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Introduction

First meeting with Paul: Summer School 2016

Second meeting with Paul: Fall 2016

Large deviation principles (LDP) of component sizes of configuration models
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Introduction

Discrete-time Markov chain with:

Infinite dimensional dynamics.

Vanishing jump rates (near the boundary).

Discontinuous statistics (at the boundary).

LDP (local) rate functions usually have poor regularity behavior (unbounded / non-Lipschitz)
— mollification might work.

Formulate as a continuous-time problem:
— apply weak convergence and stochastic control approach (Dupuis-Ellis ’97, Budhiraja-Dupuis ’19)

Tightness for upper bound.

Uniqueness of ODEs for lower bound.

Related calculus of variations problems

Optimal paths are not fully explicit / tractable.
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Introduction

Three subtle features of the dynamics:

Infinite dimensional dynamics.

Vanishing jump rates.

Discontinuous statistics.

Some / all of these arise in a few LDP problems:

Configuration models
(Bhamidi, Budhiraja, Dupuis, W. ’22)

M/M/1 queue with Markovian abandonment
(Atar, Budhiraja, Dupuis, W. ’21)

Join the shortest queue
(Budhiraja, Friedlander, W. ’21)

Join the shortest queue(d) / power-of-d /
supermarket model
(Wang, W. ’24+)

Rami Atar Shankar Bhamidi Amarjit Budhiraja

Paul Dupuis Eric Friedlander Zhenhua Wang
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Overview

1 M/M/1 queue with Markovian abandonment

2 Join the shortest queue

3 Join the shortest queue(d)
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Model

M/M/1 queue with abandonment:

Single server queue

Jobs/Customers arrival rate nλ

First-come-first-serve with service rate nµ

Each arriving job comes with a “patience” random variable, i.i.d. exponential with mean θ−1

The job abandons the queue at the time its patience expires — at rate θ

Inter-arrival times, service times, patience times are mutually independent

Goal 1: LDP of (scaled) queue length process and total abandonment process as n → ∞ and t → ∞.

Goal 2: Asymptotic probability of large abandonment numbers. (assuming overloaded system λ ≥ µ)

(LDP for M/M/n queue with abandonment can also be obtained, with minor adjustments)

(LDP estimate for G/G/n queue can be obtained)
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LLN

Qn(t) = queue length at time t. V n(t) = total abandonment by time t. Consider scaled processes

X n(t) =
Qn(t)

n
, Y n(t) =

V n(t)

n
, t ∈ [0,T ].

Assume (X n(0),Y n(0)) = (xn, 0) → (x0, 0) as n → ∞.

Law of Large Numbers (LLN):

As n → ∞, (X n,Y n) → (x , y) in D([0,T ] : R2
+) in probability:

x(t) = x0 + (λ− µ)t − θ

∫ t

0

x(s)ds, y(t) = θ

∫ t

0

x(s)ds, t ∈ [0,T ].

The equilibrium point is x̄ = (λ− µ)/θ.

As T → ∞, y(T ) ∼ θx̄T = (λ− µ)T .

Total abandonment rate is λ− µ, independent of θ.
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State dynamics

Qn(t) = queue length at time t. V n(t) = total abandonment by time t,

X n(t) =
Qn(t)

n
, Y n(t) =

V n(t)

n
, t ∈ [0,T ].

Given that X n(t−) = x ,Y n(t−) = y , possible transitions:

arrival: (x , y) → (x + 1
n , y) at rate nλ

departure: (x , y) → (x − 1
n , y) at rate nµ1{x>0} — discontinuous statistics

abandonment: (x , y) → (x − 1
n , y + 1

n ) at rate θnx — vanishing rates
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State dynamics

Let N1,N2,N3 be three mutually independent Poisson Random Measures on [0,T ]× R+, [0,T ]× R+

and [0,T ]× R2
+ respectively with intensities λ dsdy , µ dsdy and θ dsdydz , respectively.

