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Motivating thoughts

With the ever-increasing data volumes we can access, there is a growing demand to learn
computationally efficient surrogate models of high-dimensional dynamical systems
for optimization, uncertainty quantification, and long-term prediction

Unconstrained learning for nonlinear finite-dimensional systems (reduced or full-order)

ẋ(t, µ) = f(x(t), µ) + g(x)u(t) ∈ Rn

a la machine learning may be very expressive, but often fails to extrapolate in time.

In general, if n is very large (e.g., n ≥ 1, 000) then almost all methods require dimension
reduction (linear or nonlinear)

Incorporating model knowledge into learning framework is imperative for predictions:
geometric/mechanical structure, nonlinear terms, inputs, etc.
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Structured physical systems are everywhere!

(a) Bose-Einstein condensate (b) Solar plasma (c) Soft-robotic fish

Physical systems have interesting properties like conservation laws, symplecticity,
reversibility or configuration space structure

Structure-preserving methods preserve underlying geometric structure

Conserve discrete quantities which are close to continuous quantity
Reproduce long-time behavior

Long-time numerical simulation of large-scale systems using structure-preserving methods
is computationally prohibitive

Need for physics-preserving reduced-order models
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Part I: Learning Hamiltonian reduced
models via structure-preserving

optimization

Hamiltonian operator inference: physics-preserving learning of reduced-order models for Hamiltonian
systems. Sharma/Wang/K., Physica D: Nonlinear Phenomena, Vol. 431, 133122, 2022.

Gradient preserving operator inference: data-driven reduced-order models for equations with gradient
structure. Geng/Singh/Ju/K./Wang, Computer Methods in Applied Mechanics and Engineering, Vol.
427, 117033, 2024.
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Gradient systems

General infinite-dimensional Hamiltonian system

∂y(x, t)

∂t
= LδH

δy

where L is a linear differential operator, δH
δy is the variational derivative of

H[y] =

∫
(Hquad(y, yx, . . .)︸ ︷︷ ︸

quadratic terms

+ Hnl(y)︸ ︷︷ ︸
spatially local terms

) dx

1. If L is skew adjoint, H is referred to as the Hamiltonian, is constant, and the PDE is
conservative.

2. If L is negative semi-definite (resp. definite), H, referred to as a Lyapunov/energy
function, is nonincreasing (resp. monotonically decreasing) and the PDE is dissipative.

Structure-preserving space discretization leads to finite-dimensional Hamiltonian models

ẏ = D∇yHd(y)

where Hd is the space-discretized Hamiltonian function.

Goal: Learn low-dimensional Hamiltonian systems from trajectory data y(t1), . . . ,y(tf ).
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Special forms of gradient systems

(i) When D is skew-symmetric (a.k.a. skew-adjoint), D = −Dᵀ, the system is Hamiltonian.
A special case is when D =

[
0 I
−I 0

]
the system is a canonical Hamiltonian system and the

solution flow is symplectic. Thus, the internal energy of the system, H(y), is conserved,
e..g, for any t1, t2 ∈ I with t1 < t2, we have

H(y(t2))−H(y(t1)) =

∫ t2

t1

d

dt
H(y(t)) dt =

∫ t2

t1

(∇yH(y))
ᵀ

D∇yH(y) dt = 0.

(ii) When D is negative semi-definite, the system represents a gradient flow and is dissipative:

H(y(t2))−H(y(t1)) =

∫ t2

t1

d

dt
H(y(t)) dt =

∫ t2

t1

(∇yH(y))
ᵀ

D∇yH(y) dt ≤ 0.

Note that if D is negative definite, H(y) is strictly decreasing.

Numerical schemes to solve these equations recognize the special gradient structure in time
discretization, e.g., geometric integrators and average vector field methods.

8 / 49



This talk: Canonical Hamiltonian Systems

We focus on canonical Hamiltonian systems (for other gradient systems, see1)

ẏ =

[
q̇
ṗ

]
= J2n∇yHd(q,p) =

[
∇pHd(q,p)
−∇qHd(q,p)

]
Key features

1. Canonical Hamiltonian structure, i.e. J2n =

[
0 In
−In 0

]
2. State vector y ∈ R2n can be partitioned as y = [q>,p>]> where q,p ∈ Rn both have

distinct physical interpretation
3. Symmetry in linear FOM operators due to structure-preserving space discretization

Assumption: Functional form of Hnl(q, p) is known, whereas Hquad(q, p) and details about
spatial discretization are unavailable.

