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Some examples from stochastic networks

W.N. Kang and R. J. Williams (2012): Diffusion approximation for an input-queued
switch operating under a maximum weight matching policy, Stochastic Systems, 2,
277-321

For some values of the parameters, the conjectured diffusion approximation for the
workload process is an obliquely reflecting Brownian motion in a piecewise smooth,
nonpolyhedral cone
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An example from singular stochastic control

S.A. Williams, P-L. Chow and J-L. Menaldi (1994): Regularity of the free boundary
in singular stochastic control, Journal of Differential Equations 111, 175-201

The candidate for the optimally controlled process is an obliquely reflecting
Brownian motion in a curved, piecewise smooth domain

0

∂D1

∂D2

D

D = D1 ∩ D2, ∂D1 = {x : x1 = ψ1(x2)}. ∂D2 = {x : x2 = ψ2(x1)}.
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Examples from diffusion approximation of transport
processes

Transport processes describe particle behaviour in many areas of physics and
chemistry

A. Bensoussan, J.L. Lions and G.C. Papanicolaou (1979): Boundary layers and
homogenization of transport processes, Publ. RIMS, Kyoto University, 15, 53-157

C. - T.G. Kurtz (2006): Diffusion approximation for transport processes with general
reflection boundary conditions, Math. Models Methods Appl. Sci., 5, 717-762

Costantini Reflecting diffusions in curved nonsmooth domains ICERM 2024 5 / 37



Semimartingale obliquely reflecting diffusions

D

g2

g1
g1

g2
G(0)

Stochastic Differential Equation with Reflection (SDER)

X(t) = X0 +

∫ t

0
b(X(s))ds +

∫ t

0
σ(X(s))dW(s) +

∫ t

0
γ(s)dλ(s),

X(s) ∈ D, γ(s) ∈ G(X(s)), G(x) a cone, |γ(s)| = 1, dλ− a.e.,

λ nondecreasing, continuous, dλ
(
{s ≤ t : X(s) ∈ ∂D}

)
= λ(t),

X is a solution if there exist W, γ, λ s.t. SDER is satisfied

For non semimartingale reflecting diffusions: Varadhan-Williams (1984), Williams
(1985), Kwon-Williams (1981), Ramanan (2006), Ramanan-Reiman (2008),

Kang-Ramanan (2010), Lakner-Reed-Zwart (2017), Atar-Budhiraja (2024), etc.
For normal reflection: Tanaka (1979), Saisho (1987), Z.-Q. Chen (1993), Bass-Hsu

(2000), Bass-Burdzy (2006, 2008), etc.
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Strong existence and pathwise uniqueness via the Skorohod
problem

Harrison and Reiman (1981): for Brownian motion in an orthant with
constant, oblique direction of reflection on each face pointing towards
the origin, under the condition that the spectral radius of the identity
minus the reflection matrix is strictly less than 1
Lions and Sznitman (1984): in a domain that can be approximated by smooth
domains, with varying oblique directions of reflection, for a very specific class
of directions of reflection

C. (1992): in a piecewise C1 domain with varying, oblique directions of
reflection, some existence and compactness results but no uniqueness

Dupuis and Ishii (1993): in a piecewise C1 domain with varying,
oblique directions of reflection, under the the condition that, for each
point x on the boundary there exists a certain compact, convex set
defined in terms of the cone of normal directions and the cone of
directions of reflection at x. In the orthant, strictly more general than the
Harrison-Reiman condition
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Lipschitz continuity for the Skorohod problem

Dupuis and Ishii (1991): in a convex polyhedron with constant
directions of reflection on each face, a very similar condition is sufficient
for the Skorohod map to be Lipschitz continuous

Dupuis and Ramanan (1999, part I): reformulates the Dupuis and Ishii
(1991) condition in a way that sheds light on its meaning and makes it
easier to verify

Dupuis and Ramanan (1999, part II): shows how to use the new
formulation, establishes Lipschitz continuity for the Skorohod problem
that arises from a generalized processor sharing model
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Dupuis and Ishii (1993) is very general, but still leaves out:

situations where the directions of reflection are very oblique, but
“compensating”:

n1
g1

n2
g2

|angle(g1, n1)| = |angle(g2, n2)| =constant ≥ π
4

piecewise smooth cones

domains with cusps
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Weak existence and uniqueness in distribution