X n(t) = xn +
1

n

∫
[0,t]×R+

1[0,n](y)N1(ds dy)

− 1

n

∫
[0,t]×R+

1[0,n](y)1{X n(s−)̸=0}N2(ds dy)

− 1

n

∫
[0,t]×R+×R+

1[0,n](y)1[0,X n(s−)](z)N3(ds dy dz).

Y n(t) =
1

n

∫
[0,t]×R+×R+

1[0,n](y)1[0,X n(s−)](z)N3(ds dy dz).
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State dynamics

One can rewrite the evolution of (X n,Y n) using the one-dimensional Skorokhod map Γ as

X n(t) = Γ

(
xn +

1

n

∫
[0,·]×R+

1[0,n](y)N1(ds dy)

−1

n

∫
[0,·]×R+

1[0,n](y)N2(ds dy)

−1

n

∫
[0,·]×R+×R+

1[0,n](y)1[0,X n(s−)](z)N3(ds dz dy)

)
(t)

Y n(t) =
1

n

∫
[0,t]×R+×R+

1[0,n](y)1[0,X n(s−)](z)N3(ds dz dy).

where Γ : D([0,T ] : R) → D([0,T ] : R+) is

Γ(ψ)(t)
.
= ψ(t)− inf

0≤s≤t
[ψ(s) ∧ 0], t ∈ [0,T ], ψ ∈ D([0,T ] : R).
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LDP and rate function

Theorem (Atar-Budhiraja-Dupuis-W. ’21)

{(X n,Y n)} satisfies a LDP on D([0,T ] : R2
+) with rate function IT .

Form of the rate function IT :

For (ξ, ζ) ∈ C([0,T ] : R2
+), define

IT (ξ, ζ) = inf
φ∈U(ξ,ζ)

{
λ

∫ T

0

ℓ(φ1(s))ds + µ

∫ T

0

ℓ(φ2(s))ds + θ

∫ T

0

ξ(s)ℓ(φ3(s))ds

}
.

Here ℓ(x) := x log x − x + 1 ≥ 0 and U(ξ, ζ) is the collection of all non-negative functions
φ = (φ1, φ2, φ3) such that

ξ(t) = Γ

(
x0 + λ

∫ ·

0

φ1(s)ds − µ

∫ ·

0

φ2(s)ds − θ

∫ ·

0

φ3(s)ξ(s)ds

)
(t), ζ(t) = θ

∫ t

0

φ3(s)ξ(s)ds.

Set IT (ξ, ζ) = ∞ if U(ξ, ζ) = ∅ or (ξ, ζ) /∈ C([0,T ] : R2
+).

11 / 33



LDP and rate function

Key step in the proof of LDP lower bound:

Show that given a near optimal path (ξ∗, ζ∗) and associated near optimal control φ∗ = (φ∗
1 , φ

∗
2 , φ

∗
3)

with finite cost

λ

∫ T

0

ℓ(φ∗
1(s)) ds + µ

∫ T

0

ℓ(φ∗
2(s)) ds + θ

∫ T

0

ξ∗(s)ℓ(φ∗
3(s)) ds <∞,

the ODE

ξ(t) = Γ

(
x0 + λ

∫ ·

0

φ∗
1(s)ds − µ

∫ ·

0

φ∗
2(s)ds − θ

∫ ·

0

φ∗
3(s)ξ(s)ds

)
(t), ζ(t) = θ

∫ t

0

φ∗
3(s)ξ(s)ds

has a unique solution, which must be (ξ∗, ζ∗).

Discontinuous statistics is taken care of by the Skorokhod map Γ.

Vanishing rates cannot be treated via Gronwall + Lipschitz property, as one may not have L2 (or
even L1) bound on φ∗

3 . — It is treated via monotonicity arguments (around the boundary ξ(s) = 0).
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Rare event probability

Qn(t) = queue length at time t. V n(t) = total abandonment by time t,

X n(t) =
Qn(t)

n
, Y n(t) =

V n(t)

n
, t ∈ [0,T ].

Recall LLN: Y n(T ) ∼ (λ− µ)T for large n and T .

