Roots of Alexander polynomials of random positive 3-braids

Nathan Dunfield (University of Illinois)

joint with Giulio Tiozzo

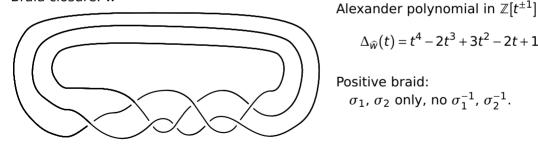
Based on: arXiv:2402.06771

Slides at: https://dunfield.info/slides/ICERM2025.pdf

3-strand braid group: Br₃ = $\langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$

$$w = \sigma_1 \sigma_2 \sigma_1^{-2} \sigma_2 \sigma_1^2 \sigma_2^{-1}:$$

Braid closure: \hat{w}

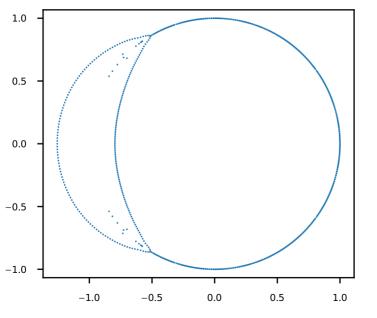


$$\Delta_{\widehat{w}}(t) = t^4 - 2t^3 + 3t^2 - 2t + 1$$

Positive braid:

$$\sigma_1$$
, σ_2 only, no σ_1^{-1} , σ_2^{-1} .

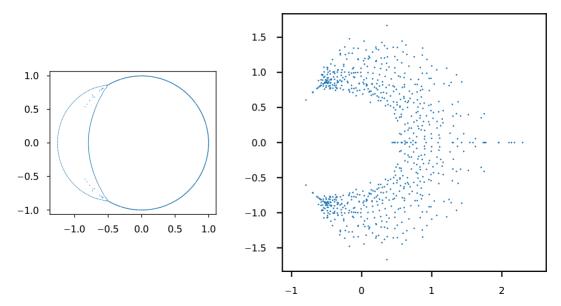
Dehornoy (2015): roots of $\Delta_{\widehat{w}}$ for positive $w \in \operatorname{Br}_3$ are highly structured.



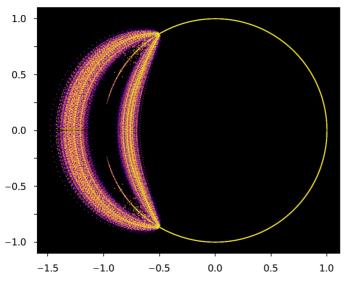
 $\deg \Delta_{\widehat{w}} = \#w - 2 \approx 760$

69.3% of roots on *S*¹

Comparison to roots of $\Delta_{\widehat{w}}$ for a random braid in $\{\sigma_1, \sigma_1^{-1}, \sigma_2, \sigma_2^{-1}\}$.



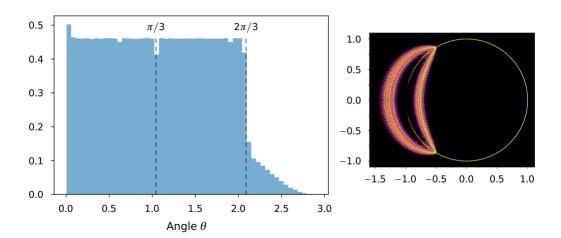
Roots of $\Delta_{\widehat{w}}$ for 2,500 positive braids with mean $\#w \approx 500$ and std. dev. 170.



 $\it w$ chosen randomly with σ_1 and σ_2 having probability 1/2

1.2 million roots shown

Distribution of roots of $\Delta_{\widehat{w}}$ on the top half of the circle.



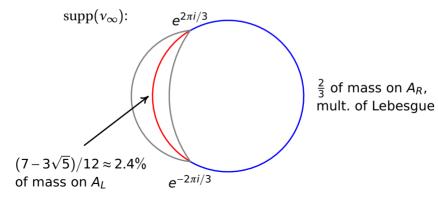
For $w \in \operatorname{Br}_3$ let v_w be the prob. measure on $\mathbb C$ unif. supported on the roots of $\Delta_{\widehat{w}}$.

Generate a random walk $w_n := g_1g_2 \cdots g_n$ by picking $(g_i)_{i \in \mathbb{N}} \in \{\sigma_1, \sigma_2\}^{\mathbb{N}}$ with respect to the uniform measure.

For $w \in \operatorname{Br}_3$ let v_w be the prob. measure on $\mathbb C$ unif. supported on the roots of $\Delta_{\widehat w}$.

Generate a random walk $w_n := g_1g_2\cdots g_n$ by picking $(g_i)_{i\in\mathbb{N}} \in \{\sigma_1,\sigma_2\}^{\mathbb{N}}$ with respect to the uniform measure.