1Gradient preserving operator inference: data-driven reduced-order models for equations with gradient
structure. Geng/Singh/Ju/K./Wang, CMAME 427, 117033, 2024.
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Problem formulation: FOM data

Given: Snapshot data matrices from Hamiltonian FOM simulations

Q =
[
q1 · · ·qK

]
∈ Rn×K , P =

[
p1 · · ·pK

]
∈ Rn×K

Use knowledge about Hamiltonian functional to define nonlinear forcing snapshot matrices

Fq =
[
fq(y1) · · · fq(yK)

]
∈ Rn×K , Fp =

[
fp(y1) · · · fp(yK)

]
∈ Rn×K

Build snapshot matrices of time-derivative data via finite difference

Q̇ =
[
q̇1 · · · q̇K

]
∈ Rn×K , Ṗ =

[
ṗ1 · · · ṗK

]
∈ Rn×K

Next step: Project FOM data onto low-dimensional symplectic subspaces
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Problem formulation: symplectic projection

Symplectic projection via proper symplectic decomposition (PSD)[
q
p

]
≈
[
Φ 0
0 Φ

] [
q̂
p̂

]
where Vq = Vp = Φ ∈ Rn×r are obtained via cotangent the lift algorithm.2

Projecting FOM data to obtain
1. Reduced snapshot data

Q̂ = V>q Q ∈ Rr×K , P̂ = V>p P ∈ Rr×K

2. Reduced time-derivative data

˙̂
Q = V>q Q̇ ∈ Rr×K ,

˙̂
P = V>p Ṗ ∈ Rr×K

3. Reduced nonlinear forcing data

F̂q = V>p Fq ∈ Rr×K , F̂p = V>q Fp ∈ Rr×K

Next step: Fit reduced operators to the projected trajectories in a structure-preserving way
2Peng L, Mohseni K. Symplectic model reduction of Hamiltonian systems. SIAM Journal on Scientific

Computing. 2016;38(1):A1–A27
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Problem formulation: model form for learning

Reduced Hamiltonian in terms of the inferred reduced operators D̂q ∈ Rr×r and

D̂p ∈ Rr×r

Ĥ(q̂, p̂) =
1

2
q̂>D̂qq̂ +

1

2
p̂>D̂pp̂ + Ĥnl(q̂, p̂)

Model form for learning Hamiltonian ROMs based on Ĥ(q̂, p̂)

˙̂q =
∂Ĥ

∂p̂
= D̂pp̂ + V>p fq(Vqq̂,Vpp̂)

˙̂p = −∂Ĥ
∂q̂

= −D̂qq̂− V>q fp(Vqq̂,Vpp̂)
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Hamiltonian Operator Inference

Constrained optimization problem3 to compute D̂q and D̂p

min
D̂q=D̂

>
q ,

D̂p=D̂
>
p

∣∣∣∣∣∣∣∣
[

˙̂
Q− F̂q(Q̂, P̂)
˙̂
P + F̂p(Q̂, P̂)

]
−
[

0 D̂p

−D̂q 0

] [
Q̂

P̂

] ∣∣∣∣∣∣∣∣
F

where symmetric constraints on D̂q and D̂p ensure that the learned reduced operators
retain symmetric property of full-model operators
Separate, symmetric linear least-squares problems of the form

min
D̂p=D̂

>
p

∣∣∣∣∣∣∣∣ ˙̂
Q− F̂q(Q̂, P̂)︸ ︷︷ ︸

Rp

−D̂pP̂

∣∣∣∣∣∣∣∣
F

→ (P̂P̂
>

)D̂p + D̂p(P̂P̂
>

) = P̂R̂
>
p + R̂pP̂

>

min
D̂q=D̂

>
q

∣∣∣∣∣∣∣∣ ˙̂
P + F̂p(Q̂, P̂)︸ ︷︷ ︸

−Rq

+D̂qQ̂

∣∣∣∣∣∣∣∣
F

→ (Q̂Q̂
>

)D̂q + D̂q(Q̂Q̂
>

) = Q̂R̂
>
q + R̂qQ̂

>

can be solved via Lyapunov equations.
3Based on Operator Inference: [Data-driven operator inference for nonintrusive projection-based model

reduction, Peherstorfer & Willcox, CMAME, 306, 196-215 351 2016] 13 / 49



Error bound on the learned operators

1. Time stepping scheme for the FOM is convergent

max
i∈{1,··· ,T/∆t}

∣∣∣∣∣∣∣∣yi − y(ti)

