
IN SEARCH OF MARKOV SOLUTIONS

VIVEK S. BORKAR

IIT BOMBAY

WORKSHOP IN HONOUR OF PAUL DUPUIS,

ICERM, PROVIDENCE, RI

September 15, 2024



Two part talk:

1. Mimicking one dimensional marginals by

Markov processes

Athreya, S., Borkar, V. S. and Gadhiwala, N., 2023.

‘Controlled martingale problems and their Markov mim-

ics’, SIAM Journal of Control and Optimization, to ap-

pear,

and its many precursors (shall mostly talk about the

latter).



2. A selection procedure for a Markov

solution for degenerate diffusions

1. Borkar, V. S. and Suresh Kumar, K., 2010. ‘A new

Markov selection procedure for degenerate diffusions’,

Journal of Theoretical Probability, 23, 729-747.

2. Anugu, S. R. and Borkar, V. S., 2023. ‘A Selection

Procedure for Extracting the Unique Feller Weak So-

lution of Degenerate Diffusions’, Applied Mathemat-

ics and Optimization, 87(3), online.



I. Mimicking one dimensional marginals

by Markov processes



Consider an Ito process in Rd given by

dZ(t) = ξ(t)dt+ ψ(t)dW (t) (1)

where W (·) is a standard brownian motion and ξ(·), ψ(·)

are square-integrable processes that are non-anticipative

with respect to W (·),

i.e., for all t > s, W (t)−W (s) is independent of

σ(W (y), ξ(y), ψ(y), y ≤ s) for all s ≥ 0.



Consider another process in Rd given by

dX(t) = m(X(t))dt+ σ(X(t))dW (t).

X(·) is a Markov control mimic (C-mimic for short) of

Z(·) if the one dimensional marginals of X(·), Z(·) agree

in law (i.e., the law of X(t)= the law of Z(t) ∀t).

It is a Markov mimic (M-mimic for short) of Z(·) if the

above holds and in addition, X(·) is a Markov process.



Under suitable conditions, (Gÿongy, ’86) showed the

existence of a C-mimic assuming non-degeneracy for

ψ, i.e.,

∃λ > 0 such that xTψψTx ≥ λ∥x∥2 ∀x ∈ Rd.

Around the same time, motivated by control problems,

for ξ(t) = m(X(t), u(t)) and ψ(t) = σ(x(t)), (B., ’86)

showed the existence of an M-mimic when σ(·) above is

Lipschitz and non-degenerate.



Subsequent works by (Brunick and Shreve ’13),

(Mikami, ’95), etc.

Extended to controlled martingale problems as a

consequence of a result about stationary distributions

in (Bhatt and B., ’96).

A more direct proof closer to that of (B., ’86) appears

in (Athreya, B. and Gadhiwala, 2023).



A different take from (B., ’91) is to consider equiva-

lence classes under the equivalence relation (X(·), u(·)) ≡

(X ′(·), u′(·)) when their marginals match a.s. For fixed

initial law, they form a convex compact set.

Then the extremal equivalence classes are singletons con-

taining a Markov process.

The proof uses the idea of ‘markovianization at a time

point t’.



This means replacing the original X(·) by an X ′(·) by

setting the laws of X(t), X ′(t) identical and rendering

X ′(t+ ·), X ′(t − ·) conditionally independent given X ′(t)

with the same conditional laws as for X(t±·) given X(t).

This retains the marginals.

(Bhatt and B., ’96) extends this to controlled martingale

problems.



A special situation that has drawn considerable interest,

motivated by optimal transport, is as follows.

Assume that the processes under consideration have laws

absolutely continuous with a base measure Q on the

path space under which the process is Markov, with the

Radon-Nikodym derivative(s) denoted by Λ.

Suppose also that the set of laws under consideration is

closed under markovianization at any time point t.



Then if the relative entropy EQ[Λ logΛ] attains its mini-

mum, the minimum is unique and corresponds to a Markov

process. Sufficient condition for attaining the minimum

can be given in terms uniform integrability of Λ logΛ.

(Athreya, B., Gadhiwala, ’23)

This improves upon prior results in (Baradat and Léonard,

’20). Related work in (Chen, Georgiou and Pavon, ’21,’22),

(Mikami, ’21).

(Athreya, B., Gadhiwala, ’23) also shows that under the

absolute continuity condition above, every marginal class

has a Markov representative.



II. A selection procedure for a Markov

solution for degenerate diffusions

A ‘half-open’ problem?



The martingale problem (Stroock and Varadhan):

Given a probability measure µ on Rd, X(·) solves the

martingale problem for (L, µ) if X(0) has law µ and for

f ∈ C2
b (R

d),

f(X(t))−
∫ t
0
Lf(X(s))ds, t ≥ 0,

is a martingale w.r.t. {Ft}, Ft := the completion of

∩t′>tσ(X(s), s ≤ t).

It is the unique solution to this martingale problem if two

such solutions agree in law.



Martingale problem for L (now called the ‘extended gen-

erator’) is well-posed if the martingale problem for (L, δx)
is ∀x ∈ Rd. The corresponding unique measures then

satisfy the Chapman-Kolmogorov equations to yield a

Markov process.

True, e.g., if σ is non-degenerate and Lipschitz and m

bounded measurable, or if both m,σ are Lipschitz.

m,σ continuous =⇒ existence of a solution is guaranteed,

but no uniqueness.

However, a characterization of ‘all solutions’ is possible

(Chapter 12, Stroock & Varadhan).



The solution set Ax (resp., Aν) for a given initial condi-

tion x (resp., law ν) is nonempty convex and compact.

The problem of Markov selection:

Given Ax, x ∈ Rd, find P ∗
x ∈ Ax, x ∈ Rd, such that

{P ∗
x , x ∈ Rd} is a Markov family,

i.e., the Chapman-Kolmogorov equation holds.



