
Covariance balancing model reduction

Clancy Rowley

ICERM: Computational Learning for Model Reduction

1 / 48

Projection methods
Start with a “full-order model”

ẋ = f (x , u)

y = g(x , u)

where x ∈ Rn is the state, u is an input, and y is an output.

Consider two r -dimensional subspaces of Rn:
▶ Trial subspace V = Range(V)

▶ Test subspace W = Range(W), W TV = Ir

Reduced-order model (Petrov-Galerkin):

ż = W T f (Vz , u)

y = g(Vz , u)

where x = Vz , z ∈ Rr .
2 / 48

Reduced-order model

Reduced-order model is

ż = W T f (Vz , u)

y = g(Vz , u)

Question: How should we choose V , W ?

Can we do better than PCA?

3 / 48

Outline

Balanced truncation for linear systems

Covariance balancing reduction for nonlinear systems

Trajectory-based optimization of subspaces

Examples

Extensions using operator inference

4 / 48

Outline

Balanced truncation for linear systems

Covariance balancing reduction for nonlinear systems

Trajectory-based optimization of subspaces

Examples

Extensions using operator inference

5 / 48

Overview of balanced truncation

▶ Consider a linear system with state x , a control input u and
output y :

ẋ = Ax + Bu

y = Cx

▶ We wish to determine a model with approximately the same
input-output behavior, but smaller state dimension.

▶ Balanced truncation1 is an excellent method for this
▶ A priori error bound, close to the smallest possible
▶ Computationally tractable, even for high-dimensional systems2

1BC Moore, IEEE Trans. Automat. Control, 1981
2Antoulas, 2005; Rowley, IJBC, 2005

6 / 48

ODE example

Consider the following ODE

ẋ1 = −x1 + 100x3 + u

ẋ2 = −2x2 + 100x3 + u

ẋ3 = −5x3 + u

y = x1 + x2 + x3

▶ u is the “input” (forcing term)
▶ y is the “output” (what we wish to capture with our model)
▶ Is there a 2-state model with nearly the same input-output

behavior?

7 / 48

ODE response to an impulse

Consider the response to an impulsive input u(t) = δ(t)
We’re interested in modeling y = x1 + x2 + x3

0 1 2 3 4 5 6
0

5

10

15

Time

x1

x2

x3

The state x3 decays quickly, so we might think we can neglect it in
a reduced-order model.

8 / 48

Naive reduced-order model

If we set x3 = 0, the model becomes

ẋ1 = −x1 + u

ẋ2 = −2x2 + u

y = x1 + x2

The impulse response decays monotonically (no transient growth)!
Clearly not a good model. What went wrong?

9 / 48

Look at sensitivity: adjoint system
The sensitivity of the output y(t) to perturbations in the initial
states are given by solving an adjoint system:

Dx(0)y(t) = (z1(t), z2(t), z3(t))

0 1 2 3 4 5 6
0

5

10

15

20

25

Time

z1, z2

z3

▶ The output is much more sensitive to perturbations in x3 than
to x1 and x2.

▶ But we neglected x3 because it had small energy.
10 / 48

Balanced truncation

▶ Balanced truncation incorporates this sensitivity in an elegant
and natural way.

11 / 48

Results for the ODE example
Impulse response for the projection onto two states:

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

30

Time

y

PCA 1,2

PCA 1,3

Balanced 1,2; Full

▶ The first two PCA modes contain 99.97% of the energy, but
projection onto these modes gives a poor model.

▶ Balanced truncation to two states matches the full model
nearly perfectly.

12 / 48

What is balanced truncation doing?
▶ Most controllable states are those that are most easily excited

by the input u.
Quantified by a symmetric positive-definite matrix Wc :

Controllability(x) = xTWcx

▶ Most observable states are those that excite the largest future
outputs (with no input, u = 0).
Quantified by a symmetric positive-definite matrix Wo :

Observability(x) = xTWox

▶ Theorem: there is a change of coordinates in which Wc and
Wo are equal and diagonal (under mild assumptions).

▶ Balanced truncation: change to these coordinates, and
truncate the states that are least controllable/observable.

13 / 48

Geometric picture

x1

x2
xTW−1

c x = 1xTW−1
o x = 1

z1

z2

x = Tz

14 / 48

An error bound

▶ Factor the controllability and observability matrices as

Wc = XXT , Wo = YY T

▶ Can prove that the error3 between the full model and the
reduced-order model with r states has a bound:

Error ≤ 2(σr+1 + · · ·+ σn),

where σk are the singular values of Y TX .