∣∣∣∣∣∣∣∣
2

→ 0 as ∆t→ 0

2. Derivatives approximated from projected states converge to d
dt ŷ(tk)

max
i∈{1,··· ,T/∆t}

∣∣∣∣∣∣∣∣ ˙̂yi − d

dt
ŷ(ti)

∣∣∣∣∣∣∣∣
2

→ 0 as ∆t→ 0

Theorem 1 ([Sharma/Wang/K, 2022]4)

Let D̃q and D̃p be the intrusively projected ROM operators. If the snapshot data matrix has
full column rank, then for every ε > 0, there exists 2r ≤ 2n and ∆t > 0 such that for the
difference between the learned operators D̂q, D̂p and the projection-based D̃q, D̃p, we have

||D̂q − D̃q||F ≤ ε, ||D̂p − D̃p||F ≤ ε.

4Sharma H, Wang Z, Kramer B. Hamiltonian operator inference: Physics-preserving learning of
reduced-order models for canonical Hamiltonian systems. Physica D: Nonlinear Phenomena, 431, 133122, 2022.
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Error bound on the solutions

Theorem 1 ([Geng/Singh/Ju/K./Wang, 2024]5)

Let y(t) be the solution of the FOM on [0, T ] and yr(t) be the solution of the
structure-preserving ROM on the same interval. Suppose ∇yH(y) is Lipschitz continuous,
then the ROM approximation error satisfies∫ T

0

‖y −Φyr‖2 dt ≤

C(T )

(∫ T

0

‖y −ΦΦᵀy‖2dt︸ ︷︷ ︸
projection error

+

∫ T

0

‖ẏ −Dt[y]‖2 dt︸ ︷︷ ︸
data error

+

∫ T

0

‖ΦᵀDt[y]−DrΦ
ᵀ∇yH(y)‖2 dt︸ ︷︷ ︸

optimization error

)
,

where C(T ) = max{1 + C2
2 , 2}Tα(T ), α(T ) = 2

∫ T
0
e2C1(T−τ) dτ , and the constants

C1 = Clog−Lip[ΦDrΦ
ᵀ∇yH] and C2 = ‖ΦDrΦ

ᵀ‖ CLip[∇yH].

5Gradient preserving operator inference: data-driven reduced-order models for equations with gradient
structure. Geng/Singh/Ju/K./Wang, CMAME 427, 117033, 2024.

15 / 49



Nonlinear Schrödinger equation

Cubic Schrödinger equation
iψt + ψxx + γ|ψ|2ψ = 0

Writing ψ = p+ iq with space-time continuous Hamiltonian H

H(q, p) =

∫
1

2

[
p2
x + q2

x −
γ

2
[q2 + p2]2

]
dx

leads to canonical Hamiltonian PDE form yt = J ∂H∂y for y = [p, q]>

yt =

[
pt
qt

]
=

[
0 1
−1 0

] [ δH
δp
δH
δq

]
=

[
−qxx − γ(q2 + p2)q
pxx + γ(q2 + p2)p

]
Mass and momentum invariants of motion

M1(q, p) =

∫ [
p2 + q2

]
dx M2(q, p) =

∫
[pxq − qxp] dx
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Nonlinear Schrödinger equation (2n = 128): state error
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Nonlinear Schrödinger equation: energy error
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ŷ(

0
)
)
|

H-OpInf ROM 2r=12

Intrusive PSD ROM 2r=12

(a) FOM energy error

0 20 40 60 80 100

10−11

10−9

10−7

10−5

Time t

|Ĥ
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Nonlinear Schrödinger equation: invariants of motion
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(a) Mass conservation
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H-OpInf conserves mass and momentum invariants of motion
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Part II: Learning Lagrangian reduced
models from high-dimensional data

Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale mechanical systems,
Sharma, H. & Kramer, B., Physica D: Nonlinear Phenomena, Vol 462, 134128, 2024.
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Why do we need to preserve the Lagrangian structure?

