
Computational Learning of Dynamical Systems
with Stability Constraints

Peter Benner

Joint work with Igor Pontes Duff
and Pawan K. Goyal (appliedAI Initiative, Heilbronn/Germany)

Computational Learning for Model Reduction
January 6–10, 2025

Institute for Computational & Experimental
Research in Mathematics (ICERM)

Providence, RI (USA)

Supported by: Partners:

Overview

1. Model Order Reduction of Dynamical Systems
Problem Setting
Model Order Reduction of Linear Systems

2. Data-driven/-enhanced Model Reduction
A Brief History of System Identification
A few Remarks on the History of Learning Dynamical Systems
Dynamic Mode Decomposition (DMD) in a Nutshell
Operator Inference

3. Preserving Stability in Operator Inference
Linear Systems / Local Stability
Nonlinear Systems / Global Stability
Nonlinear Dynamics with Attractor

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 2/29

mailto:benner@mpi-magdeburg.mpg.de

Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 3/29

mailto:benner@mpi-magdeburg.mpg.de

Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 3/29

mailto:benner@mpi-magdeburg.mpg.de

Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 3/29

mailto:benner@mpi-magdeburg.mpg.de

Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 3/29

mailto:benner@mpi-magdeburg.mpg.de

Model Order Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 4/29

mailto:benner@mpi-magdeburg.mpg.de

Model Order Reduction of Linear Systems
Model Reduction Schematically

E,A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m

Ê, Â ∈ Rr×r

B̂ ∈ Rr×m

Ĉ ∈ Rp×r

D̂ ∈ Rp×m

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 5/29

mailto:benner@mpi-magdeburg.mpg.de

From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V) = V, range(W) =W, WTV = Ir.

The reduced-order (or surrogate) model then is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

But: we need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 6/29

mailto:benner@mpi-magdeburg.mpg.de

From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V) = V, range(W) =W, WTV = Ir.

The reduced-order (or surrogate) model then is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

But: we need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 6/29

mailto:benner@mpi-magdeburg.mpg.de

From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V) = V, range(W) =W, WTV = Ir.

The reduced-order (or surrogate) model then is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

But: we need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 6/29

mailto:benner@mpi-magdeburg.mpg.de

From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V) = V, range(W) =W, WTV = Ir.

The reduced-order (or surrogate) model then is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

But: we need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 6/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . .]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . .]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . .]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . .],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Kravtsov/Kondrashov/Ghil 2005, Peherstorfer/Willcox 2016;

Kramer, Qian, Farcas, B., Goyal, Pontes Duff, Yıldız,. . .]

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . .]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . .]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . .]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . .],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Kravtsov/Kondrashov/Ghil 2005, Peherstorfer/Willcox 2016;

Kramer, Qian, Farcas, B., Goyal, Pontes Duff, Yıldız,. . .]

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . .]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . .]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . .]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . .],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Kravtsov/Kondrashov/Ghil 2005, Peherstorfer/Willcox 2016;

Kramer, Qian, Farcas, B., Goyal, Pontes Duff, Yıldız,. . .]

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . .]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . .]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . .]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . .],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Kravtsov/Kondrashov/Ghil 2005, Peherstorfer/Willcox 2016;

Kramer, Qian, Farcas, B., Goyal, Pontes Duff, Yıldız,. . .]

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . .]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . .]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . .]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . .],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Kravtsov/Kondrashov/Ghil 2005, Peherstorfer/Willcox 2016;

Kramer, Qian, Farcas, B., Goyal, Pontes Duff, Yıldız,. . .]

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 7/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems
(aka System Identification)

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 8/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems
(aka System Identification)

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 8/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems
(aka System Identification)

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 8/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems
(aka System Identification)

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 8/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems
(aka System Identification)

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 8/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems
(aka System Identification)

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 8/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 9/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 9/29

mailto:benner@mpi-magdeburg.mpg.de

A few Remarks on the History of Learning Dynamical Systems

A book from 1996. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 9/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 10/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 10/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

Basic DMD Algorithm

Set X0 := [x0, x1, . . . , xK−1] ∈ Rn×K , X1 := [x1, x2, . . . , xK] ∈ Rn×K and note that
X1 = AX0 is desired over-/underdetermined linear system, solved by linear least-squares
problem (regression):

A∗ := argminA∈Rn×n‖X1 −AX0‖2F +R(A)

with a potential regularization term R(A), e.g., Tikhonov regularization aka kernel ridge
regression: R(A) = β‖A‖2F .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 10/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 11/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 11/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.