3in the operator norm induced by the 2-norm on signals
15 / 48

Balanced truncation as a projection of dynamics

▶ For a linear system, balanced truncation determines two
subspaces, V and W

x

PV x
PV ,W x

V

W

16 / 48

Summary of balanced truncation

▶ Effectively balances energy and sensitivity, and gives
reduced-order models that are provably close to optimal

▶ Often significantly outperforms PCA, especially for
“non-normal” systems with large transient energy growth

▶ Computationally tractable, even for high-dimensional systems
▶ Applies only to linear systems

17 / 48

Outline

Balanced truncation for linear systems

Covariance balancing reduction for nonlinear systems

Trajectory-based optimization of subspaces

Examples

Extensions using operator inference

18 / 48

Acknowledgements

Graduate students
▶ Sam Otto (Asst. Prof., Cornell)
▶ Alberto Padovan (Postdoc, UIUC)

19 / 48

Balancing for nonlinear systems

▶ We would like to find reduced-order models of a nonlinear
system

x(t + 1) = f (x(t), u(t))

y(t) = g(x(t))

▶ For linear systems, there are good methods (e.g., balanced
truncation, H2 optimal reduction)

▶ For nonlinear systems, the situation is much worse: available
methods are
▶ computationally intractable for high-dimensional systems
▶ valid only in the neighborhood of an equilibrium point

20 / 48

Which coordinates should be retained?

▶ For now, we ignore the input:

x(t + 1) = f (x(t))

y(t) = g(x(t))

▶ Consider a map from the current state x0 to future outputs y ,
defined by

F (x0) = (y(0), . . . , y(L))

▶ A good set of coordinates z = W T x will allow us to
approximate

F (x0) ≈ F̃ (z0)

21 / 48

Coordinates from projections

▶ Suppose V , W are n × r matrices such that W TV = I . We
have the decomposition

x = Vz + x2, z = W T x

▶ Given z , the optimal estimate for F (x) (in the mean-square
sense) is given by averaging over x2:

F̃ (z) = E
[
F (Vz + x2)

]
▶ For a good estimate, want two things:

▶ x2 should have small variance
▶ F should not be sensitive to variations in x2.

22 / 48

Quantifying variance and sensitivity

▶ Variance is quantified using the state covariance

Wx = E[xxT].

▶ Sensitivity of F is quantified using the gradient covariance

Wg = E
[
∇F (x)∇F (x)T

]
, ∇F (x) = DF (x)T

▶ Idea: change to coordinates in which Wx and Wg are equal
and diagonal, and then truncate directions in which there is
least variance and sensitivity.

▶ Observation: this is just like balanced truncation, with the
covariance matrices Wx and Wg playing the role of
controllability and observability.

23 / 48

Determining the optimal projection

▶ The covariance matrix Wx is easy to approximate by sampling
▶ The gradient covariance matrix Wg may be approximated by

sampling an adjoint system
▶ Given these samples, the rank-r projection that balances these

matrices is easily computed using singular value decomposition

We call this method Covariance Balancing Reduction using Adjoint
Snapshots (CoBRAS) 4

4SE Otto, A Padovan, and CW Rowley, SIAM J Scientific Computing,
45(5):A2325–A2355, 2023

24 / 48

An error bound

▶ Factor the covariance matrices as Wx = XXT , Wg = YY T

▶ Can prove that when x has Gaussian distribution,

E
[
∥F (x)− F̃ (Px)∥2] ≤ σ2

r+1 + · · ·+ σ2
n,

where σk are the singular values of Y TX .

25 / 48

Kernel method

▶ There is also a generalization of this to nonlinear projections,
using a kernel method

▶ Lift the state and gradient vectors into a reproducing kernel
Hilbert space (RKHS)

▶ Compute inner products implicitly via the kernel
▶ This allows us to extract rich nonlinear features from the

system

26 / 48

Outline

Balanced truncation for linear systems

Covariance balancing reduction for nonlinear systems

Trajectory-based optimization of subspaces

Examples

Extensions using operator inference

27 / 48

Optimizing subspaces

▶ We can determine an even better choice of subspaces for
projection by an iterative optimization

28 / 48

Trajectory-based optimization
▶ Consider observations {y0, . . . , yL−1} along a trajectory from

the full model.
▶ For given subspaces V and W , compute the corresponding

observations {ŷ0, . . . , ŷL−1} from the reduced-order model.
▶ Let Ly : Rdim y → [0,∞) be a smooth loss function for the

predicted system outputs. We’d like to minimize

J(V ,W) =
1
L

L−1∑
l=0

Ly (ŷl − yl).

▶ But we need to ensure that the subspace pairs (V ,W) satisfy
the non-orthogonality condition, so we introduce a
regularization ρ(V ,W) that enforces this constraint, and
define the objective

J(V ,W) =
1
L

L−1∑
l=0

Ly (ŷl − yl) + γρ(V ,W).

29 / 48

The overall method

We call this method Trajectory-based Optimization for Oblique
Projection (TrOOP)

30 / 48

Solution of the optimization problem

▶ One optimizes over a manifold (two copies of the Grassmann
manifold) using a geometric conjugate gradient algorithm 5 6

▶ The gradient is computed using an adjoint sensitivity method.
▶ This entails solving a linear ODE with the same dimension as

the reduced-order model backwards in time.