Varadhan and Williams (1984): for Brownian motion in a wedge, with
oblique, constant directions of reflection, characterized as the solution of
a submartingale problem; Williams (1985) gives a necessary and
sufficient condition for the solution to be a semimartingale

Kwon and Williams (1991): for Brownian motion in a smooth cone in
Rd, with radially constant direction of reflection, characterized as a
solution of a submartingale problem; C. and Kurtz (2024a) give a
sufficient condition for the solution to be a semimartingale.

Dai and Williams (1995): for Brownian motion in a convex polyhedron
in Rd, with constant direction of reflection on each face, under a
generalization of the completely-S condition used in Taylor and
Williams (1993) for an orthant. This condition allows to deal with very
oblique but “compensating” directions of reflection. Moreover, it is
necessary for existence.
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Question:

In a non polyhedral domain, can one obtain weak existence and uniqueness
under some ”generalized completely-S condition”?

Yes for a d-dimensional domain with only one singular point
(C.-Kurtz 2024a)

Yes for a 2-dimensional, piecewise C1,1 domain (C.-Kurtz 2024b),
allowing cusps (C.-Kurtz 2018)

Yes for a piecewise smooth cone, under some assumptions (C. 2024)

Key tools:

constrained martingale problems for existence

a new reverse ergodic theorem for inhomogeneous killed Markov chains
for uniqueness
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Piecewise smooth domains in R2

D bounded, connected, open set in R2

Define
N(x) :=

{
n : lim inf

y∈D, y→x

(y− x)

|y− x|
· n ≥ 0

}
. x ∈ ∂D

Assume D admits the following representation:

D =

m⋂

i=1

Di, ∂Di ∈ C1,1,

and, defining
I(x) := {i : x ∈ ∂Di}, x ∈ ∂D,

|I(x)| ≤ 2 and the set of ”corners” {x ∈ ∂D : |I(x)| = 2} is finite.

gi(x) direction of reflection at x ∈ ∂Di, inf
x∈∂Di

gi(x) · ni(x) > 0.

G(x) the closed, convex cone generated by {gi(x), i ∈ I(x)}
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Cone points and cusp points

D

gj

gi
ni

nj
x

N(x) D

ni = nj

gj

gi

x

N(x) does not contain any full straight line: cone case.

x

ni

nj

N(x)
gj

gi

N(x) contains a full straight line: cusp case.
In the cusp case we assume that the contact that ∂Di and ∂Dj have between
themselves is of order not higher than each of them has with their common tangent.
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Uniqueness for SDER in a piecewise smooth domain in R2

gi, b, σ Lischitz continuous, σ(x) nonsingular at every corner x ∈ ∂D

Theorem (C. - Kurtz 2024b)
Assume for every x ∈ ∂D, there exists e ∈ N(x) such that

e · g > 0, ∀g ∈ G(x)− {0}.

Then, for every initial condition X0 ∈ D, the solution of SDER is unique in
distribution.

Remark
In the case of obliquely reflecting BM in a convex polygon with constant
directions of reflection, our condition coincides with that of Dai and Williams
(1995) which is necessary for existence: in this sense it is optimal.

Remark
In the case of obliquely reflecting BM in a cusp with directions of reflection as
in De Blassie and Toby (1993a, 1993b), our condition coincides with theirs.
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Piecewise smooth domains in R2: examples

n1
g1

n2
g2

g3

g2

g3

g1

g1 g2
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Piecewise smooth domains in R2: reductions

by the localization results of C. - Kurtz (2024b), we can reduce to
consider a domain that is smooth except at one point (taken to be 0);
then the proof follows the approach of Kwon and Williams (1991)

by C. - Kurtz (2019), there exist strong Markov solutions and it is
enough to prove uniqueness among them

by Dupuis and Ishii (1993), starting at x 6= 0 the distribution of any
solution is the same up to the first time 0 is hit =⇒ consider only
solutions starting at 0

for any solution X

E
[ ∫ ∞

0
I{0}(X(t)) dt

]
= 0,

(the assumption on the vector e enters here implicitely).
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Uniqueness follows from uniqueness of the exit distribution

for every bounded neighborhood Uδ of 0,

τX
δ := inf{t ≥ 0 : X(t) ∈ ∂Uδ},

the assumption on the vector e ensures that, for any solution X,

E[τX
δ ] <∞.