Basic ioDMD Algorithm (≡ N4SID)

Let S := Rn×n × Rn×m × Rp×n × Rp×m. Set X0, X1 as before and

U0 := [u0, u1, . . . , uK−1] ∈ Rm×K , Y0 := [y0, y1, . . . , yK−1] ∈ Rp×K .

Solve the linear least-squares problem (regression):

(A∗, B∗, C∗, D∗) := argmin(A,B,C,D)∈S

∥∥∥∥[X1

Y0

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥2
F

+ R(A,B,C,D)

with a potential regularization term R(A,B,C,D).

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 11/29

mailto:benner@mpi-magdeburg.mpg.de

Dynamic Mode Decomposition (DMD) in a Nutshell
Selected References (Chronological)

Koopman, B.O. (1931): Hamiltonian systems and transformation in Hilbert space.
Proc. Natl. Acad. Sci. 17(5):315–381.

Mezić, I. (2005): Spectral properties of dynamical systems, model reduction and decompositions.
Nonlinear Dyn. 41(1):309–325. 10.1007/s11071-005-2824-x

Schmid, P.J. (2010): Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
656:5–28. 10.1017/S0022112010001217

Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L. (2016): Dynamic Mode Decomposition:
Data-Driven Modeling of Complex Systems. SIAM, Philadelphia.

Proctor, J.L., Brunton, S.L., Kutz, J.N. (2016): Dynamic mode decomposition with control. SIAM J.
Appl. Dyn. Syst. 15(1):142–161. 10.1137/15M1013857

Benner, P., Himpe, C., Mitchell, T. (2018): On reduced input-output dynamic mode decomposition.
Adv. Comp. Math. 44(6):1751–1768. 10.1007/s10444-018-9592-x

Mauroy, A., Mezić, I., Susuki, Y., eds., (2020): The Koopman Operator in Systems and Control.
Concepts, Methodologies, and Applications. LNCIS 484, Springer, Cham.

Gosea, I.V., Pontes Duff, I. (2021): Toward fitting structured nonlinear systems by means of dynamic
mode decomposition. In Benner, P., et al, Model Reduction of Complex Dynamical Systems, ISNM 171,
pp. 53–74, Birkhäuser, Basel.

Morandin, R., Nicodemus, J., Unger, B. (2023): Port-Hamiltonian dynamic mode decomposition. SIAM
J. Sci. Comp. 45(4):A1690–A1710. 10.1137/22M149329X

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 12/29

https://doi.org/10.1007/s11071-005-2824-x
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1137/15M1013857
https://doi.org/10.1007/s10444-018-9592-x
https://doi.org/10.1137/22M149329X
mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r‖X̂1 − ÂX̂0‖2F +R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 13/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK] ∈ Rn×(K+1), U := [u0, u1, . . . , uK] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA) X̂.

Compress snapshot matrix of time derivatives: if residuals f(xj , uj) are available

˙̂
X := [ẋ(0), ẋ(t1), . . . , ẋ(tK)] ≈ [f(x0, u0), f(x1, u1), . . . , f(xK , uK)] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ˙̂
X.

Solve the regularized linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

] X̂

X̂ ∗ X̂
U

∥∥2
F

+R(Â, Ĥ, B̂)

with the Khatri-Rao product X̂ ∗ X̂ := [x̂0 ⊗ x̂0, . . . , x̂K ⊗ x̂K].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 14/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK] ∈ Rn×(K+1), U := [u0, u1, . . . , uK] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA) X̂.

Compress snapshot matrix of time derivatives: if residuals f(xj , uj) are available

˙̂
X := [ẋ(0), ẋ(t1), . . . , ẋ(tK)] ≈ [f(x0, u0), f(x1, u1), . . . , f(xK , uK)] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ˙̂
X.