Krylov selection procedure:

Let {ri} ⊂ (0,∞) be an enumeration of positive rationals

and {fi} ⊂ Cb(Rd) a countable separating class, i.e.,

∫
fidµ =

∫
fidµ

′ ∀i =⇒ µ = µ′.

Let

Gij(Γ) = E
[∫ ∞
0

e−ritfj(X(t))dt
]

=
∫ (∫ ∞

0
e−ritfj(x(t))dt

)
dΓ(x(·)),

where Γ = the law of X(·).



Let Fi(·), i ≥ 0, be an enumeration of {Gij(·)}. Let

A0(x) = Ax and for m ≥ 0, define

Am+1(x) = Argmin{Γ∈Am(x)}Fm(Γ).

Then {Am(x)} is a nested decreasing sequence of com-

pact convex nonempty subsets of A(x).

Fact: For a stopping time τ w.r.t. the natural σ-fields of

X(·), the law of X(·) ∈ Am(x) =⇒ the law of X(τ+ · ) ∈

Am(X(τ)) a.s. on {τ <∞}.

This follows by a ‘dynamic programming’ like argument.



By finite intersection property of compact sets,

A∞(x) := ∩m≥0Am(x) is nonempty.

By our choice of {Fi}, it is a singleton {P ∗
x} and by the

above observation, {P ∗
x} form a (strong) Markov process.

For the general case of ‘martingale problems’, see Ethier

and Kurtz.

Problems with this construction: Not unique, it can

depend on the choice of Fi’s, ri’s and the order of mini-

mization.

Is a ‘principled’ alternative possible?



Yes, based on the Kolmogorov philosophy∗ of selecting

a ‘physical solution(s)’ of an ill-posed problem by adding

non-degenerate noise to ‘regularize’ it and then let noise

tend to zero to get a limit solution(s).

Examples: stochastically stable equilibria in evolutionary

games, viscosity solutions in control, ‘hysteresis’ in elec-

tric circuits

This is the approach I shall outline next.

∗as reported by Eckmann and Ruelle



Assume bounded continuous m(·), σ(·).

Preliminaries:

Consider the backward equation with σ(·) degenerate:

(†)
∂u

∂t
+ Lu = 0, t ∈ [0, T ]; u(x, T ) = f(x).

Classical solution may not exist, but a viscosity solution

does ‘under suitable conditions’.



Consider a non-degenerate bounded continuous approxi-

mation σϵ(·), ϵ > 0, to σ(·) such that it converges to σ(·)
uniformly on compacts (e.g., σϵ(·) =

√
σ(·)σT(·) + ϵI ).

Let Lϵ denote the corresponding extended generator and

uϵf(·, ·) a solution to

∂uϵf

∂t
+ Lϵuϵf = 0, t ∈ [0, T ]; uϵf(x, T ) = f(x),

the corresponding backward equation.

This has a unique classical solution in C
2,1
b (Rd × [0, T ])

which is also its unique viscosity solution. Furthermore,

uϵf(x, t) = E[f(Xϵ(T ))|Xϵ(t) = x] ∀t ∈ [0, T ].



As ϵ ↓ 0, it converges to the unique viscosity solution

uf(·, ·) of (†) uniformly on compacts. (The comparison

principle plays a key role in this.)

Let Xϵ(·) be the process corresponding to Lϵ with a fixed

initial law, and X(·) one of its subsequential limits as

ϵ ↓ ∞.

(VB-KSK) shows that there exists a Feller solution with

the same one dimensional marginals as X(·), in particular

all subsequential limits have common one dimensional

marginals.



The latter follows from the convergence of uϵf(·, ·) to the

unique viscosity solution uf(·, ·) of (†), the degenerate

backward equation for f ∈ a countable convergence

determining class.

The Feller process comes from a diagonal argument to

claim simultaneous convergence of uϵf defined over f as

above on [s, t], t > s rational in [0, T ], f ∈ a countable

convergence determining class.

Using Riesz theorem, we identify uf(x, t) as
∫
p(dy|x, t)f(y).



These transition kernels satisfy the Chapman-Kolmogorov

equation because those for uϵf do, and the C-K equation

is preserved under the limiting operation.

This implies Markov property. Since uf(·, ·), hence p(dy|·, ·)

is continuous, the process is Feller.

(ASR-VB) improves this to the claim that the Feller

solution is in fact the unique limit in law.

This follows from the convergence of arbitrary finite

dimensional marginals, proved using uniform convergence

of uϵf to u.



Additional contribution of (ASR-VB): The theory of exis-

tence and uniqueness of viscosity solutions in this context

is not off-the-shelf, but is established in (ASR-VB) for

the backward Kolmogorov equation using some very

recent developments and under significantly more general

conditions than in (VB-KSK).

The key hypotheses involve certain Hölder continuity

conditions on the coefficients.



The anti-climax: Conditions on m(·), σ(·):

There exist α, β > 0 satisfying 1 + α− 2β > 0 and β > 1
2,

such that

∥m(x)−m(y)∥ ≤ C1∥x− y∥α, ∥σ(x)− σ(x)∥ ≤ ∥x− y∥β

and, at points x where either of them is not Lipschitz,

they both vanish and satisfy: for some ϵ > 0,

c∥x− y∥2β∥v∥2 ≤ vTσ(y)σT(y)v ≤ c−1∥x− y∥2β∥v∥2,

for all y in the open ϵ-ball centred at x where m(·), σ(·)
are Lipschitz. (Examples in the aticle.)



Future directions:

Relaxing the conditions on coefficients

Extensions to ‘controlled’ diffusions

A purely probabilistic proof?
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