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Goal, Solution, Vision

Commercial ROM Software for Real Turbulence

T. Iliescu (Mathematics) LES-ROMs for Turbulence Computational Learning for ROMs 4 / 44



Goal, Solution, Vision

LES-ROMs

bridge two distinct research fields (2010-2030)

large eddy simulation (LES)

reduced order model (ROM)

sales pitch LES-ROMs

principles WHY? HOW?

not models

case studies

Data-Driven LES-ROMs §

Regularized ROMs (Reg-ROMs) ©
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LES-ROMs
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Review

Bridging Large Eddy Simulation and Reduced-Order Modeling
of Convection-Dominated Flows through Spatial Filtering:
Review and Perspectives
Annalisa Quaini 1,† , Omer San 2,†, Alessandro Veneziani 3,† and Traian Iliescu 4,*,†

1 Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA;
quaini@math.uh.edu

2 Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle
Drive, Knoxville, TN 37996, USA; osan@utk.edu

3 Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA;
avenez2@emory.edu

4 Department of Mathematics, Virginia Tech, 225 Stanger Street, Blacksburg, VA 24061, USA
* Correspondence: iliescu@vt.edu
† These authors contributed equally to this work.

Abstract: Reduced-order models (ROMs) have achieved a lot of success in reducing the computational
cost of traditional numerical methods across many disciplines. In fluid dynamics, ROMs have been
successful in providing efficient and relatively accurate solutions for the numerical simulation of
laminar flows. For convection-dominated (e.g., turbulent) flows, however, standard ROMs generally
yield inaccurate results, usually affected by spurious oscillations. Thus, ROMs are usually equipped
with numerical stabilization or closure models in order to account for the effect of the discarded
modes. The literature on ROM closures and stabilizations is large and growing fast. In this paper,
instead of reviewing all the ROM closures and stabilizations, we took a more modest step and focused
on one particular type of ROM closure and stabilization that is inspired by large eddy simulation
(LES), a classical strategy in computational fluid dynamics (CFD). These ROMs, which we call LES-
ROMs, are extremely easy to implement, very efficient, and accurate. Indeed, LES-ROMs are modular
and generally require minimal modifications to standard (“legacy”) ROM formulations. Furthermore,
the computational overhead of these modifications is minimal. Finally, carefully tuned LES-ROMs can
accurately capture the average physical quantities of interest in challenging convection-dominated
flows in science and engineering applications. LES-ROMs are constructed by leveraging spatial
filtering, which is the same principle used to build classical LES models. This ensures a modeling
consistency between LES-ROMs and the approaches that generated the data used to train them. It
also “bridges” two distinct research fields (LES and ROMs) that have been disconnected until now.
This paper is a review of LES-ROMs, with a particular focus on the LES concepts and models that
enable the construction of LES-inspired ROMs and the bridging of LES and reduced-order modeling.
This paper starts with a description of a versatile LES strategy called evolve–filter–relax (EFR) that has
been successfully used as a full-order method for both incompressible and compressible convection-
dominated flows. We present evidence of this success. We then show how the EFR strategy, and spatial
filtering in general, can be leveraged to construct LES-ROMs (e.g., EFR-ROM). Several applications of
LES-ROMs to the numerical simulation of incompressible and compressible convection-dominated
flows are presented. Finally, we draw conclusions and outline several research directions and open
questions in LES-ROM development. While we do not claim this review to be comprehensive, we
certainly hope it serves as a brief and friendly introduction to this exciting research area, which we
believe has a lot of potential in the practical numerical simulation of convection-dominated flows in
science, engineering, and medicine.

Keywords: large eddy simulation; reduced-order modeling; spatial filtering; machine learning;
incompressible fluids; compressible fluids; cardiovascular modeling; atmospheric modeling

Fluids 2024, 9, 178. https://doi.org/10.3390/fluids9080178 https://www.mdpi.com/journal/fluids
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Goal, Solution, Vision

ROM+ML4LES+

“Reduced Order Modeling and Machine Learning for Large Eddy
Simulation and Related Topics (ROM+ML4LES+)”

organizers Veneziani, Quaini, San, Iliescu

October, 2025, Virginia Tech
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Goal, Solution, Vision

Vision

How will commercial software for
ROMs for fluids look in 2030?