Solve the regularized linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

] X̂

X̂ ∗ X̂
U

∥∥2
F

+R(Â, Ĥ, B̂)

with the Khatri-Rao product X̂ ∗ X̂ := [x̂0 ⊗ x̂0, . . . , x̂K ⊗ x̂K].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 14/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK] ∈ Rn×(K+1), U := [u0, u1, . . . , uK] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA) X̂.

Compress snapshot matrix of time derivatives: if residuals f(xj , uj) are available

˙̂
X := [ẋ(0), ẋ(t1), . . . , ẋ(tK)] ≈ [f(x0, u0), f(x1, u1), . . . , f(xK , uK)] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ˙̂
X.

Solve the regularized linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

] X̂

X̂ ∗ X̂
U

∥∥2
F

+R(Â, Ĥ, B̂)

with the Khatri-Rao product X̂ ∗ X̂ := [x̂0 ⊗ x̂0, . . . , x̂K ⊗ x̂K].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 14/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK] ∈ Rn×(K+1), U := [u0, u1, . . . , uK] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA) X̂.

Compress snapshot matrix of time derivatives: if residuals f(xj , uj) are available

˙̂
X := [ẋ(0), ẋ(t1), . . . , ẋ(tK)] ≈ [f(x0, u0), f(x1, u1), . . . , f(xK , uK)] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ˙̂
X.

Solve the regularized linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

] X̂

X̂ ∗ X̂
U

∥∥2
F

+R(Â, Ĥ, B̂)

with the Khatri-Rao product X̂ ∗ X̂ := [x̂0 ⊗ x̂0, . . . , x̂K ⊗ x̂K].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 14/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK] ∈ Rn×(K+1), U := [u0, u1, . . . , uK] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA) X̂.

Compress snapshot matrix of time derivatives: if residuals f(xj , uj) are available

˙̂
X := [ẋ(0), ẋ(t1), . . . , ẋ(tK)] ≈ [f(x0, u0), f(x1, u1), . . . , f(xK , uK)] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ˙̂
X.

Solve the regularized linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

] X̂

X̂ ∗ X̂
U

∥∥2
F

+R(Â, Ĥ, B̂)

with the Khatri-Rao product X̂ ∗ X̂ := [x̂0 ⊗ x̂0, . . . , x̂K ⊗ x̂K].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 14/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference: Numerical Examples
Batch Chromatography: A Chemical Separation Process

Desorbent

Feed (A+B)

Pump

fractionation

valve
Chromatographic column

Pulse injection

AB

A

B

A
B

AB

A

B

The dynamics of a batch chromatography column can be described by the coupled PDE
system of advection-diffusion type:

∂ci

∂t
+

1− ε
ε

∂qi

∂t
+
∂ci

∂x
−

1

Pe

∂2ci

∂x2
= 0,

∂qi

∂t
= κi

(
qEq
i − qi

)
.

It is a coupled PDE; thus, the coupling structure is desired to be preserved in learned ROM

This is achieved by block diagonal projection, thereby not mixing separate physical
quantities.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 15/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference: Numerical Examples
Batch Chromatography: A Chemical Separation Process

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

time [s]

y
(t
)

Original

Intrusive POD

Learned ROM

0 2 4 6 8 10
10−6

10−5

10−4

10−3

time [s]
m
e
a
n

(|
y
(t
)
−

ŷ
(t
)|

)

Intrusive POD

Learned ROM

Figure: Batch chromatography example: A comparison of the POD intrusive model with the
learned model of order r = 4× 22, where n = 1600 and Pe = 2000.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 16/29

mailto:benner@mpi-magdeburg.mpg.de

Paramterized Operator Inference [Yıldız/Goyal/B./Karasözen 2021]
Numerical Example: Shallow Water Equations

Parameterized shallow water equations are given by

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)2 (h2)x,

∂

∂t
ṽ = −hy + sin θ ũ+

1

2
δ sin θ cos θ h− ũṽx − ṽṽy

+ δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
−

3

8
(δ cos θ)2 (h2)y ,

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h2)x.

Parameterized by the latitude θ.

ũ =: (ũ; ṽ) is the canonical velocity.

h is the height field.