Question: Given γ > λ− µ, what is P(Y n(T ) ≥ γT ) for large n,T?

lim sup
T→∞

lim sup
n→∞

1

T

1

n
logP(Y n(T ) ≥ γT ) =?

lim inf
T→∞

lim inf
n→∞

1

T

1

n
logP(Y n(T ) ≥ γT ) =?

Short answer: ? = −C (γ) for some simple explicit function C (·) that depends on λ, µ, but not θ.
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Rare event probability

Since {(X n,Y n)} satisfies a LDP on D([0,T ] : R2
+) with rate function IT , contraction principle gives

lim sup
T→∞

lim sup
n→∞

1

T

1

n
logP(Y n(T ) ≥ γT ) ≤ lim sup

T→∞
− 1

T
inf{IT (ξ, ζ) : ζ(T ) ≥ γT},

lim inf
T→∞

lim inf
n→∞

1

T

1

n
logP(Y n(T ) ≥ γT ) ≥ lim inf

T→∞
− 1

T
inf{IT (ξ, ζ) : ζ(T ) > γT}.

Difficult to get simple and tractable forms for RHS infimum.

But nice asymptotics can be obtained as T → ∞.
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Calculus of variations

First consider long-time analysis of

inf{IT (ξ, ζ) : ζ(T ) = γT}, γ ≥ 0.

Write

IT (ξ, ζ) =

∫ T

0

L(ξ(s), ξ′(s), ζ(s), ζ ′(s)) ds

in terms of some non-negative convex local rate function L on R+ × R× R2
+.

Solve the Euler-Lagrange equations (Li := ∂iL)

L1 =
d

dt
L2, L3 =

d

dt
L4

with boundary conditions
ξ(0) = x0, ζ(0) = 0, ζ(T ) = γT

and transversality condition

L2|t=T = 0, (because no terminal constraint on ξ(T ))

to get a candidate minimizer (ξ̄, ζ̄).
15 / 33



Calculus of variations

Remains to prove

(ξ̄, ζ̄) is the minimizer of
inf{IT (ξ, ζ) : ζ(T ) = γT}, γ ≥ 0,

and limT→∞
1
T IT (ξ̄, ζ̄) = C (γ).

Difficulties:

(ξ̄, ζ̄) is not well defined unless x0 > 0 and T is sufficiently large.
— Otherwise ξ̄(t) < 0 for some t ∈ [0,T ].

(ξ, ξ′, ζ, ζ ′) takes values in unbounded set, and the local rate function L is not bounded.

— Involves ζ ′ log ζ′

ξ etc.

(ξ̄, ζ̄) is not given explicitly.
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Candidate minimizer

There exists a unique A ∈ (−∞, e−θT ) such that

1

1− AeθT
=

1

2λ [θT − 1 + e−θT ]

{
θ

[
γT − x0 + x0

e−θT − A

1− A

]
+

(
θ2
[
γT − x0 + x0

e−θT − A

1− A

]2

−4λ
[
θT − 1 + e−θT

]
µ

[
log

e−θT − A

1− A
− e−θT − A

1− A
+ 1

])1/2 }
.

Let B = 1/(1− AeθT ). Then

ζ̄(t) =
λB

θ

[
θt − 1 + e−θt

]
+

µ

θB

[
log

e−θt − A

1− A
− e−θt − A

1− A
+ 1

]
+

1− e−θt

1− A
x0.

Painful Careful analysis is needed.
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Long-time asymptotics

Theorem (Atar-Budhiraja-Dupuis-W. ’21)

Let C (γ) := λ
(
1− z−1

γ

)
+ µ (1− zγ)− γ log zγ , zγ :=

√
γ2 + 4λµ− γ

2µ
. For all x0 ≥ 0,

lim
T→∞

1

T
inf{IT (ξ, ζ) : ζ(T ) = γT} = C (γ), γ ≥ 0,

lim
T→∞

1

T
inf{IT (ξ, ζ) : ζ(T ) ≥ γT} = C (γ), γ ≥ λ− µ,

lim
T→∞

1

T
inf{IT (ξ, ζ) : ζ(T ) ≤ γT} = C (γ), 0 ≤ γ ≤ λ− µ.