for two strong Markov solutions starting at 0, X and X̃, if, for some
family

{
Uδ

}
of neighborhoods of 0, shrinking to

{
0
}

as δ → 0,

L
(
X(τδ)

)
= L

(
X̃(τ̃δ)

)
∀δ (τδ := τX

δ , τ̃δ := τ X̃
δ )

then
L
(
X
)

= L
(
X̃
)
.
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Uniqueness of the exit distribution: intuition

E0 := ∂Uδ, τk := inf{t ≥ 0 : X(t) ∈ Ek}, τn < τn−1 < . . . < τ0 = τδ
consider the Markov chain

ξ0 := X(τn), ξ1 := X(τn−1), . . . , ξn := X(τ0) = X(τδ)

killed if X reaches the origin before the next layer
for any two solutions X and X̃, the two killed Markov chains

{
ξh
}

and{
ξ̃h
}

have the same transition kernels, the difference between them is
only in their initial distributions on En

if the family of the transition kernels is “ergodic”, then as n→∞ the
initial distributions will be “forgotten” and

L
(
X(τδ)

)
= lim

n→∞
L
(
ξn
)

= lim
n→∞

L
(
ξ̃n
)

= L
(
X̃(τ̃δ)

)

Costantini Reflecting diffusions in curved nonsmooth domains ICERM 2024 18 / 37



A reverse ergodic theorem for inhomogeneous killed MCs

X, X̃ two strong Markov solutions starting at 0,

Qk(x,C) := P
(
τ x

k−1 < ϑx, Xx(τ x
k−1) ∈ C

)
= P

(
τ̃ x

k−1 < ϑ̃x, X̃x(τ̃ x
k−1) ∈ C

)
,

x ∈ Ek, C ⊆ Ek−1, Xx, X̃x starting at x,

ϑx := inf{t ≥ 0 : Xx(t) = 0}, ϑ̃x := inf{t ≥ 0 : X̃x(t) = 0}
One can prove

E
[
f (X(τδ))

]
= E

[
f (ξn)

]
=

∫
En

(
Qn · · ·Q1f

)
(x)µn(dx)∫

En

(
Qn · · ·Q11

)
(x)µn(dx)

, µn(C) = P(X(τn) ∈ C)

E
[
f (X̃(τ̃δ))

]
= E

[
f (ξ̃n)

]
=

∫
En

(
Qn · · ·Q1f

)
(x)µ̃n(dx)∫

En

(
Qn · · ·Q11

)
(x)µ̃n(dx)

, µ̃n(C) = P(X̃(τ̃n) ∈ C)

Goal:

lim
n→∞

∫
En

(
Qn · · ·Q1f

)
(x) µn(dx)∫

En

(
Qn · · ·Q11

)
(x) µn(dx)

is independent of {µn}
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A reverse ergodic theorem for inhomogeneous killed MCs

Theorem (C. - Kurtz 2024a)
E0, . . .En, . . . a sequence of compact metric spaces, Qk a subprobability
transition kernel from Ek to Ek−1

fk,̃x(x, ·) the Radon-Nykodim derivative of Qk(x, ·) w.r.t.
(
Qk(x, ·) + Qk(x̃, ·)

)

εk(x, x̃) :=

∫ (
fk,̃x(x, y) ∧ fk,x(x̃, y)

)(
Qk(x, dy) + Qk(x̃, dy)

)
, x, x̃ ∈ Ek.

Assume Qk is not identically zero and there exist c0 > 0 and ε0 > 0 such that

(i) infx,̃x∈Ek εk(x, x̃) ≥ ε0, ∀k,

(ii) infx, x̃∈En

(
Qn · · ·Q1

)
(x,E0)/

(
Qn · · ·Q1

)
(x̃,E0) ≥ c0, ∀n.