LES-ROMs
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(Under-Resolved) Turbulent Flows

Turbulence

chaotic

unpredictable

multiscale

spectrum of scales

nonlinear interaction

convection-dominated

incompressible flows both diffusion and convection

̸= transport

under-resolved regime

not enough DOFs
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(Under-Resolved) Turbulent Flows

Thermohaline Circulation Red Sea Overflow
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(Under-Resolved) Turbulent Flows

Direct Numerical Simulation (DNS)

all scales

N ∼ O(Re9/4)

U ∼ 1 m/s, L ∼ 100 m =⇒ Re ∼ 108

N ∼ 1018

under-resolved
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(Under-Resolved) Turbulent Flows

Large Eddy Simulation (LES)

u u

h

1 spatial filter gδ

(i) physical space (Gaussian, differential)

(ii) Fourier space (sharp cutoff)

2 filtered variables u := gδ ∗ u large scales

3 filtered equations gδ ∗ NSE

4 solve for filtered variables
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(Under-Resolved) Turbulent Flows

Large Eddy Simulation (LES)


ut − Re−1 △u +∇ · (u u) +∇p +∇ · (u u − u u) = 0

∇ · u = 0

closure problem uu ̸= u u

closure model

1 functional (physical)

2 structural (mathematical)
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Turbulent Channel Flow

LES Testing

LES testing =⇒ under-resolved turbulent channel flow

turbulent channel flow ✓ =⇒ LES model used ©

turbulent channel flow ✗ =⇒ LES model NOT used §

DNS benchmark database

Moser, Kim, Mansour, Phys. Fluids, 1999

Lee, Moser, J. Fluid Mech., 2015
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Turbulent Channel Flow

LES Turbulent Channel Flow

Iliescu, Fischer, Phys. Fluids, 2003
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Turbulent Channel Flow

LES Thermohaline Circulation

Özgökmen, Iliescu, Fischer, Ocean Model., 2009
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Turbulent Channel Flow

ROM (Lack of) Testing
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Turbulent Channel Flow

G-ROM

Mou, Merzari, San, Iliescu, Nucl. Eng. Des., 2023
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Turbulent Channel Flow

G-ROM
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Data-Driven LES-ROMs

Data-Driven LES-ROMs

Algorithm 1 d2-VMS-ROM for NSE

1: Use data (snapshots) to construct orthonormal basis {φ1, . . . ,φR}, R = O(103) .

2: In offline stage, construct r -dimensional operators A and B, r = O(10) .

3: In offline stage, construct r -dimensional operators Ã and B̃, r = O(10) , which solve a
least squares problem:

min
Ã,B̃

M∑
j=1

∥∥∥∥ −
[((

uR
FOM(tj ) · ∇

)
uR

FOM(tj ) ,φi

)
−

((
ur

FOM(tj ) · ∇
)

ur
FOM(tj ) ,φi

)]

−
(

Ã aFOM(tj ) + aFOM(tj )⊤B̃ aFOM(tj )
)∥∥∥∥2

. (1)

4: In online stage, for different parameters and/or longer time, repeatedly use d2-VMS-ROM

•
a = (A + Ã)a + a⊤(B + B̃)a . (2)

Xie, Mohebujjaman, Rebholz, Iliescu, SIAM J. Sci. Comput., 2018

Mou, Koc, San, Rebholz, Iliescu, Comput. Meth. Appl. Mech. Eng., 2021
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Data-Driven LES-ROMs

Physics Guided Machine Learning (PGML)

Ahmed, San, Rasheed, Iliescu, Veneziani SIAM J. Sci. Comp., 2023
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Data-Driven LES-ROMs

Data-Driven LES-ROMs

evolution
Xie, Mohebujjaman, Rebholz, Iliescu, SIAM J. Sci. Comput., 2018

Mou, Koc, San, Rebholz, Iliescu, Comput. Methods Appl. Mech. Engrg., 2021

physical constraints
Mohebujjaman, Rebholz, Iliescu, Int. J. Num. Meth. Fluids, 2019

pressure
Ivagnes, Stabile, Mola, Iliescu, Rozza J. Comput. Phys., 2023

Ivagnes, Stabile, Mola, Iliescu, Rozza, Apl. Math. Comput., 2023

machine learning
Xie, Webster, Iliescu, Fluids, 2020

Ahmed, San, Rasheed, Iliescu, Veneziani, SIAM J. Sci. Comput., 2023

stochastic modeling, data assimilation
Mou, Chen, Iliescu J. Comp. Phys., 2023
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Data-Driven LES-ROMs

