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Mean field games and N-player games

Mean field games (MFG), as introduced by
[Huang, Malhamé, Caines, 2006] and [Lasry & Lions, 2007], arise
as limit systems for symmetric non-zero-sum non-cooperative
stochastic N-player games as the number of players N → ∞.

Passage to the limit analogous to McKean-Vlasov limit for weakly
interacting particle systems; symmetry in the sense of statistically
indistinguishable components (exchangeable joint laws).

For games, controlled systems; notion of solution at prelimit level
usually (approximate) Nash equilibrium (NE).

Rigorous connection can be established in two directions:
1 Construction of approximate N-player equilibria from MFG.
2 Convergence of N-player equilibria to MFG solutions.

Crucial: choice of admissible strategies.
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Mean field systems and N-particle systems

McKean-Vlasov limit for uncontrolled weakly interacting particle systems
corresponds to law of large numbers for associated empirical measures.

Large deviations from McKean-Vlasov limit: in Itô diffusion setting,
classical results by [Tanaka, 1984], [Dawson & Gärtner, 1987].
Based on Dupuis-Ellis weak convergence approach and
[Boué & Dupuis, 1998, Budhiraja & Dupuis, 2000], Laplace principle in
[Budhiraja, Dupuis, F., 2012] through controlled martingale problems;
connection with mean field type control.

Technique useful also for convergence to MFG limit of N-player
open-loop Nash equilibria [F., 2017, Lacker, 2016].
MFG convergence problem for closed-loop NE more difficult; for instance:
[Cardaliaguet, Delarue, Lasry, Lions, 2019], [Lacker, 2020],
[Lacker & Le Flem, 2023], [Djete, 2023].
Large deviations of closed-loop NE from MFG limit:
[Delarue, Lacker, Ramanan, 2020], [Cecchin & Pelino, 2019].

On connection with mean field type control: [Bezemek & Heldman, 2024].
LDP for mean field multi-scale systems: [Bezemek & Spiliopoulos, 2023].
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Correlated equilibria

Basis for MFGs are Nash equilibria in underlying N-player games.

Generalization of Nash equilibrium that allows for correlation between
players’ strategies without cooperation due to Robert Aumann
[Aumann, 1974, Aumann, 1987].

Aumann’s idea: introduce mediator or correlation device that randomly
selects a strategy profile according to some publicly known distribution,
then tells each player in private which strategy she should play.
A correlated equilibrium (CE) is a probability distribution on the space of
strategy profiles such that no player has an incentive to unilaterally
deviate from the mediator’s recommendation after having received it.
Prototypical example: traffic lights.

Generalization [Moulin & Vial, 1978]: Players decide whether to follow the
mediator’s recommendations before receiving them. This leads to the
notion of coarse correlated equilibrium (CCE).

Observe:
NE ⊂ CE ⊂ CCE.
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A textbook example [Roughgarden, 2016]

Four player routing game. Each player has to choose exactly one of six
edges:

O T

Cost to player i equal to number of players on edge chosen by i :
Ji(a)

.
=

∑4
j=1 1ai=aj .

Pure NE: any set of four distinct edges. Cost 1 to each player.

Mixed NE: Edges chosen uniformly and independently. Cost 3/2 to
each player.

CE (not NE): Uniform distribution over those strategy profiles that
have exactly three edges occupied. Cost 3/2 to each player.

CCE (not CE): Uniform distribution over those strategy profiles that
have exactly three edges occupied and occupied edges are either
the lower or the upper three. Cost 3/2 to each player.



(Coarse) correlated equilibria

Advantages of CE and CCE:

Possibly lower expected costs (higher efficiency).

Easier to compute [Papadimitriou & Roughgarden, 2008].

Easier to justify via learning algorithms [Hart & Mas-Colell, 2003].

Applications in economics or computer science; for instance:
[Moulin, Ray, Sen Gupta, 2014] (duopoly game),
[Roughgarden, 2016] (routing games).

Literature on (coarse) correlated equilibria mostly for discrete models, but
[Nowak, 1993], [Averboukh, 2019] for continuous time deterministic
two-player non-zero-sum differential games.