5Absil et al., “Optimization Algorithms on Matrix Manifolds”, 2008
6H. Sato, “A Dai–Yuan-type Riemannian conjugate gradient method with

the weak Wolfe conditions”, 2016
31 / 48

Outline

Balanced truncation for linear systems

Covariance balancing reduction for nonlinear systems

Trajectory-based optimization of subspaces

Examples

Extensions using operator inference

32 / 48

Two methods

We’ve described two different methods:
▶ Covariance Balanced Reduction using Adjoint Snapshots

(CoBRAS)
▶ Trajectory-based Optimization for Oblique Projection (TrOOP)

In practice, we can use CoBRAS to provide an initial guess for the
optimization problem in TrOOP.

33 / 48

A challenging model problem

ẋ1 = −x1 + 20x1x3 + u

ẋ2 = −2x2 + 20x2x3 + u

ẋ3 = −5x3 + u

y = x1 + x2 + x3,

▶ The state x3 is dynamically important, but remains small
compared with x1 and x2 due to its fast decay rate.

▶ The linearized dynamics do not capture the system’s behavior
away from the origin, which exhibits transient growth.

▶ We seek 2-dimensional reduced-order models.

34 / 48

Training trajectories

y
fo

r
u

0
=

0.
5

y
fo

r
u

0
=

1

Time t

The training data consists of 22 sample points (black dots), from
trajectories with impulsive inputs u(t) = u0δ(t), with u0 = 0.5 and
1.0.

35 / 48

Testing performance

(ŷ
−

y
)2
/
av
g
(y

2
)

t t

We tested our optimized Petrov-Galerkin model on 100 nonlinear
impulse response trajectories with magnitudes drawn uniformly at
random from the interval [0, 1].

36 / 48

Axisymmetric jet flow example

z

r

Equilibrium Vorticity

Centerline

Forcing

z

r

Response Snapshot

▶ Incompressible, axisymmetric jet flow
▶ Reynolds number 1000
▶ Full model: 100,000 states
▶ Actuation: body force in radial direction
▶ We seek 40-dimensional reduced order models capable of

predicting the impulse response of the flow for a range of
impulse amplitudes

37 / 48

Vorticity predictions for jet flow, t = 5

axial

ra
di

al
FOM

CoBRAS

TrOOP

PCA

LinBal

forcing

38 / 48

Vorticity predictions for jet flow, t = 20

axial

ra
di

al
FOM

CoBRAS

TrOOP

PCA

LinBal

forcing

39 / 48

Projection error
Project each testing trajectory onto 40-dimensional subspace.
The “null” projection means Px = 0.

∥x
−

P
x
∥2
/
av
g
(∥x

∥2
)

time t

PCA has the best projection error (as it must)
40 / 48

Forecasting error
Now, consider forecasting using the reduced-order model

∥x̂
−

x
∥2
/
av
g
(∥x

∥2
)

time t

CoBRAS and TrOOP both significantly outperform other methods,
and PCA is no better than the “null” model.

41 / 48

Outline

Balanced truncation for linear systems

Covariance balancing reduction for nonlinear systems

Trajectory-based optimization of subspaces

Examples

Extensions using operator inference

42 / 48

Drawbacks

▶ Some drawbacks of these approaches:
▶ They are intrusive: require knowledge of the full model
▶ The require adjoint simulations, which may not be available

Recent work by Alberto Padovan addresses both of these, using
operator inference.

43 / 48

Leveraging operator inference
An exciting recent paper (arXiv:2401.01290):

▶ Idea:
▶ Guess subspaces for projection
▶ Determine an approximate model using operator inference
▶ Use the adjoint of the inferred model to compute gradients

needed for gradient descent
▶ Update subspaces and iterate

44 / 48

Example: lid-driven cavity flow

45 / 48

Training error for lid-driven cavity flow

46 / 48

Takeaways

▶ PCA often does not give the best subspaces for reduced-order
models

▶ Can generalize balanced truncation to nonlinear systems by
balancing state covariance and gradient covariance

▶ Gradient covariance matrices computed efficiently from adjoint
simulations

▶ Iterative method for further refining these subspaces, using loss
function based on trajectories

▶ These methods are intrusive (require knowledge of the full
dynamics)

▶ However, they play very nicely with non-intrusive methods
(Operator Inference)

47 / 48

Acknowledgements and papers

▶ Alberto Padovan (Postdoc, UIUC)
▶ Sam Otto (Asst. Prof, Cornell)
▶ Funding from Air Force Office of Scientific Research
▶ Papers

▶ Covariance balancing: SE Otto, A Padovan, and CW Rowley,
SIAM J Scientific Computing, 45(5):A2325–A2355, 2023

▶ Trajectory-based optimization: SE Otto, A Padovan and CW
Rowley, SIAM J Scientific Computing 44(3):A1681–A1702,
2022.

48 / 48

	Balanced truncation for linear systems
	Covariance balancing reduction for nonlinear systems
	Trajectory-based optimization of subspaces
	Examples
	Extensions using operator inference