Data-Driven LES-ROMs
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data §

hybrid = data + physics ©
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Data-Driven LES-ROMs

Data-Driven Variational Multiscale ROM Verifiability

Theorem (Koc, Mou, Liu, Wang, Rozza, Iliescu, J. Sci. Comput., 2022 )

Accurate ROM closure =⇒ accurate ROM approximation:

∥en∥2
+∆t

n∑
j=0

Re−1
∥∥∥∇ej

∥∥∥2
≤ exp

∆t
n∑

j=0

dj

1 −∆t dj


∆t

n∑
j=0

Re−1
∥∥∥Pr

(
τ FOM(u j

R)− τROM
(

Pr (u
j
R)
))∥∥∥2

 .

Proof.
1 Galerkin + filtering =⇒ mathematical framework
2 data-driven closure =⇒ accurate closure
3 Galerkin + data =⇒ accurate ROM

T. Iliescu (Mathematics) LES-ROMs for Turbulence Computational Learning for ROMs 25 / 44



Data-Driven LES-ROMs

LES-ROM Criteria

accuracy ✓

efficiency ✓

mathematics ✓

commercial ROM software ✗

WHY?
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Data-Driven LES-ROMs

LES-ROM Criteria

NOT easy to implement §

T. Iliescu (Mathematics) LES-ROMs for Turbulence Computational Learning for ROMs 27 / 44



Regularized ROMs (Reg-ROMs)

ROM Filters Projection

given uR ∈ XR = span
{
φ1, . . . ,φr , φr+1, . . . . . . . . . . . . ,φR

}
find uR ∈ Xr = {φ1, . . . ,φr}

(
uR ,φj

)
=

(
uR ,φj

)
∀ j = 1, . . . r

Wang, Akhtar, Borggaard, Iliescu, Comput. Meth. Appl. Mech. Eng., 2012

Wells, Wang, Xie, Iliescu, Int. J. Num. Meth. Fluids, 2017

Kaneko, Tsai, Fischer, Nucl. Eng. Des., 2020
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Regularized ROMs (Reg-ROMs)

ROM Filters Differential

given ur ∈ Xr

find ur ∈ Xr

((
I− δ2∆

)
ur ,φj

)
=

(
ur ,φj

)
∀ j = 1, . . . r

(
I+ δ2Sr

)
ar = ar

low-dimensional linear system

Wells, Wang, Xie, Iliescu, Int. J. Num. Meth. Fluids, 2017
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Regularized ROMs (Reg-ROMs)

ROM Lengthscale

input

1 FOM

mesh size h

solution uFOM

computational domain lengthscale L

2 ROM

dimension r

total number of ROM basis functions R

eigenvalues λi

basis functions φi

output

δ =?
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Regularized ROMs (Reg-ROMs)

Dimensional Lengthscale δ1

definition

δ1 :=

 ∫ L1

0

∫ L2

0

∫ L3

0

∑3
i=1 u

′

i
FOM

u
′

i
FOM

dx1 dx2 dx3∫ L1

0

∫ L2

0

∫ L3

0

∑3
i=1
∑3

j=1
∂u′

i
FOM

∂xj

∂u′
i

FOM

∂xj
dx1 dx2 dx3


1/2

check

[δ1] =

(
m
s

m
s m3

1
s

1
s m3

)1/2

= m ✓

Aubry, Holmes, Lumley, Stone, J. Fluid Mech., 1988
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Regularized ROMs (Reg-ROMs)

Energy Lengthscale δ2

principle

Λ
notation
=

∑r
i=1 λi∑R
i=1 λi

=
KE(δ2)

KE(h)

tools

KE(k) =
∫ k

k0
E(k ′) dk ′

E(k) ∼ C ε2/3 k−5/3

Mou, Merzari, San, Iliescu, Nucl. Eng. Des., 2023
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Regularized ROMs (Reg-ROMs)

Energy Lengthscale δ2

formula

δ2 =
[
Λh2/3 + (1 − Λ) L2/3

]3/2

dimensions ✓

asymptotics ✓

r −→ R =⇒ δ2 −→ h

r −→ 1 =⇒ δ2 −→ L

Mou, Merzari, San, Iliescu, Nucl. Eng. Des., 2023
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Regularized ROMs (Reg-ROMs)

Numerical Results Magnitude and Asymptotics

r 4 8 16 32 40 50
δ1 4.64e-02 4.65e-02 4.68e-02 4.68e-02 4.66e-02 4.62e-02
δ2 1.63e00 1.41e+00 1.08e+00 6.84e-01 5.56e-01 4.32e-01

Table: ROM lengthscales for different r values.