Euler-Bernoulli beam with
transverse vibrations in
response to a nonzero initial
condition.

Unconstrained
second-order model
learning provides
monotonically decaying
state error in training

BUT: predictive
capabilties limited due
to energy growth and
finite-time blowup.
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Lagrangian mechanics: simple mechanical systems

Consider a Lagrangian system with a finite-dimensional configuration manifold Q, state space
TQ and a Lagrangian L : TQ→ R. The forced Euler-Lagrange equations define the
dynamics:

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
+ f(q, q̇, t) = 0.

For simple mechanical systems with configuration manifold Q = Rn:

L(q, q̇) = T (q̇)︸ ︷︷ ︸
kinetic energy

− U(q)︸ ︷︷ ︸
potential energy

=
1

2
q̇>Mq̇− 1

2
q>Kq, M = M> � 0, K = K>.

The force is often modeled via a dissipative force and an external time-dependent input as

f(q, q̇, t) = −Cq̇ + Bu(t),

with B,C ∈ Rn×n the damping and input matrix, u(t) ∈ Rm the time-dependent inputs. The
resulting linear equations of motion are

Mq̈(t) + Cq̇(t) + Kq(t) = Bu(t).
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Lagrangian mechanics: nonlinear wave equations

Consider for illustration the class of 1d nonlinear wave equations

∂2q

∂t2
− ∂2q

∂x2
+

dUnl(q)

dq
= 0, (1)

where Unl(q) is the nonlinear component of the potential energy. Discretization of the
space-time continuous Lagrangian (w. symmetric FDs or pseudo-spectral methods) at n
equally spaced points:

L(q, q̇) =
1

2

n∑
i=1

(∂qi
∂t

)2

−

(
n∑
k=1

Dikqk

)2
− n∑

i=1

Unl(qi), q = [q1, q2, · · · , qn]>

where qi := q(t, xi), and ∂q
∂x (xi) ≈

∑n
k=1Dikqk. The Euler-Lagrange equations are

q̈ = Kq +
dUnl(q)

dq
, K = K>. (2)

The nonlinear FOM described by (2) conserves the total energy

E(q, q̇) =
1

2
q̇>q̇ +

1

2
q>Kq +

n∑
i=1

Unl(qi). (3)
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High-dimensional Lagrangian systems and (data-driven) model
reduction

1. Intrusive structure-preserving model reduction for Lagrangian systems ([Lall et al., 2004],
[Carlberg et al., 2015])
Drawback: Requires access to FOM operators

2. Structure-preserving neural networks ([Cranmer et al., 2019], [Lutter et al., 2019], [Gupta
et al., 2020])
Drawback: Ill-suited for high-dimensional systems

3. Nonintrusive model reduction via operator inference (OpInf)

Operator inference for nonlinear systems ([Peherstorfer and Willcox, 2016], [Benner et al.,
2020] )
Lift & Learn ([Qian et al., 2020], [Swischuk et al., 2020] )

Drawback: Does not preserve the Lagrangian structure

4. Operator Inference for linear mechanical systems [Filanova et al., MSSP 200 (2023):
110620]. ⇒ Similar to our approach, independently derived.

Our contribution: Embed Lagrangian structure into a Operator Inference learning framework
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The data we need for learning

Given: Solutions from Lagrangian FOM simulation with inputs and outputs stored in matrices

Q = [q1, · · · ,qK ] ∈ Rn×K , Y = [y1, · · · ,yK ] ∈ Rp×K , U = [u(t1), · · · ,u(tK)] ∈ Rm×K

Compute proper orthogonal decomposition basis via SVD

Q = VΞW>, V ∈ Rn×n,Ξ ∈ Rn×n,W ∈ RK×n

Project FOM data to obtain reduced snapshot data

Q̂ = V>r Q = [q̂1, · · · , q̂K ] ∈ Rr×K

Generate or collect reduced time-derivative data

ˆ̇Q = [ˆ̇q1, · · · , ˆ̇qK ] ∈ Rr×K , ˆ̈Q = [ˆ̈q1, · · · , ˆ̈qK ] ∈ Rr×K

Next step: Fit reduced operators to the projected trajectories in a structure-preserving way
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Problem formulation: model form for learning ROM

