Covariance balancing model reduction

Clancy Rowley

ICERM: Computational Learning for Model Reduction

Projection methods

Start with a "full-order model"

$$
\dot{x} = f(x, u)
$$

$$
y = g(x, u)
$$

where $x \in \mathbb{R}^n$ is the state, u is an input, and y is an output.

Consider two r-dimensional subspaces of \mathbb{R}^n :

- \blacktriangleright Trial subspace $V = \text{Range}(V)$
- **•** Test subspace $W = \text{Range}(W)$, $W^T V = I_r$

Reduced-order model (Petrov-Galerkin):

$$
\dot{z} = W^T f(Vz, u)
$$

$$
y = g(Vz, u)
$$

where $x = Vz$, $z \in \mathbb{R}^r$.

Reduced-order model

Reduced-order model is

$$
\dot{z} = W^T f(Vz, u)
$$

$$
y = g(Vz, u)
$$

Question: How should we choose V , W ?

Can we do better than PCA?

[Balanced truncation for linear systems](#page-4-0)

[Covariance balancing reduction for nonlinear systems](#page-17-0)

[Trajectory-based optimization of subspaces](#page-26-0)

[Examples](#page-31-0)

[Extensions using operator inference](#page-41-0)

Outline

[Balanced truncation for linear systems](#page-4-0)

Overview of balanced truncation

 \triangleright Consider a linear system with state x, a control input u and output y:

$$
\begin{aligned}\n\dot{x} &= Ax + Bu \\
y &= Cx\n\end{aligned}
$$

- ▶ We wish to determine a model with approximately the same input-output behavior, but smaller state dimension.
- \blacktriangleright Balanced truncation¹ is an excellent method for this
	- ▶ A priori error bound, close to the smallest possible
	- Computationally tractable, even for high-dimensional systems²

²Antoulas, 2005; Rowley, IJBC, 2005

¹BC Moore, IEEE Trans. Automat. Control, 1981

ODE example

Consider the following ODE

$$
\dot{x}_1 = -x_1 + 100x_3 + u
$$

\n
$$
\dot{x}_2 = -2x_2 + 100x_3 + u
$$

\n
$$
\dot{x}_3 = -5x_3 + u
$$

\n
$$
y = x_1 + x_2 + x_3
$$

- \blacktriangleright *u* is the "input" (forcing term)
- \triangleright y is the "output" (what we wish to capture with our model)
- \triangleright Is there a 2-state model with nearly the same input-output behavior?

ODE response to an impulse

Consider the response to an impulsive input $u(t) = \delta(t)$ We're interested in modeling $y = x_1 + x_2 + x_3$

The state x_3 decays quickly, so we might think we can neglect it in a reduced-order model.

Naive reduced-order model

If we set $x_3 = 0$, the model becomes

$$
\dot{x}_1 = -x_1 + u
$$

\n
$$
\dot{x}_2 = -2x_2 + u
$$

\n
$$
y = x_1 + x_2
$$

The impulse response decays monotonically (no transient growth)! Clearly not a good model. What went wrong?

Look at sensitivity: adjoint system

The sensitivity of the output $y(t)$ to perturbations in the initial states are given by solving an adjoint system:

 $D_{x(0)}y(t) = (z_1(t), z_2(t), z_3(t))$

- \blacktriangleright The output is much more sensitive to perturbations in x_3 than to x_1 and x_2 .
- But we neglected x_3 because it had small energy.

Balanced truncation

▶ Balanced truncation incorporates this sensitivity in an elegant and natural way.

Results for the ODE example

Impulse response for the projection onto two states:

- ▶ The first two PCA modes contain 99.97% of the energy, but projection onto these modes gives a poor model.
- ▶ Balanced truncation to two states matches the full model nearly perfectly.

What is balanced truncation doing?

▶ Most controllable states are those that are most easily excited by the input u .

Quantified by a symmetric positive-definite matrix W_c :

$$
Controllability(x) = x^T W_c x
$$

▶ Most observable states are those that excite the largest future outputs (with no input, $u = 0$). Quantified by a symmetric positive-definite matrix W_o :

$$
Observability(x) = x^T W_o x
$$

- \triangleright Theorem: there is a change of coordinates in which W_c and W_o are equal and diagonal (under mild assumptions).
- ▶ Balanced truncation: change to these coordinates, and truncate the states that are least controllable/observable.