Then infx∈En Qn · · ·Q11(x) > 0 and, for every f ∈ C(E0), {µn}, µn ∈ P(En),
the limit

lim
n→∞

∫
Qn · · ·Q1f (x)µn(dx)∫
Qn · · ·Q11(x)µn(dx)

exists and is independent of {µn}.
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Ergodic theorem: interpretation of the assumptions

(i) is a condition on the one-step transition kernel Qk. For x, x̃ ∈ Ek,

εk(x, x̃) ≥ Qk(x,Ek−1) ∨ Qk(x̃,Ek−1)− ‖Qk(x, ·)− Qk(x̃, ·)‖TV ,

hence the condition is satisfied if

‖Qk(x, ·)−Qk(x̃, ·)‖TV ≤ Qk(x,Ek−1)∨Qk(x̃,Ek−1)−ε0, ∀x, x̃ ∈ Ek, ∀k.

We obtain this inequality by a scaling result and a coupling lemma (C. -
Kurtz 2018)
(ii) is a condition on the n-step transition kernel Qn · · ·Q1. In our case

inf
x, x̃∈En

(
Qn · · ·Q1

)
(x,E0)(

Qn · · ·Q1
)
(x̃,E0)

= inf
x, x̃∈En

P
(
τ x
δ < ϑx

)

P
(
τ x̃
δ < ϑx̃

) ≥ c0, ∀n.

Note that, when 0 can be reached,

P
(
τ x
δ < ϑx)→n→∞ 0, ∀x ∈ En.
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One-step transition kernel: scaling for the cone case

Uδ := {x ∈ D : |x| < δ}, Ek := {x ∈ D : |x| = ρkδ}, 0 < ρ < 1.

Let xk ∈ Ek be s.t. ρ−kxk →k→∞ x. Then

ρ−kXxk
(ρ2k·) L→k→∞ Xx

,

where X is the Reflecting Brownian Motion in the ”tangent cone”

K := {x ∈ R2 : x · n1(0) > 0, x · n2(0) > 0},
with directions of reflection g1(0), g2(0) and coefficients b = 0, σ = σ(0).
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One-step transition kernel: scaling for the cusp case

Same argument as in the cone case, but different choice of Uδ and {Ek}:

Uδ := {x ∈ D : x1 < δ}, E0 := {x ∈ D : x1 = δ}
Ek := {x ∈ D : x1 = δk}

ψ2

ψ1

0
δδk−1δk

qk

E0

Ek−1

qkEk

δ1 := δ − q1, q1 := ψ2(δ)− ψ1(δ),

δk := δk−1 − qk, qk := ψ2(δk−1)− ψ1(δk−1).

.
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One-step transition kernel: scaling for the cusp case

Let xk ∈ Ek be s.t. q−1
k xk

2 →k→∞ x2 (q−1
k xk

1 = q−1
k δk →k→∞ ∞). Then

q−1
k

(
Xxk

1 (q2
k ·)− δk,Xxk

2 (q2
k ·)
) L→k→∞ Xx

,

where X is the Reflecting Brownian Motion in the infinite strip

{x ∈ R2 : L < x2 < L + 1}, L := lim
x1→0+

ψ1(x1)

ψ2(x1)− ψ1(x1)
,

with directions of reflection g1(0), g2(0) and coefficients b = 0, σ = σ(0).
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n-step transition kernel: Lyapunov functions

Af (x) := ∇f (x) · b(x) +
1
2

tr
(
σ(x)σ(x)TD2f (x)

)

inf
x, x̃∈En

P
(
τ x
δ < ϑx

)

P
(
τ x̃
δ < ϑx̃

) ≥ c0, ∀n,

if infx∈Uδ−{0} P
(
τ x
δ < ϑx

)
< 1. In this case, if v is a solution of

Av(x) = 0, x ∈ D ∩ Uδ,
∇v(x) · gi(x) = 0, x ∈ ∂Di ∩ Uδ − {0},

continuous on D ∩ Uδ and such that v(0) = 0, v(x) = 1 for x ∈ ∂Uδ, then
P
(
τ x
δ < ϑx) = v(x).