Reduced Lagrangian with reduced mass matrix M̂ = Ir

L̂r(q̂, ˆ̇q) =
1

2
˙̂q> ˙̂q− 1

2
q̂>K̂q̂,

Reduced forcing
f̂(q̂, ˙̂q, t) = Ĉ ˙̂q− B̂u(t)

Model form for learning Lagrangian ROMs based on L̂r(q̂, ˙̂q)

¨̂q(t) + Ĉ ˙̂q(t) + K̂q̂(t) = B̂u(t)

along with the reduced output equation

y(t) = Êq̂(t)

Model form ensures that the reduced models are Lagrangian
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Lagrangian Operator Inference for simple mechanical systems

Constrained optimization problem to compute Ĉ ∈ Rr×r, K̂ ∈ Rr×r, and B̂ ∈ Rr×m

min
K̂=K̂>�0,Ĉ=Ĉ>�0,

B̂

|| ¨̂Q + Ĉ
˙̂
Q + K̂Q̂− B̂U||F

where the specific choice of M̂ simplifies the constrained inference problem ([Gosea,
Gugercin, and Werner, 2023])

Separate linear least-squares problem to compute Ê ∈ Rp×r

min
Ê
||Y − ÊQ̂||F

Constrained optimization problem solved using the semidefinite programming mode in
CVX6

6
M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014
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Lagrangian Operator Inference for nonlinear wave equations

L(x, q, qx, qt) =
1

2

((
∂q

∂t

)2

−
(
∂q

∂x

)2
)
− Unl(q)

Use knowledge about the nonlinear potential energy Unl at the PDE level to build the
nonlinear forcing snapshot data matrix

Fnl = [fnl(q1), · · · , fnl(qK)] ∈ Rn×K

Projecting FOM snapshot data Q and forcing snapshot data Fnl

Q̂ = V>r Q ∈ Rr×K , F̂nl = V>r Fnl ∈ Rr×K

Constrained optimization problem to compute K̂ ∈ Rr×r

min
K̂=K̂>

‖ ¨̂
Q− F̂nl − K̂Q̂‖F

Learned ROM operator K̂ respects the symmetric property introduced during the
structure-preserving spatial discretization
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Sine-Gordon equation (n=2000): state error

Nonlinear hyperbolic PDE with a nonpolynomial nonlinearity

∂2q

∂t2
=
∂2q

∂x2
− sin(q)
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Sine-Gordon equation (n = 2000): bounded energy error

Preserving Lagrangian structure yields stable ROMs with bounded energy error far
outside the training data regime (here: over 20x past training interval)
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Sine-Gordon equation (n = 2000): extrapolation in time
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Accurate predictions 400% outside training time interval
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Benchmark soft-robotic fishtail

Soft robotic fish7 designed to emulate escape responses in addition to forward swimming
because such maneuvers require rapid body accelerations and continuum-body motion
Fish’s soft body is an array of fluidic elastomer actuators

7
A. D. Marchese, C. D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robotics, 1 (2014), pp. 75–87.
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Benchmark fishtail CAD model8

Main tubes Side tubes Chambers

(a) Fluid chamber system

Carbon center beam Silicon hull POI

(b) Complete fishtail model

ρ
∂2q(t, z)

∂t2
= ∇z · σ(t, z)

8
D. Siebelts, A. Kater, and T. Meurer, Modeling and motion planning for an artificial fishtail, IFAC-PapersOnLine, 51 (2018), pp. 319–324.

Available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Artificial_Fishtail 33 / 49
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Soft-robotic fishtail (n = 779, 232): sigmoid input
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Soft-robotic fishtail (n = 779, 232): step input
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L-OpInf works well even for unknown control inputs
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Full-Body Optimal Control of a Swimming Soft Robot
Enabled by Data-Driven Model Reduction

Iman Adibnazari, Harsh Sharma, Jacobo Cervera Torralba, Boris Krämer , Michael T. Tolley
UC San Diego

Collaboration with the Bioinspired Robotics and Design Lab, UCSD (Prof. Mike Tolley)
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A swimming trout....

Taken from [Beal, D. N. et al (2006)] Video from the Tolley Lab
What’s the catch in the left video? 37 / 49
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The SERPENT V1 aquatic soft robot

Autonomous underwater vehicles (AUVs)
are mechanically safe and provide silent
operation

Problem: Soft robots are
(infinite)-dimensional, so hard to control
and simulate.