We collect the training data for 5 different parameter realizations θ in
[π

6
,
π

3

]
.

Infer a reduced parametric model directly from data of order r = 75.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 17/29

mailto:benner@mpi-magdeburg.mpg.de

Paramterized Operator Inference [Yıldız/Goyal/B./Karasözen 2021]
Numerical Example: Shallow Water Equations

Parameterized shallow water equations are given by

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)2 (h2)x,

∂

∂t
ṽ = −hy + sin θ ũ+

1

2
δ sin θ cos θ h− ũṽx − ṽṽy

+ δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
−

3

8
(δ cos θ)2 (h2)y ,

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h2)x.

Comparison of the height field for the parameter θ =
5π

24
:

−4 −2 0 2 4

−4

−2

0

2

4

1

1.05

1.1

(a) FOM

−4 −2 0 2 4

−4

−2

0

2

4

1

1.05

1.1

(b) Learned parametric model

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 17/29

mailto:benner@mpi-magdeburg.mpg.de

Operator Inference with Constrained Dynamics [B./Goyal/Heiland/Pontes Duff 2022]
Example: Navier-Stokes Equations

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition.

Γ0 Γ1

0.12

0.14

y p
(t)

=
C p

p(
t) Full Order Model

0.12

0.14

y p
(t)

=
C p

p(
t) Operator Inference

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time t

10 5
10 3

10 7

y p
(t)

y p
(t)

Approximation Error

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 18/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference

Problem: OpInf regression potentially yields unstable dynamics.
 Even marginal instability can lead to unphysical simulation results.

Goal: infer systems with guaranteed stability.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 19/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference

Problem: OpInf regression potentially yields unstable dynamics.
 Even marginal instability can lead to unphysical simulation results.

Goal: infer systems with guaranteed stability.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 19/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Linear Systems / Local Stability

Asymptotic (exponential, Lyapunov) stability of linear systems

ẋ(t) = Ax(t), x(0) = x0,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A ∈ Rn×n is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A = (J −R)Q,

where J = −JT and R = RT , Q = QT are both positive definite.

=⇒ Stability-preserving OpInf for linear systems [Goyal/Pontes Duff/B. 2023]:

(S∗, L∗,K∗) := argminL,K upper triangular
with positive diagonals

(
‖Ẋ − (S − ST− LTL)KTKX‖2F +R(L,K, S)

)
.

The matrix obtained from this nonlinear (regularized) least-squares problem,

A∗ =
(
S∗ − ST

∗ − LT
∗ L∗

)
KT
∗ K∗,

is guaranteed to be stable due to [Gillis/Sharma 2017].

Related work by Schwerdtner/Voigt, Unger, . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 20/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Linear Systems / Local Stability

Asymptotic (exponential, Lyapunov) stability of linear systems

ẋ(t) = Ax(t), x(0) = x0,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A ∈ Rn×n is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A = (J −R)Q,

where J = −JT and R = RT , Q = QT are both positive definite.

=⇒ Stability-preserving OpInf for linear systems [Goyal/Pontes Duff/B. 2023]:

(S∗, L∗,K∗) := argminL,K upper triangular
with positive diagonals

(
‖Ẋ − (S − ST− LTL)KTKX‖2F +R(L,K, S)

)
.

The matrix obtained from this nonlinear (regularized) least-squares problem,

A∗ =
(
S∗ − ST

∗ − LT
∗ L∗

)
KT
∗ K∗,

is guaranteed to be stable due to [Gillis/Sharma 2017].

Related work by Schwerdtner/Voigt, Unger, . . .

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 20/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Linear Systems / Local Stability — Numerical Example

Consider 1D Burgers’ equation for viscous flow

vt + vvx = νvxx in (0, 1)× (0, T)

vx(0, t) = vx(1, t) = 0,

v(x, 0) = v0(x, µ),

discretized on uniform 1000× 500 space-time grid for 17 + 3 training+testing initial conditions.