Key observation: we only need to bound P
(
τ x
δ < ϑx

)
from above and from

below, hence it is sufficient to find V− and V+ such that

AV−(x) ≤ 0, AV+(x) ≥ 0, x ∈ D ∩ Uδ,
∇V−(x) · gi(x) ≤ 0, ∇V+(x) · gi(x) ≥ 0, x ∈ ∂Di ∩ Uδ − {0}.

This is always possible for a domain with one singular point under our
assumptions (in arbitrary dimension).
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Piecewise smooth cones in Rd

D =

m⋂

i=1

Di, Di := {x = rz, z ∈ S i, r > 0},

S i a domain in the unit sphere Sd−1, ∂S i ∈ C2,

ni(x) = ni(z) = nS
i
(z), z := x/|x| ∈ ∂S i.

Defining
I(x) := {i : x ∈ ∂Di},

assume the vectors {ni(x)}i∈I(x) are linearly independent, x ∈ ∂D− {0}.
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Lyapunov functions assumption

For some δ > 0, either of the following is satisfied:
(i) there exists a function V ∈ C2(D− {0}) such that

AV(x) ≤ 0, x ∈ D− {0}, |x| < δ,

∇V(x) · g ≤ 0, g ∈ G(x), x ∈ ∂D− {0}, |x| < δ,

lim
x∈D, x→0

V(x) =∞;

(ii) there exist two functions V+,V− ∈ C2(D− {0}) such that

AV−(x) ≤ 0, AV+(x) ≥ 0, x ∈ D− {0}, |x| < δ,
∇V−(x) · g ≤ 0, ∇V+(x) · g ≥ 0, g ∈ G(x), x ∈ ∂D− {0}, |x| < δ,

V+(x) > 0, V−(x) > 0, for x ∈ D− {0}, |x| < δ,

lim
x∈D, x→0

V+(x) = lim
x∈D, x→0

V−(x) = 0,

inf
0<r≤δ

inf |x|=r V+(x)

sup|x|=r V−(x)
> 0, inf

0<r≤δ

inf |x|=r V−(x)

sup|x|=r V+(x)
> 0.
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Uniqueness for ORBM in a piecewise smooth cone in Rd

gi radially constant: gi(x) = gi(z), z := x/|x| ∈ ∂S i

gi Lipschitz continuous, inf
x∈∂Di

gi(x) · ni(x) > 0,

b, σ constant, σ nonsingular

Theorem (C. 2024)
Suppose the Lyapunov functions assumption is verified and

a) for x ∈ ∂D− {0}, the Dupuis and Ishii (1993) condition is satisfied

b) there exists e ∈ N(0) such that

e · g > 0, ∀g ∈ G(0)− {0}.

Then, for every initial condition X0 ∈ D, the solution of SDER is unique in
distribution.
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An example from bandwidth sharing networks

ν4 µ4C1

ν1

µ1

C2

ν2

µ2

C3

ν3

µ3

A :=



1 0 0 1
0 1 0 1
0 0 1 1


 C :=



C1
C2
C3




Poisson arrivals (νr
i ), documents with i.i.d. exponential lengths (µr

i ),

Λi(n1, n2, n3, n4) fraction of the capacity of each resource allocated to route i

Λi(·) is determined by solving an optimization problem
α the exponent in the reward function of the optimization problem

heavy traffic:

νr →




1
1
1
1


 , µ

r →




1
1
1
µ


 , ρr

i := νr
i /µ

r
i ,

r
(
Aρr − C

)
→ b, as r →∞.
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An example from bandwidth sharing networks

Kang, Kelly, Lee and Williams (2009) prove the state space collapse and
conjecture that the diffusion approximation of the rescaled workload process
is an obliquely reflecting Brownian motion in a piecewise smooth coneD:

∂1D = green face, ∂2D = blue face, ∂3D = red face

D depends on α and µ

g1 :=




1
0
0


 on ∂1D, g2 :=




0
1
0


 on ∂2D, g3 :=




0
0
1


 on ∂3D.
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An example from bandwidth sharing networks

σ := 2




(
1 + 1

µ2

)
1 1

1
(
1 + 1

µ2

)
1

1 1
(
µ2 + 1

)


 .