Geometric picture

An error bound

 \blacktriangleright Factor the controllability and observability matrices as

$$
W_c = XX^T, \qquad W_o = YY^T
$$

 \triangleright Can prove that the error³ between the full model and the reduced-order model with r states has a bound:

$$
Error \leq 2(\sigma_{r+1} + \cdots + \sigma_n),
$$

where σ_k are the singular values of $Y^{\mathcal{T}}X.$

 3 in the operator norm induced by the 2-norm on signals

Balanced truncation as a projection of dynamics

▶ For a linear system, balanced truncation determines two subspaces, V and W

Summary of balanced truncation

- \blacktriangleright Effectively balances energy and sensitivity, and gives reduced-order models that are provably close to optimal
- ▶ Often significantly outperforms PCA, especially for "non-normal" systems with large transient energy growth
- ▶ Computationally tractable, even for high-dimensional systems
- \blacktriangleright Applies only to linear systems

Outline

[Covariance balancing reduction for nonlinear systems](#page-17-0)

Acknowledgements

Graduate students

- ▶ Sam Otto (Asst. Prof., Cornell)
- ▶ Alberto Padovan (Postdoc, UIUC)

Balancing for nonlinear systems

▶ We would like to find reduced-order models of a nonlinear system

$$
x(t+1) = f(x(t), u(t))
$$

$$
y(t) = g(x(t))
$$

- ▶ For linear systems, there are good methods (e.g., balanced truncation, H_2 optimal reduction)
- \triangleright For nonlinear systems, the situation is much worse: available methods are
	- \triangleright computationally intractable for high-dimensional systems
	- \triangleright valid only in the neighborhood of an equilibrium point

Which coordinates should be retained?

 \blacktriangleright For now, we ignore the input:

$$
x(t+1) = f(x(t))
$$

$$
y(t) = g(x(t))
$$

▶ Consider a map from the current state x_0 to future outputs y . defined by

$$
F(x_0)=(y(0),\ldots,y(L))
$$

A good set of coordinates $z = W^T x$ will allow us to approximate

$$
F(x_0)\approx \tilde{F}(z_0)
$$

Coordinates from projections

▶ Suppose V, W are $n \times r$ matrices such that $W^T V = I$. We have the decomposition

$$
x = Vz + x_2, \qquad z = W^T x
$$

 \triangleright Given z, the optimal estimate for $F(x)$ (in the mean-square sense) is given by averaging over x_2 :

$$
\tilde{F}(z) = \mathbb{E}\big[F(Vz + x_2)\big]
$$

▶ For a good estimate, want two things:

- \triangleright x_2 should have small variance
- \triangleright F should not be sensitive to variations in x_2 .

Quantifying variance and sensitivity

 \triangleright Variance is quantified using the state covariance

$$
W_x = \mathbb{E}[xx^T].
$$

 \triangleright Sensitivity of F is quantified using the gradient covariance

$$
W_g = \mathbb{E} \big[\nabla F(x) \nabla F(x)^T \big], \qquad \nabla F(x) = DF(x)^T
$$

- \blacktriangleright Idea: change to coordinates in which W_x and W_g are equal and diagonal, and then truncate directions in which there is least variance and sensitivity.
- ▶ Observation: this is just like balanced truncation, with the covariance matrices W_x and W_g playing the role of controllability and observability.

Determining the optimal projection

- \triangleright The covariance matrix W_x is easy to approximate by sampling
- \blacktriangleright The gradient covariance matrix W_g may be approximated by sampling an adjoint system
- \triangleright Given these samples, the rank-r projection that balances these matrices is easily computed using singular value decomposition

We call this method Covariance Balancing Reduction using Adjoint Snapshots (CoBRAS) ⁴

⁴SE Otto, A Padovan, and CW Rowley, SIAM J Scientific Computing, 45(5):A2325–A2355, 2023

▶ Factor the covariance matrices as $W_x = XX^T$, $W_g = YY^T$ \triangleright Can prove that when x has Gaussian distribution,

$$
\mathbb{E}\big[\|F(x)-\tilde{F}(Px)\|^2\big] \leq \sigma_{r+1}^2 + \cdots + \sigma_n^2,
$$

where σ_k are the singular values of $Y^{\mathcal{T}}X.$

Kernel method

- \triangleright There is also a generalization of this to nonlinear projections, using a kernel method
- \blacktriangleright Lift the state and gradient vectors into a reproducing kernel Hilbert space (RKHS)
- \triangleright Compute inner products implicitly via the kernel
- \triangleright This allows us to extract rich nonlinear features from the system

Outline

[Trajectory-based optimization of subspaces](#page-26-0)

Optimizing subspaces

▶ We can determine an even better choice of subspaces for projection by an iterative optimization

Trajectory-based optimization

- ▶ Consider observations $\{y_0, \ldots, y_{L-1}\}\$ along a trajectory from the full model.
- \blacktriangleright For given subspaces V and W, compute the corresponding observations $\{\hat{y}_0, \ldots, \hat{y}_{L-1}\}$ from the reduced-order model.
- ▶ Let L_y : $\mathbb{R}^{\dim y} \to [0,\infty)$ be a smooth loss function for the predicted system outputs. We'd like to minimize

$$
J(V, W) = \frac{1}{L} \sum_{l=0}^{L-1} L_{y}(\hat{y}_{l} - y_{l}).
$$

 \triangleright But we need to ensure that the subspace pairs (V, W) satisfy the non-orthogonality condition, so we introduce a regularization $\rho(V, W)$ that enforces this constraint, and define the objective

$$
J(V, W) = \frac{1}{L} \sum_{l=0}^{L-1} L_{y}(\hat{y}_{l} - y_{l}) + \gamma \rho(V, W).
$$

The overall method

We call this method Trajectory-based Optimization for Oblique Projection (TrOOP)

Solution of the optimization problem

- ▶ One optimizes over a manifold (two copies of the Grassmann manifold) using a geometric conjugate gradient algorithm $5\,6$
- \triangleright The gradient is computed using an adjoint sensitivity method.
- ▶ This entails solving a linear ODE with the same dimension as the reduced-order model backwards in time.

