression is just linear algebra

Training Inference



Tensor-core intensive “Build” phase in more detail

Let G contain three patients, a, b, and c, 
with two markers

Initialize D to the square of the length of each 
patient vector down the columns (O(N) data)

Form the symmetric

Then, apply BLAS3 in INT8 to get  

using

We want the squared distance matrix

where a2 = a1
2  + a2

2, etc., to exponentiate 
to get the kernel matrix, K 



Some home-grown software

Updated annually for SC’xy , at https://github.com/ecrc

in NVIDIA cuBLAS & 
NEC NLC

in Cray LibSci 
& NEC NLC

in Aramco ExaWave
R interface on sky in Suburu 

in DOE’s 
Strumpack

in PyLOPS
& MAVIS



Hourglass model of software

https://github.com/ecrc/hicma



Conclusions, recapped

As computational infrastructure demands a growing sector of research 
budgets and global energy expenditure, we must address the need for 
greater efficiency

As a community, we have excelled at this historically in three aspects:
• architectures
• applications (redefining actual outputs of interest)
• algorithms

There are new algorithmic opportunities in:
• reduced rank representations
• reduced precision representations



Sustainable computing – two meanings

Computing sustainably
• or at least efficiently – not computing more than 

necessary for a given scientific target

Computing to support sustainability
• renewable energy 
• affordable energy
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