Reduced-order model (r = 21) computed using standard (”LSI”) and stabilized (”SLSI”) OpInf
applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

Eigenvalues of linearization
Errors for different initial conditions

(test data)

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 21/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Solving the OpInf regression problem

(A∗, H∗) := argmin(A,H)

∥∥Ẋ − [A H
] [X
X ∗X

] ∥∥2
F

+ R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q∗ = KT

∗ K∗ > 0 provides a quadratic
Lyapunov function for the identified system [Goyal/Pontes Duff/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,

Hijk +Hikj +Hjik +Hjki +Hkij +Hkji = 0 for all i, j, k ∈ {1, . . . , n}.

Note: the latter is equivalent to xTH(x⊗ x) = 0 for all x ∈ Rn
[Schlegel/Noack 2015].

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable if and only if the symmetric part of A
is asymptotically stable.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 22/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Solving the OpInf regression problem

(A∗, H∗) := argmin(A,H)

∥∥Ẋ − [A H
] [X
X ∗X

] ∥∥2
F

+ R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q∗ = KT

∗ K∗ > 0 provides a quadratic
Lyapunov function for the identified system [Goyal/Pontes Duff/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,

Hijk +Hikj +Hjik +Hjki +Hkij +Hkji = 0 for all i, j, k ∈ {1, . . . , n}.

Note: the latter is equivalent to xTH(x⊗ x) = 0 for all x ∈ Rn
[Schlegel/Noack 2015].

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable if and only if the symmetric part of A
is asymptotically stable.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 22/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Solving the OpInf regression problem

(A∗, H∗) := argmin(A,H)

∥∥Ẋ − [A H
] [X
X ∗X

] ∥∥2
F

+ R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q∗ = KT

∗ K∗ > 0 provides a quadratic
Lyapunov function for the identified system [Goyal/Pontes Duff/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,

Hijk +Hikj +Hjik +Hjki +Hkij +Hkji = 0 for all i, j, k ∈ {1, . . . , n}.

Note: the latter is equivalent to xTH(x⊗ x) = 0 for all x ∈ Rn
[Schlegel/Noack 2015].

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable if and only if the symmetric part of A
is asymptotically stable.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 22/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the OpInf problem accordingly? (If the answer is yes, then we can learn a GAS model using OpInf.)

Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in Rn

ż = Az +H(z ⊗ z), A = (J −R)Q, J = −JT , R = RT > 0, Q = QT > 0,

is generalized energy-preserving w.r.t. Q, i.e., xTQH(x⊗ x) = 0 for all x, if

H = [H1Q, . . . ,HnQ] , where Hj = −HT
j , j = 1, . . . , n.

Moreover, V (x) = 1
2
xTQx is a global Lyapunov function for the quadratic system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 23/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the OpInf problem accordingly? (If the answer is yes, then we can learn a GAS model using OpInf.)

Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in Rn

ż = Az +H(z ⊗ z), A = (J −R)Q, J = −JT , R = RT > 0, Q = QT > 0,

is generalized energy-preserving w.r.t. Q, i.e., xTQH(x⊗ x) = 0 for all x, if

H = [H1Q, . . . ,HnQ] , where Hj = −HT
j , j = 1, . . . , n.

Moreover, V (x) = 1
2
xTQx is a global Lyapunov function for the quadratic system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 23/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the OpInf problem accordingly? (If the answer is yes, then we can learn a GAS model using OpInf.)

Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in Rn

ż = Az +H(z ⊗ z), A = (J −R)Q, J = −JT , R = RT > 0, Q = QT > 0,

is generalized energy-preserving w.r.t. Q, i.e., xTQH(x⊗ x) = 0 for all x, if

H = [H1Q, . . . ,HnQ] , where Hj = −HT
j , j = 1, . . . , n.

Moreover, V (x) = 1
2
xTQx is a global Lyapunov function for the quadratic system.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 23/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Constrained OpInf problem for learning GAS systems [Goyal/Pontes Duff/B. 2023]

(A∗, H∗) := argmin(A,H)

∥∥Ẋ − [A H
] [X
X ∗X

] ∥∥2
F

+R(AH)

subject to the stability constraints

A =
(
S − ST− LTL

)
KTK with L,K upper triangular with positive diagonals

H = [H1Q, . . . ,HnQ] , with Hj = −HT
j , j = 1, . . . , n.