Little for MFGs: [Campi & F., 2022], [Bonesini, Campi, F., 2024],
[Muller et al., 2022, Muller et al., 2022+], [Zhao et al., 2024+], all in
discrete time with finite state space. More closely related:
[Campi, Cannerozzi, Cartelier, 2023+], [Cannerozzi & Ferrari, 2024+].
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Aim and scope

Start from a class of continuous time finite horizon N-player
differential games with stochastic dynamics driven by additive
Wiener noise.

Consider coarse correlated equilibria in stochastic open-loop
strategies.

Definition of coarse correlated solution for corresponding
mean field game; existence of solutions.

Example of a mean field game possessing explicit non-trivial
coarse correlated solutions.

Construction of approximate N-player CCE from a coarse
correlated MFG solution.
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Setting

Finite time horizon: T > 0.

Individual player control actions: A ⊂ Rl compact.

Individual player drift coefficient: b : [0,T ]× Rd × P(Rd)× A → Rd .

Individual player cost coefficients: f : [0,T ]× Rd × P(Rd)× A → R,
g : Rd × P(Rd) → R.

Initial states and idiosyncratic noise: (ξ i)i≥1 i.i.d. Rd -valued random
variables with common distribution ν, (W i)i≥1 independent
d-dimensional standard Wiener processes, all defined on the
canonical probability space (Ω1,F1,P1).

N-player filtration: F1,N is the (completed) filtration generated by
(W 1, . . . ,W N) and (ξ)N

i=1.

Admissible N-player strategy profiles: AN
N

.
= ×NAN where AN

space of all F1,N -progressively measurable A-valued processes.



Admissible recommendations

In a pre-game phase, the mediator chooses a probability distribution γ on
AN

N such that γ = P0 ◦ Λ−1 for some admissible recommendation profile
((Ω0,F0−,P0),Λ):

(Ω0,F0−,P0) is a Polish probability space;

Λ = (Λ1, . . . ,ΛN) is an AN
N -valued random variable with law

P0 ◦ Λ−1 = γ;

setting (Ω,F ,P) .
= (Ω0,F0−,P0)⊗ (Ω1,F1,P1), the AN -valued

process λ = (λ1
t , . . . , λ

N
t )t∈[0,T ] given by

λi
t(ω0, ω1)

.
= Λi

t(ω0)(ω1), i ∈ {1, . . . ,N},

is progressivly measurable w.r.t. the P-augmented filtration
F0− ⊗ F1,N = (F0− ⊗F1,N

t )t∈[0,T ].

Initial states ξ1, ξ2, . . ., Wiener processes W 1,W 2, . . ., and admissible
strategies β ∈ AN also live on (filtered) product space (Ω,F ,P).



N-player dynamics and costs

Let ((Ω0,F0−,P0),Λ) be an admissible recommendation profile.

If all players precommit to mediator’s recommendations, then costs for
player i given by

JN
i (Λ)

.
= EP

[∫ T

0
f (t ,X N,i

t , µ̄N
t , λ

i
t)dt + g(X N,i

T , µ̄N
T )

]
with µ̄N

t
.
= 1

N

∑N
j=1 δX N,j

t
subject to

dX N,j
t = b(t ,X N,j

t , µ̄N
t , λ

j
t)dt + dW j

t , X N,j
0 = ξ j , j ∈ {1, . . . ,N}.

If player i deviates using β ∈ AN while the others precommit, then

JN
i (β,Λ

−i)
.
= EP

[∫ T

0
f (t ,X N,i

t , µ̄N
t , βt)dt + g(X N,i

T , µ̄N
T )

]
with µ̄N

t
.
= 1

N

∑N
j=1 δX N,j

t
subject to

dX N,i
t = b(t ,X N,j

t , µ̄N
t , βt)dt + dW i

t , X N,i
0 = ξ i ,

dX N,j
t = b(t ,X N,j

t , µ̄N
t , λ

j
t)dt + dW j

t , X N,j
0 = ξ j , j ̸= i.
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N-player coarse correlated equilibrium

Definition 1.

