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Projection methods
Start with a “full-order model”
x = f(x,u)
y = g(x,u)

where x € R" is the state, v is an input, and y is an output.

Consider two r-dimensional subspaces of R":
» Trial subspace V = Range(V)
» Test subspace W = Range(W), W'V = I,

Reduced-order model (Petrov-Galerkin):
z=WTf(Vz,u)
y =g(Vz,u)

where x = Vz, z € R".
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Reduced-order model

Reduced-order model is

7= WTF(Vz,u)
y =g(Vz,u)

Question: How should we choose V, W7

Can we do better than PCA?
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Outline

Balanced truncation for linear systems
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Overview of balanced truncation

» Consider a linear system with state x, a control input u and
output y:

x = Ax+ Bu
y = Cx

> We wish to determine a model with approximately the same
input-output behavior, but smaller state dimension.
» Balanced truncation! is an excellent method for this

> A priori error bound, close to the smallest possible
» Computationally tractable, even for high-dimensional systems?

1BC Moore, IEEE Trans. Automat. Control, 1981
2 Antoulas, 2005; Rowley, 1JBC, 2005
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ODE example

Consider the following ODE

x1 = —x1 + 100x3 + u
Xp = —2xp + 100x3 + u
x3 = —-bxg+u
y=x1+Xx2+Xx3

» u is the “input” (forcing term)
> y is the “output” (what we wish to capture with our model)

> |s there a 2-state model with nearly the same input-output
behavior?
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ODE response to an impulse

Consider the response to an impulsive input u(t) = d(t)
We're interested in modeling y = x1 + xo + x3
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The state x3 decays quickly, so we might think we can neglect it in
a reduced-order model.
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Naive reduced-order model

If we set x3 = 0, the model becomes

X1 =—Xx1+u
Xo = —2Xp + U
y=Xx1+x

The impulse response decays monotonically (no transient growth)!
Clearly not a good model. What went wrong?
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Look at sensitivity: adjoint system

The sensitivity of the output y(t) to perturbations in the initial
states are given by solving an adjoint system:

Do)y (t) = (z1(t), 22(t), z3(t))
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> The output is much more sensitive to perturbations in x3 than
to x1 and xo.

> But we neglected x3 because it had small energy.
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Balanced truncation

> Balanced truncation incorporates this sensitivity in an elegant
and natural way.
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Results for the ODE example

Impulse response for the projection onto two states:

30
25 Balanced 1,2; Full
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» The first two PCA modes contain 99.97% of the energy, but
projection onto these modes gives a poor model.

> Balanced truncation to two states matches the full model
nearly perfectly.
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What is balanced truncation doing?

> Most controllable states are those that are most easily excited
by the input w.
Quantified by a symmetric positive-definite matrix W,:

Controllability(x) = xT W,.x

> Most observable states are those that excite the largest future
outputs (with no input, u = 0).
Quantified by a symmetric positive-definite matrix W,:

Observability(x) = x T W,x

» Theorem: there is a change of coordinates in which W, and
W, are equal and diagonal (under mild assumptions).

> Balanced truncation: change to these coordinates, and
truncate the states that are least controllable/observable.
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Geometric picture
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An error bound

> Factor the controllability and observability matrices as
W, = XXT, W, =YY"

» Can prove that the error® between the full model and the
reduced-order model with r states has a bound:

Error < 2(op41+ -+ + 0n),

where o are the singular values of Y7 X.

3in the operator norm induced by the 2-norm on signals
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Balanced truncation as a projection of dynamics

> For a linear system, balanced truncation determines two
subspaces, V and W

w

Pv,w,
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Summary of balanced truncation

> Effectively balances energy and sensitivity, and gives
reduced-order models that are provably close to optimal

> Often significantly outperforms PCA, especially for
“non-normal’ systems with large transient energy growth

» Computationally tractable, even for high-dimensional systems

> Applies only to linear systems
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Outline

Covariance balancing reduction for nonlinear systems
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Balancing for nonlinear systems

» We would like to find reduced-order models of a nonlinear
system

» For linear systems, there are good methods (e.g., balanced
truncation, Hy optimal reduction)

> For nonlinear systems, the situation is much worse: available
methods are

> computationally intractable for high-dimensional systems
> valid only in the neighborhood of an equilibrium point
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Which coordinates should be retained?