Therefore,

lim sup
T→∞

lim sup
n→∞

1

T

1

n
logP(Y n(T ) ≥ γT ) ≤ lim sup

T→∞
− 1

T
inf{IT (ξ, ζ) : ζ(T ) ≥ γT} = −C (γ),

lim inf
T→∞

lim inf
n→∞

1

T

1

n
logP(Y n(T ) ≥ γT ) ≥ lim inf

T→∞
− 1

T
inf{IT (ξ, ζ) : ζ(T ) > γT} = −C (γ).
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1 M/M/1 queue with Markovian abandonment

2 Join the shortest queue

3 Join the shortest queue(d)
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Large-scale load-balancing queueing systems

Most basic setup:

1 dispatcher, n servers

Jobs arrive at the dispatcher at rate nλn, limn→∞ λn = λ > 0

Each job is routed by the dispatcher to some queue

Each server maintains a First-In-First-Out queue

Jobs processed at rate 1 at each server

Service times and inter-arrival times are independent exponential random variables

Check out lines at supermarkets, cloud computing ...
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Large-scale load-balancing queueing systems

Aims:

Good delay performance, such as low average waiting time

Economical in implementation, such as low communication cost among dispatcher/servers

Popular load-balancing algorithms:

Route the incoming job into the shortest queue — Join the Shortest Queue (JSQ)

Upon job’s arrival, choose d queues uniformly at random and route the incoming job into the

shortest queue among these d queues — Power-of-d (JSQ(d))

Route the incoming job into the idle queue, if any, as if implementing JSQ. Otherwise, route the

incoming job in a different way, such as JSQ(d) — Join the Idle Queue (JIQ)
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JSQ state process

X
n(t) := (X n

i (t))i≥0 denotes the occupancy measure process.

X n
i (t) = proportion of queues of length at least i

= (# servers with queue length at least i at time t)/n.

X n
0 (t) ≡ 1 ≥ X n

1 (t) ≥ X n
2 (t) ≥ · · · ≥ 0.

Assume X n
i (0) = xi , arrival rate nλn with λn → λ ∈ (0,∞).

X n
1 (t) = x1 −

1

n

∫
[0,t]×[0,1]

1[0,X n
1 (s−)−X n

2 (s−)](y)D
n
1 (ds dy) +

1

n

∫
[0,t]×[0,1]

Dnλn
0 (ds dy)− ηn1(t),

X n
i (t) = xi −

1

n

∫
[0,t]×[0,1]

1[0,X n
i (s−)−X n

i+1(s−)](y)D
n
i (ds dy) + ηni−1(t)− ηni (t), i ≥ 2,

ηni (t):=
1

n

∫
[0,t]×[0,1]

1{X n
i (s−)=1}D

nλn
0 (ds dy), i ≥ 1.

Dθ
i (ds dy): i.i.d. Poisson random measure on [0,T ]× [0, 1] with intensity measure θ dsdy .
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State process

View X
n as the solution of infinite-dimensional Skorokhod problem for Y n with respect to the region

[0, 1]∞ and the reflection matrix R∞:

X
n(t) = Y

n(t) + R∞η
n(t).

Here R∞ is given by R∞(i , i) = −1, R∞(i , i − 1) = 1.

Y n
1 (t) = x1 −

1

n

∫
[0,t]×[0,1]

1[0,X n
1 (s−)−X n

2 (s−)](y)D
n
1 (ds dy) +

1

n

∫
[0,t]×[0,1]

Dnλn
0 (ds dy),

Y n
i (t) = xi −

1

n

∫
[0,t]×[0,1]

1[0,X n
i (s−)−X n

i+1(s−)](y)D
n
i (ds dy), i ≥ 2,

ηni (t) :=
1

n

∫
[0,t]×[0,1]

1{X n
i (s−)=1}D

nλn
0 (ds dy), i ≥ 1,

with
X n
1 (t) = Y n

1 (t)− ηn1(t), X n
i (t) = Y n

i (t) + ηni−1(t)− ηni (t), i ≥ 2.
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Skorokhod problem

For each ω ∈ Ω, there are finite arrivals.