For µ >
√

3(1 +
√

2) the Lyapunov functions assumption (i) is satisfied by
V(x) := − ln(|x|).

Theorem (C. 2024)

If α ≥ 2 and µ >
√

3(1 +
√

2), the obliquely reflecting Brownian motion in
D with b, σ and gi, i = 1, 2, 3 as above is uniquely determined in distribution.

Starting at 0, it immediately leaves 0, with probability one.

Starting at x 6= 0, it never reaches 0, with probability one.
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Thank you for your attention!
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Existence for piecewise smooth domains in Rd

D bounded, connected, open set in Rd

Assume D admits a representation D =
⋂m

i=1 Di, ∂Di ∈ C1. such that

N(x) = {
∑

i∈I(x)

ηini(x), ηi ≥ 0}, ∀x ∈ ∂D.

For y ∈ Dc let
I(y) := {i : y /∈ Di},

For every x ∈ ∂D there is δ(x) > 0 such that I(y) ⊆ I(x) for y ∈ Bδ(x)(x).

For x ∈ ∂D, define the following family of subsets of I(x)

I(x) :=
{

I ⊆ I(x) : I = I(y) for some y ∈ Dc ∩ Bδ(x)(x)
}
,

and the subcones

NI(x) := {
∑

i∈I

ηini(x), ηi ≥ 0}, GI(x) := {
∑

i∈I

ηigi(x), ηi ≥ 0}, I ∈ I(x).

Costantini Reflecting diffusions in curved nonsmooth domains ICERM 2024 34 / 37



Existence for piecewise smooth domains in Rd

Theorem (C. - Kurtz 2019)
b, σ, gi continuous, infx∈∂Di gi(x) · ni(x) > 0

a) for every x ∈ ∂D, there exists e ∈ N(x) such that

e · g > 0, ∀g ∈ G(x)− {0}

b) for every x ∈ ∂D, for every I ∈ I(x), NI(x) does not contain any full
straight line and for every n ∈ NI(x)− {0} there is v ∈ GI(x) such that

n · v > 0

Then, for every initial condition X0 ∈ D, there exists a strong Markov solution
of SDER.
If uniqueness in distribution holds among strong Markov solutions of SDER
then it holds among all solutions.

Remark
In the case of a simple, convex polyhedron, our conditions are equivalent to those of
Dai and Williams (1995)
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Existence for piecewise smooth domains in Rd

Keypoints of proof

X is a solution of SDER if and only if X is a natural solution of the
corresponding constrained martingale problem (introduced by Kurtz
(1987) and (1989))

One can construct a natural solution of the constrained martingale
problem by a limiting procedure without proving oscillation estimates.

One can formulate constrained martingale problems for all sorts of boundary
behaviour (Wentzell boundary conditions, jumps from the boundary, etc.)
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Constrained martingale problem

Af (x) := ∇f (x) · b(x) +
1
2

tr
(
σ(x)σT(x)D2f (x)

)

Ξ := {(x, u) ∈ ∂D× Rd : u ∈ G(x), |u| = 1}, Bf (x, u) := ∇f (x) · u

Constrained martingale problem (Kurtz 1987, 1989. C.- Kurtz 2019)
X is a solution of the constrained martingale problem for (A,D,B,Ξ) if there
exists a random measure Λ on [0,∞)× Ξ and a filtration {Ft} such that

f (X(t))− f (X(0))−
∫ t

0
Af (X(s))ds−

∫

[0,t]×Ξ
Bf (x, u)Λ(ds× dx× du)

is a {Ft}-local martingale. X is a natural solution if

X(t) = Y(λ−1
0 (t)), Λ([0, t]×C) =

∫

[0,λ−1
0 (t)]×{u: |u|=1}

1C(Y(s), u)Λ1(ds×du),

where (Y, λ0,Λ1) is a solution of the controlled martingale problem for
(A,D,B,Ξ) ( a slowed down martingale problem).
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