> For now, we ignore the input:

x(t+1) = f(x(¢))
y(t) = g(x(1))
» Consider a map from the current state xp to future outputs y,
defined by
F(x0) = (¥(0), .., y(L))
» A good set of coordinates z = W " x will allow us to

approximate N
F(XO) ~ F(Zo)
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Coordinates from projections

» Suppose V, W are n x r matrices such that W™V = [. We
have the decomposition

x = Vz+ xo, z=WTx

» Given z, the optimal estimate for F(x) (in the mean-square
sense) is given by averaging over xy:

l—:(z) = E[F(Vz+x2)]

» For a good estimate, want two things:

» x> should have small variance
» F should not be sensitive to variations in xo.
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Quantifying variance and sensitivity

> Variance is quantified using the state covariance
W, = E[xxT].
> Sensitivity of F is quantified using the gradient covariance
W, =E[VF(x)VF(x)T],  VF(x)=DF(x)"

» ldea: change to coordinates in which W, and Wj; are equal
and diagonal, and then truncate directions in which there is
least variance and sensitivity.

> Observation: this is just like balanced truncation, with the

covariance matrices W, and Wy playing the role of
controllability and observability.
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Determining the optimal projection

> The covariance matrix W, is easy to approximate by sampling

» The gradient covariance matrix Wz may be approximated by
sampling an adjoint system

> Given these samples, the rank-r projection that balances these
matrices is easily computed using singular value decomposition

We call this method Covariance Balancing Reduction using Adjoint
Snapshots (CoBRAS) #

*SE Otto, A Padovan, and CW Rowley, SIAM J Scientific Computing,
45(5):A2325-A2355, 2023
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An error bound

> Factor the covariance matrices as Wy = XX T, W, = YYT

» Can prove that when x has Gaussian distribution,
E[HF(X) — :E(Px)Hz] < UE—i—l 4+t 0,2”

where o are the singular values of YT X.
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Kernel method

> There is also a generalization of this to nonlinear projections,
using a kernel method

> Lift the state and gradient vectors into a reproducing kernel
Hilbert space (RKHS)

» Compute inner products implicitly via the kernel

» This allows us to extract rich nonlinear features from the
system
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Outline

Trajectory-based optimization of subspaces
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Optimizing subspaces

> We can determine an even better choice of subspaces for
projection by an iterative optimization
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Trajectory-based optimization

>

>

>

Consider observations {yp, ...,y —1} along a trajectory from
the full model.
For given subspaces V and W, compute the corresponding
observations {Jp,...,y1—1} from the reduced-order model.
Let L, : RYmY — [0, 00) be a smooth loss function for the
predicted system outputs. We'd like to minimize

=

HVW) = 13 L5 )
1=0

But we need to ensure that the subspace pairs (V, W) satisfy
the non-orthogonality condition, so we introduce a
regularization p(V/, W) that enforces this constraint, and
define the objective

[—

J(V, W) = %Z Ly(91 = y1) +vp(V, W).
1=0

[y
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The overall method

We call this method Trajectory-based Optimization for Oblique
Projection (TrOOP)
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Solution of the optimization problem

» One optimizes over a manifold (two copies of the Grassmann
manifold) using a geometric conjugate gradient algorithm > ©

> The gradient is computed using an adjoint sensitivity method.

» This entails solving a linear ODE with the same dimension as
the reduced-order model backwards in time.