Built ”SERPENT V1” from Bioinspired
Robotics and Design Lab, UCSD (Prof. Mike
Tolley)

Segmentation and computational
discretization in SOFA (n = 251, 000)

m = 6 controls: fluid-elastomer actuators

p = 40 outputs: centerline trajectories
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Model predictive control w LOPINF for anguilliform swimming

Control loop requires fast online state
estimation

Discretized model not available
(→ SOFA), need data-driven ROMs

Lagrangian OPINF due to the second-order
nature. Linear for faster online estimation.
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Preliminary results

Compared prevalent linear system identification
methods

1. Dynamic Mode Decomposition w/ control
(DMDc)

2. Eigensystem Realization
Algorithm/Observer/Kalman Identification
Algorithm (ERA/OKID)

3. Structure-preserving LOPINF

Current takeaways:

LOPINF ROM most accurate in RMS error
over many trajectories (from random ICs)

Works well in open and closed-loop

Certain regimes are too nonlinear ⇒ need
to embed nonlinear terms in LOPINF
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Nonlinear Lagrangian ROMs

H. Sharma, D. Najera, M. Todd, B. Kramer
UC San Diego

Lagrangian operator inference enhanced with structure-preserving machine learning for
nonintrusive model reduction of mechanical systems, Sharma/Najera/Todd/K., CMAME,

Vol. 423, 116865, 2024.
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Nonlinear Lagrangian mechanical systems

Consider Lagrangian system with a finite-dimensional configuration manifold Q, state space TQ
and a Lagrangian L : TQ→ R. The forced Euler-Lagrange equations define the dynamics:

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
+ f(q, q̇, t) = 0.

For simple mechanical systems with configuration manifold Q = Rn:

L(q, q̇) = T (q̇)︸ ︷︷ ︸
kinetic energy

− U(q)︸ ︷︷ ︸
potential energy

=
1

2
q̇>Mq̇− 1

2
q>Kq− Unl(q), M = M> � 0

We model viscous damping

f(q̇) = −Cq̇−∂Fnl(q̇)

∂q̇
,

with B,C ∈ Rn×n the damping and input matrix, u(t) ∈ Rm the time-dependent inputs. The
resulting equations of motion are

Mq̈(t) + Cq̇(t)+
∂Fnl(q̇)

∂q̇
+ Kq(t) + Unl(q) = Bu(t).
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LOPINF enhanced with structure-preserving machine learning
(‘LOPINF-SpML’)

We now have a nonlinear constrained optimization problem

min
M̂=M̂>�0,Ĉ=Ĉ>�0,K̂=K̂>�0,F̂nl,Ûnl

∥∥∥∥∥(Î + M̂)
¨̂
Q + Ĉ

˙̂
Q +

∂F̂nl(
˙̂
Q)

∂
˙̂
Q

+ K̂Q̂ +
∂Ûnl(Q̂)

∂Q̂
= 0,

∥∥∥∥∥
F

Our approach: a two-step approach

Step 1: LOPINF to learn the linear reduced stiffness matrix K̂ and the linear reduced
damping matrix Ĉ

min
K̂=K̂>�0,Ĉ=Ĉ>�0

∥∥∥∥ ¨̂
Q + Ĉ

˙̂
Q + K̂Q̂

∥∥∥∥
F

.

Step 2: Structure-preserving machine learning to learn the reduced mass matrix M̂, the
nonlinear components of the reduced potential energy function Ûnl(q̂), and the nonlinear

components of the reduced dissipation function F̂nl( ˙̂q).
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Structure-preserving neural networks

Parametrization of the nonlinear terms via polynomial-augmented multilayer perceptrons
(MLPs); we choose (P1 = P2 = 4)