Conj. There exists a compactly supported measure v_{∞} on $\mathbb C$ such that for a.e. w_n one has $v_{w_n} \to v_{\infty}$ weakly. Moreover, v_{∞} has the following properties:



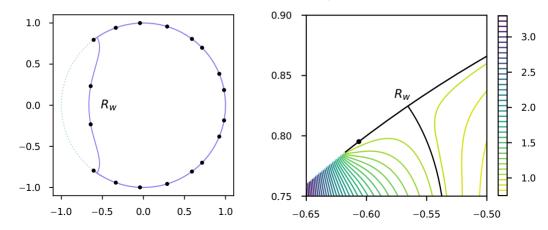
 $\Delta_{\widehat{w}}(t) = \det(B_t(w) - 1) / (t^2 + t + 1)$ $\sum_{v \in \overline{D}} (|v| + t) \cdot |v| = \sum_{v \in \overline{D}} |v| \cdot |v| \cdot |v| = \sum_{v \in \overline{D}} |v| = \sum_{$

Burau rep B_t : Br₃ \to GL₂ $\mathbb{Z}[t^{\pm 1}]$ defined by $\sigma_1 \mapsto \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}$ and $\sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}$

For $\overline{\mathbb{D}}=\{\ |z|\leq 1\ \}$, take $\rho_W\colon \overline{\mathbb{D}}\to\mathbb{R}_{\geq 0}$ to be the max abs. val. of an eig. val. of $B_Z(w)$. Key: $\rho_W=1$ at any root of $\Delta_{\widehat{w}}$ in $\overline{\mathbb{D}}$. Burau rep B_t : Br₃ \to GL₂ $\mathbb{Z}[t^{\pm 1}]$ defined by $\sigma_1 \mapsto \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}$ and $\sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix}$

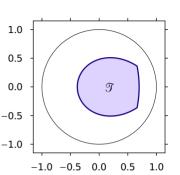
$$\Delta_{\widehat{w}}(t) = \det(B_t(w) - 1) / (t^2 + t + 1)$$

For $\overline{\mathbb{D}} = \{ |z| \le 1 \}$, take $\rho_W \colon \overline{\mathbb{D}} \to \mathbb{R}_{\ge 0}$ to be the max abs. val. of an eig. val. of $B_Z(w)$. Key: $\rho_W = 1$ at any root of $\Delta_{\widehat{W}}$ in $\overline{\mathbb{D}}$. Set $R_W = \{z \in \overline{\mathbb{D}} \mid \rho_W(z) = 1\}$.



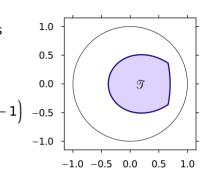
Thm. For any positive $w \neq \sigma_i^k$, the set R_w contains the arc $A_R := \{t = e^{i\theta} \mid |\theta| < 2\pi/3\}$, is disjoint from the set \mathcal{T} , and meets (-1,1) in a single point.

Thm. For any positive $w \neq \sigma_i^k$, at least $\frac{2}{3} \left(\deg(\Delta_{\widehat{w}}) - 1 \right)$ of the roots of $\Delta_{\widehat{w}}$ occur on the arc A_R .



Thm. For any positive $w \neq \sigma_i^k$, the set R_w contains the arc $A_R := \{t = e^{i\theta} \mid |\theta| < 2\pi/3\}$, is disjoint from the set \mathcal{T} , and meets (-1,1) in a single point.

Thm. For any positive $w \neq \sigma_i^k$, at least $\frac{2}{3} \left(\deg(\Delta_{\widehat{w}}) - 1 \right)$ of the roots of $\Delta_{\widehat{w}}$ occur on the arc A_R .



Thm. Set $A_L := \{t = e^{i\theta} \mid |\theta - \pi| < \pi/3\}$. For a.e. random walk w_n , asymptotically the portion of the roots of $\Delta_{\widehat{w}_n}$ on A_L is $\geq (7 - 3\sqrt{5})/12 \approx 2.4\%$.

Thm. The signature $|\sigma_{\widehat{w}}(-1)|$ obeys a central limit theorem with positive drift $(5-\sqrt{5})/4$.

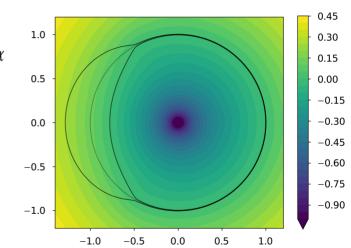
$$\chi(t) := \max \Big\{ \lambda(t), \log |t|, 0 \Big\}.$$

Bifurcation measure: $v_{\it bif} := \Delta \chi$

Conj. $v_{W_n} \rightarrow v_{bif}$

Motivated by Deroin-Dujardin.

We have some partial results towards this conjecture.

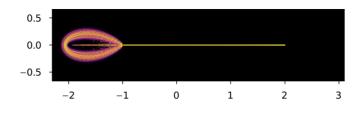


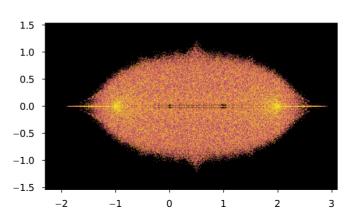
Open questions:

Prove the conjecture!

n-strand braids

Non-positive braids?





Ribbon concordances and slice obstructions: experiments and examples

Forthcoming work with Sherry Gong

- 352 million knots with ≤ 19 crossings [Burton]
 - ▶ 1.6 million are slice
 - ▶ 350.4 million are not slice
 - < 13,000 unknown (0.004%)</p>