5Absil et al., "Optimization Algorithms on Matrix Manifolds”, 2008
5H. Sato, "A Dai-Yuan-type Riemannian conjugate gradient method with
the weak Wolfe conditions”, 2016
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Outline

Examples
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Two methods

We've described two different methods:

> Covariance Balanced Reduction using Adjoint Snapshots
(CoBRAS)

> Trajectory-based Optimization for Oblique Projection (TrOOP)

In practice, we can use CoBRAS to provide an initial guess for the
optimization problem in TrOOP.
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A challenging model problem

x1 = —x1 +20x1x3 + u
Xp = —2xp + 20x0x3 + U
x3=—-bxzg+u

Yy =x1+ X2+ X3,

> The state x3 is dynamically important, but remains small
compared with x; and x> due to its fast decay rate.

» The linearized dynamics do not capture the system’s behavior
away from the origin, which exhibits transient growth.

> We seek 2-dimensional reduced-order models.
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Training trajectories
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The training data consists of 22 sample points (black dots), from
trajectories with impulsive inputs u(t) = upd(t), with up = 0.5 and
1.0.
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Testing performance
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We tested our optimized Petrov-Galerkin model on 100 nonlinear
impulse response trajectories with magnitudes drawn uniformly at

random from the interval [0, 1].

—-= QB-IRKA.
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Axisymmetric jet flow example

Equilibrium Vorticity Response Snapshot
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Incompressible, axisymmetric jet flow
Reynolds number 1000
Full model: 100,000 states

Actuation: body force in radial direction

vVvyYyyvyy

We seek 40-dimensional reduced order models capable of
predicting the impulse response of the flow for a range of
impulse amplitudes
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Vorticity predictions for jet flow, t =5
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Vorticity predictions for jet flow, t = 20
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Projection error

Project each testing trajectory onto 40-dimensional subspace.
The “null” projection means Px = 0.

10%

null
CoBRAS
10t 4 — TrOOFP
FOD
BrPoD

100 4

1wty

1024

[l — Px]|*/ avg (|lx]1*)

0=

10—t L ‘ . . ‘ .
] 10 20 30 40 50

time t

PCA has the best projection error (as it must)
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Forecasting error

Now, consider forecasting using the reduced-order model
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CoBRAS and TrOOP both significantly outperform other methods,
and PCA is no better than the “null” model.
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Outline

Extensions using operator inference
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Drawbacks

> Some drawbacks of these approaches:

> They are intrusive: require knowledge of the full model
> The require adjoint simulations, which may not be available

Recent work by Alberto Padovan addresses both of these, using
operator inference.
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Leveraging operator inference

An exciting recent paper (arXiv:2401.01290):

Data-driven model reduction via non-intrusive optimization of projection
operators and reduced-order dynamics

Alberto Padovan*, Blaine Vollmer*, and Daniel J. Bodony*

Abstract. Computing reduced-order models using non-intrusive methods is particularly attractive for systems
that are simulated using black-box solvers. However, obtaining accurate data-driven models can
be challenging, especially if the underlying systems exhibit large-amplitude transient growth. Al-
though these systems may evolve near a low-dimensional subspace that can be easily identified using
standard techniques such as Proper Orthogonal Decomposition (POD), computing accurate mod-
els often requires projecting the state onto this subspace via a non-orthogonal projection. While
appropriate oblique projection operators can be computed using intrusive techniques that lever-
age the form of the underlying governing equations, purely data-driven methods currently tend to
achieve dimensionality reduction via orthogonal projections, and this can lead to models with poor
predictive accuracy. In this paper, we address this issue by introducing a non-intrusive framework
designed to simultaneously identify oblique projection operators and reduced-order dynamics. In

> |dea:

> Guess subspaces for projection

> Determine an approximate model using operator inference

> Use the adjoint of the inferred model to compute gradients
needed for gradient descent

» Update subspaces and iterate
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Example: lid-driven cavity flow
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Training error for lid-driven cavity flow
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Takeaways

>

| 4

PCA often does not give the best subspaces for reduced-order
models

Can generalize balanced truncation to nonlinear systems by
balancing state covariance and gradient covariance

Gradient covariance matrices computed efficiently from adjoint
simulations

Iterative method for further refining these subspaces, using loss
function based on trajectories

These methods are intrusive (require knowledge of the full
dynamics)

However, they play very nicely with non-intrusive methods
(Operator Inference)
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