ÛNN(q̂;α,λ,θÛNN
) =

i1+i2+···+ir=P1∑
i1,i2,··· ,ir

αi1,i2,··· ,ir q̂
i1
1 q̂

i2
2 · · · q̂irr +

N∑
i

λiU (i)(q̂),

F̂NN( ˙̂q;β,γ,θF̂NN
) =

i1+i2+···+ir=P2∑
i1,i2,··· ,ir

βi1,i2,··· ,ir
˙̂qi11

˙̂qi22 · · · ˙̂qirr +

N∑
i

γiF (i)( ˙̂q),

We parametrize the reduced kinetic energy term as

T̂NN( ˙̂q; ζ) =

i1+i2+···+ir=2∑
i1,i2,··· ,ir

ζi1,i2,··· ,ir
˙̂qi11

˙̂qi22 · · · ˙̂qirr ⇒ [M̂NN]ij = [M̂NN]ji =
∂2T̂NN

(
˙̂q
)

∂ ˙̂qi∂
˙̂qj

We then minimize the squared loss function under structure-preserving constraints

min
ζ,α,β,λ,γ,θÛNN

,θF̂NN

J (ζ,α,β,λ,γ,θÛNN
,θF̂NN

) such that
1

2
˙̂q>(Ir + M̂NN) ˙̂q > 0, F̂( ˙̂q) ≥ 0.
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Experimental data from the half Brake-Reuss beam

Modeling of jointed structures remains a
challenging problem due to the strong
nonlinearities at the frictional interfaces
found in joints

Experimental dataset from [Chen et al.,
Measurement and identification of the
nonlinear dynamics of a jointed structure
using full-field data, Part I: Measurement
of nonlinear dynamics. MSSP,
2022;166:108401]; high-speed cameras
combined with digital image correlation
provide the full-field response of the
structure

Repository: https://github.com/

mattiacenedese/BRBtesting.
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Backbone curves: comparison of FOM and LOPINF-SpML

(a) Experimental data (b) LOpInf-SpML ROM r = 3

Figure: Half Brake-Reuß beam. The LOpInf-SpML ROM of size r = 3 accurately predicts the
amplitude-dependent frequency characteristics and yields backbone curves that appear to agree with
the backbone curves obtained directly from the experimental data.
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Damping plots: comparison of FOM and LOPINF-SpML

(a) Experimental data (b) LOpInf-SpML ROM r = 3

Figure: Half Brake-Reuß beam. The amplitude-dependent damping plots based on the LOpInf-SpML
ROM of dimension r = 3 are reasonably similar to the plots obtained from the experimental data.
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Today’s talk: review and outlook

Review: Embedding geometric/mechanical structure (Hamiltonian, Lagrangian) in model
learning creates

Physically interpretable and analyzable models that engineers are familiar with

Stable ROMs with bounded energy error

Accurate long-time predictions far outside the training data regime

Reduces the need for large training data

Looking ahead:

Neural networks are expressive, but not as nicely interpretable as symbolic expressions.
Good methods for incorporating nonlinearities (polynomial or non-polynomial) in an
interpretable manner required (e.g, SINDy, Higher-order OPINF, etc).

Better methods to extrapolate in parameter space

48 / 49



Papers on Hamiltonian/Gradient systems

1. Hamiltonian operator inference: physics-preserving learning of reduced-order models for Hamiltonian
systems. Sharma/Wang/K., Physica D: Nonlinear Phenomena, Vol. 431, 133122, 2022.

2. Gradient preserving operator inference: data-driven reduced-order models for equations with gradient
structure. Geng/Singh/Ju/K./Wang, CMAME 427, 117033, 2024.

3. Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds.
Sharma/Mu/Buchfink/Geelen/Glas/K. CMAME, 417, 116402, 2023.

4. Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and
reduced-order modeling, Galioto/Sharma/K./Gorodetsky, CMAME, 430, 117194, 2024.

5. Bayesian Identification of nonseparable Hamiltonian systems using stochastic dynamic models,
Sharma/Galioto/Gorodetsky/K. 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp.
6742-6749.

Papers on Lagrangian systems

1. Full-Body Optimal Control of a Swimming Soft Robot Enabled by Data-Driven Model Reduction.
Adibnazari/Sharma/Torralba/Kramer/Tolley, 2023 Southern California Robotics (SCR) Symposium,
September 14-15, 2023.

2. Lagrangian operator inference enhanced with structure-preserving machine learning for nonintrusive model
reduction of mechanical systems, Sharma/Najera/Todd/K., CMAME, Vol. 423, 116865, 2024.

3. Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale mechanical systems,
Sharma/K., Physica D: Nonlinear Phenomena, Vol 462, 134128, 2024.
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