⁵Absil et al., "Optimization Algorithms on Matrix Manifolds", 2008 ⁶H. Sato, "A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions", 2016

Outline

[Examples](#page-31-0)

We've described two different methods:

▶ Covariance Balanced Reduction using Adjoint Snapshots (CoBRAS)

▶ Trajectory-based Optimization for Oblique Projection (TrOOP) In practice, we can use CoBRAS to provide an initial guess for the optimization problem in TrOOP.

A challenging model problem

$$
\dot{x}_1 = -x_1 + 20x_1x_3 + u
$$

\n
$$
\dot{x}_2 = -2x_2 + 20x_2x_3 + u
$$

\n
$$
\dot{x}_3 = -5x_3 + u
$$

\n
$$
y = x_1 + x_2 + x_3,
$$

- \triangleright The state x_3 is dynamically important, but remains small compared with x_1 and x_2 due to its fast decay rate.
- \triangleright The linearized dynamics do not capture the system's behavior away from the origin, which exhibits transient growth.
- ▶ We seek 2-dimensional reduced-order models.

Training trajectories

The training data consists of 22 sample points (black dots), from trajectories with impulsive inputs $u(t) = u_0 \delta(t)$, with $u_0 = 0.5$ and 1.0.

Testing performance

We tested our optimized Petrov-Galerkin model on 100 nonlinear impulse response trajectories with magnitudes drawn uniformly at random from the interval [0, 1].

Axisymmetric jet flow example

- \blacktriangleright Incompressible, axisymmetric jet flow
- ▶ Reynolds number 1000
- Full model: 100,000 states
- ▶ Actuation: body force in radial direction
- ▶ We seek 40-dimensional reduced order models capable of predicting the impulse response of the flow for a range of impulse amplitudes

Vorticity predictions for jet flow, $t = 5$

Vorticity predictions for jet flow, $t = 20$

Projection error

Project each testing trajectory onto 40-dimensional subspace. The "null" projection means $Px = 0$.

PCA has the best projection error (as it must)

Forecasting error

Now, consider forecasting using the reduced-order model

CoBRAS and TrOOP both significantly outperform other methods, and PCA is no better than the "null" model.

Outline

[Extensions using operator inference](#page-41-0)

Drawhacks

▶ Some drawbacks of these approaches:

- ▶ They are intrusive: require knowledge of the full model
- \triangleright The require adjoint simulations, which may not be available

Recent work by Alberto Padovan addresses both of these, using operator inference.

Leveraging operator inference

An exciting recent paper (arXiv:2401.01290):

Data-driven model reduction via non-intrusive optimization of projection operators and reduced-order dynamics

Alberto Padovan*, Blaine Vollmer*, and Daniel J. Bodony*

Abstract. Computing reduced-order models using non-intrusive methods is particularly attractive for systems that are simulated using black-box solvers. However, obtaining accurate data-driven models can be challenging, especially if the underlying systems exhibit large-amplitude transient growth. Although these systems may evolve near a low-dimensional subspace that can be easily identified using standard techniques such as Proper Orthogonal Decomposition (POD), computing accurate models often requires projecting the state onto this subspace via a non-orthogonal projection. While appropriate oblique projection operators can be computed using intrusive techniques that leverage the form of the underlying governing equations, purely data-driven methods currently tend to achieve dimensionality reduction via orthogonal projections, and this can lead to models with poor predictive accuracy. In this paper, we address this issue by introducing a non-intrusive framework designed to simultaneously identify oblique projection operators and reduced-order dynamics. In

▶ Idea:

- Guess subspaces for projection
- ▶ Determine an approximate model using operator inference
- Use the adjoint of the inferred model to compute gradients needed for gradient descent
- Update subspaces and iterate

Example: lid-driven cavity flow

Training error for lid-driven cavity flow

Takeaways

- ▶ PCA often does not give the best subspaces for reduced-order models
- ▶ Can generalize balanced truncation to nonlinear systems by balancing state covariance and gradient covariance
- ▶ Gradient covariance matrices computed efficiently from adjoint simulations
- ▶ Iterative method for further refining these subspaces, using loss function based on trajectories
- ▶ These methods are intrusive (require knowledge of the full dynamics)
- \blacktriangleright However, they play very nicely with non-intrusive methods (Operator Inference)

Acknowledgements and papers

- ▶ Alberto Padovan (Postdoc, UIUC)
- ▶ Sam Otto (Asst. Prof, Cornell)
- ▶ Funding from Air Force Office of Scientific Research
- ▶ Papers
	- ▶ Covariance balancing: SE Otto, A Padovan, and CW Rowley, SIAM J Scientific Computing, 45(5):A2325–A2355, 2023
	- ▶ Trajectory-based optimization: SE Otto, A Padovan and CW Rowley, SIAM J Scientific Computing 44(3):A1681–A1702, 2022.