So it suffices to consider some M = M(ω) and the finite-dimensional Skorokhod problem on [0, 1]M

with matrix RM = −IM×M + PM :

X
n(t) = Y

n(t) + RMη
n(t) (first M coordinates),

X n
i (t) = Y n

i (t), i > M.

The spectral radius of PM is less than 1 ⇒

The Skorokhod problem is well-defined;

unique solution X n(t) = ΓM(Y n)(t);

ΓM : D∞ → D∞ is Lipschitz on the trajectory, D = D([0,T ] : R).
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Rate function and LDP

For (ζ,ψ) ∈ C∞ × C∞, where C := C([0,T ] : R), with ζ solving the Skorokhod problem for ψ with
respect to the region [0, 1]∞ and matrix R∞:

ζi (t) = ψi (t) + ηi−1(t)− ηi (t),

η0(t) ≡ 0, ηi (0) = 0, ηi (t) is non-decreasing,

∫ t

0

1{ζi (s)<1} ηi (ds) = 0, i ≥ 1,

let

IT (ζ,ψ) := inf
φ

{∫
[0,T ]×[0,1]

λℓ(φ0(s, y)) ds dy +
∞∑
i=1

∫
[0,T ]×[0,1]

ℓ(φi (s, y)) ds dy

}
,

where ℓ(x) := x log x − x + 1, and the infimum is taken over all φ such that

ψ1(t) = x1 −
∫
[0,t]×[0,1]

1[0,ζ1(s)−ζ2(s)](y)φ1(s, y) ds dy +

∫
[0,t]×[0,1]

φ0(s, y) ds dy ,

ψi (t) = xi −
∫
[0,t]×[0,1]

1[0,ζi (s)−ζi+1(s)](y)φi (s, y) ds dy , i ≥ 2.

Let IT (ζ,ψ) := ∞ otherwise.
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Rate function and LDP

Theorem (Budhiraja-Friedlander-W. ’21)

The sequence (X n,Y n) satisfies a LDP on D∞ ×D∞ with rate function IT .

Key step in the proof of LDP lower bound: Find a near optimal path (ζ,ψ) ∈ D ×D and a near
optimal control φ, such that,

given φ, the pair (ζ,ψ) ∈ D ×D is the unique solution to the above ODEs. (16 + 1 pages)

Both discontinuous statistics and vanishing rates are subtle here.

“Suitably smoothing out small excursions” + “introducing ε-gaps in φ”
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Calculus of variations

Suppose all queues are of length 1 at time 0 (i.e. X n
1 (0) = x1 = 1 and X n

j (0) = xj = 0 for j ≥ 2).

Consider the critical regime arrival rate λn → λ = 1 = service rate.

Consider the rare event: Fixing j ≥ 3, let

An,T
j := {There is a queue with length ≥ j at some time t ∈ [0,T ]} = {(X n,Y n) ∈ F n,T

j }.

Relate An,T
j to open and closed sets:

{(X n,Y n) ∈ Gj} = An,T
j ⊂ {(X n,Y n) ∈ Fj},

Gj := {(ζ,ψ) : sup
t∈[0,T ]

ζj(t) > 0}, Fj := {(ζ,ψ) : sup
t∈[0,T ]

ζj−1(t) = 1}.

Then

−IT (Gj) ≤ lim inf
n→∞

1

n
logP(An,T

j ) ≤ lim sup
n→∞

1

n
logP(An,T

j ) ≤ −IT (Fj).