Mou, Merzari, San, Iliescu, Nucl. Eng. Des., 2023
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Regularized ROMs (Reg-ROMs)

Evolve-Filter-Relax ROM (EFR-ROM)

Evolve-Filter-Relax ROM (EFR-ROM)

(I) Evolve:

(
wn+1

r − un
r

∆t
,φk

)
+ Re−1 (∇un

r ,∇φk ) +

(
(un

r · ∇)un
r ,φk

)
= 0

(II) Filter: wn+1
r 7−→ wn+1

r

(III) Relax: un+1
r = (1 − χ)wn+1

r + χwn+1
r

Wells, Wang, Xie, Iliescu, Int. J. Num. Meth. Fluids, 2017

Gunzburger, Iliescu, Mohebujjaman, Schneier, SIAM-ASA J. Uncertain., 2019

Girfoglio, Quaini, Rozza, J. Comp. Phys., 2021

Strazzullo, Girfoglio, Ballarin, Iliescu, Rozza, Int. J. Num. Meth. Eng., 2022
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Regularized ROMs (Reg-ROMs)

LES-ROM Criteria

Embarrassingly Easy to implement ©

Almost Nonintrusive ©
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Regularized ROMs (Reg-ROMs)

Leray ROM (L-ROM)

Leray ROM (L-ROM)

(
∂ur

∂t
,φk

)
+ Re−1 (∇ur ,∇φk ) +

(
(ur · ∇)ur ,φk

)
= 0

•
a = A a + a⊤ B a

Wells, Wang, Xie, Iliescu, Int. J. Num. Meth. Fluids, 2017

Kaneko, Tsai, Fischer, Nucl. Eng. Des., 2020
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Regularized ROMs (Reg-ROMs)

Time-Relaxation ROM (TR-ROM)

Time-Relaxation ROM (TR-ROM)

(
∂ur

∂t
,φk

)
+ Re−1 (∇ur ,∇φk ) +

(
(ur · ∇)ur ,φk

)
+χ

(
ur − ur ,φk

)
= 0

Tsai, Fischer, Iliescu, J. Comput. Phys., 2024
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Regularized ROMs (Reg-ROMs)

Reg-ROMs Developments

model consistency
Strazzullo, Girfoglio, Ballarin, Iliescu, Rozza, Int. J. Num. Meth. Eng., 2022

control
Strazzullo, Ballarin, Iliescu, Canuto, arXiv, 2023

approximate deconvolution
Sanfilippo, Moore, Ballarin, Iliescu, Finite Elem. Anal. Des., 2023

parameter optimization
Ivagnes, Strazzullo, Girfoglio, Iliescu, Rozza, arXiv, 2024

variational multiscale
Strazzullo, Ballarin, Iliescu, Chacon Rebollo, arXiv, 2024

numerical analysis
Moore, Sanfilippo, Ballarin, Iliescu, arXiv, 2024

Reyes, Tsai, Novo, Iliescu, arXiv, 2024

Ballarin, Iliescu, arXiv, 2024
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Regularized ROMs (Reg-ROMs)

Turbulent Channel Flow Reτ = 395

Mou, Merzari, San, Iliescu, Nucl. Eng. Des., 2023
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Regularized ROMs (Reg-ROMs)

Turbulent Channel Flow Reτ = 395
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Regularized ROMs (Reg-ROMs)

Turbulent Channel Flow Reτ = 395

Tsai, Fischer, Iliescu, J. Comput. Phys., 2024
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Conclusions and Outlook

Conclusions

LES-ROMs

ROM filters

ROM lengthscale

Reg-ROMs

turbulent channel flow
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Conclusions and Outlook

Vision

How will commercial software for
ROMs for fluids look in 2040?

LES-ROMs
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