Implementation:

Usually, as discussed before, the data are projected onto the leading r PCA modes
for dimension reduction.

Quite involved optimization problem, can be solved via stochastic gradient descent
(Adam) and backpropagation (setting Q = Ir may be necessary).

We do not explicitly need derivative data by using a Neural ODE approach for noisy
data [Goyal/B. 2023].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 24/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Constrained OpInf problem for learning GAS systems [Goyal/Pontes Duff/B. 2023]

(A∗, H∗) := argmin(A,H)

∥∥Ẋ − [A H
] [X
X ∗X

] ∥∥2
F

+R(AH)

subject to the stability constraints

A =
(
S − ST− LTL

)
KTK with L,K upper triangular with positive diagonals

H = [H1Q, . . . ,HnQ] , with Hj = −HT
j , j = 1, . . . , n.

Implementation:

Usually, as discussed before, the data are projected onto the leading r PCA modes
for dimension reduction.

Quite involved optimization problem, can be solved via stochastic gradient descent
(Adam) and backpropagation (setting Q = Ir may be necessary).

We do not explicitly need derivative data by using a Neural ODE approach for noisy
data [Goyal/B. 2023].

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 24/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

vt + vvx = νvxx in (0, 1)× (0, T)

v(0, t) = v(1, t) = 0,

v(x, 0) = v0(x, µ),

discretized on uniform 250× 500 space-time grid for 17 + 3 training+testing initial conditions
and ν = 0.05.

Reduced-order model (r = 20) computed using standard, locally stable (lasMI) and globally
stable (gasMI) OpInf applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

(missing data = blow-up in numerical simulation)

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 25/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

Full simulation for test initial condition (not seen during training)

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 25/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor

So far, we considered asymptotically stable systems.

However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.

Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called ”trapping region”.) Call
such systems ATR systems.

Inference of ATR quadratic systems [Goyal/Pontes Duff/B. 2023]

It can be shown that for energy-preserving quadratic systems, an ATR system can be
turned into a GAS system by translation x(t)→ x(t)− y
We, thus, require to solve the following constraint problem:

min
A,H,y

∥∥∥Ẋ −A(X − y)−H ((X − y) ∗ (X − y))
∥∥∥

subject to Λ(A) ∈ C− and H is energy preserving.

Note that we do not know y a priori, it is learned from the data.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 26/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor

So far, we considered asymptotically stable systems.

However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.

Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called ”trapping region”.) Call
such systems ATR systems.

Inference of ATR quadratic systems [Goyal/Pontes Duff/B. 2023]

It can be shown that for energy-preserving quadratic systems, an ATR system can be
turned into a GAS system by translation x(t)→ x(t)− y
We, thus, require to solve the following constraint problem:

min
A,H,y

∥∥∥Ẋ −A(X − y)−H ((X − y) ∗ (X − y))
∥∥∥

subject to Λ(A) ∈ C− and H is energy preserving.

Note that we do not know y a priori, it is learned from the data.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 26/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor

So far, we considered asymptotically stable systems.
However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.
Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called ”trapping region”.) Call
such systems ATR systems.

Figure: An illustration of nonlinear dynamics with attractor.

Inference of ATR quadratic systems [Goyal/Pontes Duff/B. 2023]

It can be shown that for energy-preserving quadratic systems, an ATR system can be
turned into a GAS system by translation x(t)→ x(t)− y
We, thus, require to solve the following constraint problem:

min
A,H,y

∥∥∥Ẋ −A(X − y)−H ((X − y) ∗ (X − y))
∥∥∥

subject to Λ(A) ∈ C− and H is energy preserving.

Note that we do not know y a priori, it is learned from the data.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 26/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor

So far, we considered asymptotically stable systems.

However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.

Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called ”trapping region”.) Call
such systems ATR systems.

Inference of ATR quadratic systems [Goyal/Pontes Duff/B. 2023]

It can be shown that for energy-preserving quadratic systems, an ATR system can be
turned into a GAS system by translation x(t)→ x(t)− y
We, thus, require to solve the following constraint problem:

min
A,H,y

∥∥∥Ẋ −A(X − y)−H ((X − y) ∗ (X − y))
∥∥∥

subject to Λ(A) ∈ C− and H is energy preserving.