Intuition: start from all queues of length 1 at time 0; end with all queues of length j − 1; convexity of
local rate function ℓ(·) suggests linearly having more customers in the system, at rate (j − 2)/T .
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Calculus of variations

Theorem (Budhiraja-Friedlander-W. ’21)

For every j ≥ 3,

lim
n→∞

1

n
logP(An,T

j ) = −IT (Gj) = −IT (Fj)

= −T ℓ

 j−2
T +

√
4 + ( j−2

T )2

2

− T ℓ

− j−2
T +

√
4 + ( j−2

T )2

2

 ,

lim
T→∞

lim
n→∞

T

n
logP(An,T

j ) = − (j − 2)2

4
.

As a special case, if j − 2 = T (e.g., j = 3, T = 1), then the probability depends on the golden ratio

P(An,T
j ) ≈ exp

[
−nT

(
ℓ

(
1 +

√
5

2

)
+ ℓ

(
−1 +

√
5

2

))]
, for large n.
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1 M/M/1 queue with Markovian abandonment

2 Join the shortest queue

3 Join the shortest queue(d)
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Model

Recall the difference of Joint-the-shortest-queue(d) (JSQ(d)) from JSQ:

Upon job’s arrival at the dispatcher, choose d queues uniformly at random and route the incoming job
into the shortest queue among these d queues.

X n
i (t) = proportion of queues of length at least i at time t.

X n
0 (t) ≡ 1 ≥ X n

1 (t) ≥ X n
2 (t) · · · ≥ 0.

X n
i (t) = X n

i (0) +
1

n

∫
[0,t]×[0,1]

1[0,Rn
i (X

n(s−))](y)N
nλ
i (ds dy)

− 1

n

∫
[0,t]×[0,1]

1[0,X n
i (s−)−X n

i+1(s−)](y) N̄
n
i (ds dy),

Rn
i (z) =

[(
nzi−1

d

)
−
(
nzi
d

)]/(n
d

)
, i ≥ 1.

Nnλ
i and N̄n

i are independent Poisson random measures on [0,T ]× [0, 1] with intensity nλ ds dy and
n ds dy , respectively.
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Conjectured rate function

For ψ ∈ C∞, let

I (ψ) := inf
φ

∞∑
i=1

∫
[0,T ]×[0,1]

(λℓ(φi (s, y)) + ℓ(φ̄i (s, y))) ds dy ,

where ℓ(x) := x log x − x + 1, and the infimum is taken over all φ = (φi , φ̄i )
∞
i=1 such that

ψi (t) = xi + λ

∫
[0,t]×[0,1]

1[0,Ri (ψ(s))](y)φi (s, y) ds dy

−
∫
[0,t]×[0,1]

1[0,ψi (s)−ψi+1(s)](y)φ̄i (s, y) ds dy ,

Ri (z) = zdi−1 − zdi , i ≥ 1.

Let I (ψ) := ∞ otherwise.

Conjecture: X n satisfies a LDP on D∞ with rate function I .

Main challenge: Lower bound. Nonlinear vanishing rates.
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Moderate deviation principle

The LLN limit of X n is given by the deterministic limit q as the unique solution to the set of ODEs

dqi (t)

dt
= λ[(qi−1(t))

d − (qi (t))
d ]− (qi (t)− qi+1(t)), i = 1, 2, . . .

One can analyze the moderate deviation principle (MDP) of X n from q, by analyzing the LDP of

Y
n := a(n)

√
n(X n − q).

Theorem (Wang-W. ’24+)

The sequence Y n satisfies a MDP on D([0,T ] : ℓ2) with speed a2(n) and rate function I.

Calculus of variations problems are quite challenging: non-explicit LLN q.
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Summary

Sample path LDP are established for some pure jump stochastic processes arising from queueing

systems: M/M/1+M (M/M/n+M) and Join-the-Shortest-Queue.

Three challenging features: infinite dimensional dynamics, vanishing jump rates, discontinuous

statistics.

Rare events of interest can be analyzed by solving the related calculus of variations problems

written in terms of the LDP rate functions.

Ongoing and future works on LDP and MDP of Join-the-Shortest-Queue-d (power-of-d) queueing

system.

Thank you!
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