Note that we do not know y a priori, it is learned from the data.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 26/29

mailto:benner@mpi-magdeburg.mpg.de

Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor— Numerical Example (Lorenz63 system)

(a) For initial condition [10, 10,−10].

(b) For initial condition [100,−100, 100].

(c) For initial condition [−500, 500, 500].

A comparison of the time-domain simulations of the learned models for testing initial conditions.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 27/29

mailto:benner@mpi-magdeburg.mpg.de

Conclusions

Operator inference (OpInf) is a regression-based powerful method to infer linear and
certain nonlinear dynamical systems from data, very similar to DMD in the linear
case.

Looks simple, but the devil is in the details.

Stability constraints can be encoded explicitly in the regression problem for the
model inference.

For application to control problems, see MTNS2024 contribution by Pontes Duff
[Pontes Duff/Goyal/B. 2024].

The same approach can also be used to infer stable systems using sparse regression
(SINDy).

Recent work combines OpInf with neural networks to solve nonlinear parametric
identification problems with stability guarantee (preprint coming out soon).

Error bounds for non-intrusive MOR need to be further developed.

Better solvers for special nonlinear regression problems needed!

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 28/29

mailto:benner@mpi-magdeburg.mpg.de

References

Kravtsov, S., Kondrashov, D., Ghil, M. (2005): Multilevel regression modeling of nonlinear processes: Derivation and applications to climatic
variability. J. Climate, 18(21):4404–4424.

Peherstorfer, B., Willcox, K. (2016): Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl.
Mech. Eng. 306:196–215.

Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N. (2016): Extracting spatial-temporal coherent patterns in large-scale neural recordings
using dynamic mode decomposition. J. Neurosci. Methods 258:1–15.

Annoni, J., Seiler, P. (2017): A method to construct reduced-order parameter-varying models. Int. J. Robust Nonlinear Control 27(4):582–597.

Qian, E., Kramer, B., Peherstorfer, B., Willcox, K. (2020): Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical
systems. Physica D: Nonlinear Phenomena 406:132401.

Benner, P., Goyal, P., Kramer, B., Peherstorfer, B., Willcox, K. (2020): Operator inference for non-intrusive model reduction of systems with
non-polynomial nonlinear terms. Comp. Meth. Appl. Mech. Eng., 372:113433.

Yıldız, S., Goyal, P., Benner, P., Karasozen, B. (2021): Learning reduced-order dynamics for parametrized shallow water equations from data. Int.
J. Numer. Meth. Eng., 93(8):2803–2821.

Benner, P., Goyal, P., Heiland, J., Pontes Duff, I. (2022): Operator inference and physics-informed learning of low-dimensional models for
incompressible flows. Elec. Trans. Numer. Anal., 56:28–51.

Goyal, P., Benner, P. (2023): Neural ordinary differential equations with irregular and noisy data. Royal Society Open Science, 10(7):221475.

Goyal, P., Pontes Duff, I., Benner, P. (2023): Inference of continuous linear systems from data with guaranteed stability. arXiv:2301.10060

Goyal, P., Pontes Duff, I., Benner, P. (2023): Guaranteed stable quadratic models and their applications in SINDy and operator inference.
arXiv:2308.13819

Pontes Duff, I., Goyal, P., Benner, P. (2024): Stability-Certified Learning of Control Systems with Quadratic Nonlinearities. Proc. MTNS 2024 /
arXiv:2403.00646.

© benner@mpi-magdeburg.mpg.de Computational Learning of Dynamical Systems with Stability Constraints 29/29

mailto:benner@mpi-magdeburg.mpg.de

	Model Order Reduction of Dynamical Systems
	Problem Setting
	Model Order Reduction of Linear Systems

	Data-driven/-enhanced Model Reduction
	A Brief History of System Identification
	A few Remarks on the History of Learning Dynamical Systems
	Dynamic Mode Decomposition (DMD) in a Nutshell
	Operator Inference

	Preserving Stability in Operator Inference
	Linear Systems / Local Stability
	Nonlinear Systems / Global Stability
	Nonlinear Dynamics with Attractor

	Conclusions