Let ε ≥ 0. An admissible recommendation profile ((Ω0,F0−,P0),Λ) is
called an ε-coarse correlated equilibrium (with initial distribution ⊗Nν) if
for every i ∈ {1, . . . ,N}, every strategy β ∈ AN ,

JN
i (Λ) ≤ JN

i

(
β,Λ−i)+ ε.

When ε = 0, we say that Λ is a coarse correlated equilibrium.

Observations:

1 Deviations and recommendations in stochastic open-loop strategies.

2 When Λ = (Λ1, . . . ,ΛN) is a vector of independent r.v.s, then
Definition 1 corresponds to Nash equilibrium in mixed strategies.

3 In a non-coarse correlated equilibrium, deviating player i would
choose β in function of Λi .
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Admissible recommendations

Aim: Limit model for CCE in N-player games when N → ∞.

Let (Ω∗,F∗,F∗,P∗) be the filtered canonical space for an initial state ξ
with distribution ν and a standard d-dimensional Wiener process W . Let
A be the set of admissible strategies, i.e., F∗-progressively measurable
A-valued processes.

An admissible recommendation is a pair ((Ω0,F0−,P0),Λ) such that

(Ω0,F0−,P0) is a Polish probability space;

Λ is an A-valued random variable;

setting (Ω,F ,P) .
= (Ω0,F0−,P0)⊗ (Ω∗,F∗,P∗), the A-valued

process λ = (λt)t∈[0,T ] given by

λt(ω0, ω∗)
.
= Λt(ω0)(ω∗)

is progressivly measurable w.r.t. the P-augmented filtration
F .
= F0− ⊗ F∗ = (F0− ⊗F∗

t )t∈[0,T ].



Mean field game dynamics and costs

Let ((Ω0,F0−,P0),Λ, µ) be a correlated flow:

((Ω0,F0−,P0),Λ) is an admissible recommendation;

µ is a C([0,T ],P2(Rd))-valued random variable on ((Ω0,F0−,P0)
(random flow of measures).

If the representative player precommits to mediator’s recommendations,
then costs given by

J(Λ, µ) .
= EP

[∫ T

0
f (t ,Xt , µt , λt)dt + g(XT , µT )

]
subject to dXt = b(t ,Xt , µt , λt)dt + dWt with X0 = ξ.

If the representative player deviates using β ∈ A, then

J(β, µ) .
= EP

[∫ T

0
f (t ,Xt , µt , βt)dt + g(XT , µT )

]
subject to dXt = b(t ,Xt , µ̄t , βt)dt + dWt with X0 = ξ.
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Coarse correlated solutions

Definition 2.

A correlated flow ((Ω0,F0−,P0),Λ, µ) is called a coarse correlated
solution of the mean field game (with initial distribution ν) if the following
two conditions hold:

i Optimality: for every strategy β ∈ A,

J(Λ, µ) ≤ J(β, µ).

ii Consistency: with X state process under Λ,

µt(·) = P [Xt ∈ · | Fµ
T ] for all t ∈ [0,T ].

Observations:

1 Consistency condition implies µ(t)(·) = P [X (t) ∈ · | Fµ
t ].

2 Classical MFG solution if (Λ, µ) deterministic (Dirac distribution).

3 Flow of measures µ in general non-deterministic although no
explicit common noise.



Assumptions

A1 A ⊂ Rl compact;

A2 initial distribution ν ∈ Pp(Rd) some p > 4;

A3 b, f , g jointly measurable in all their variables;

A4 (x ,m, a) 7→ b(t , x ,m, a) Lipschitz uniformly in t ;

A5 t 7→ (b, f )(t , 0, δ0, a0) bounded for some a0 ∈ A;

A6 f , g locally Lipschitz of sub-quadratic growth in (x ,m, a) (unif. in t).

Extra-assumption for the existence of coarse correlated solutions:

B For all (t , x ,m) ∈ [0,T ]× Rd × P2(Rd),

K (t , x ,m)
.
= {(b(t , x ,m, a), z) : a ∈ A, f (t , x ,m, a) ≤ z} ⊂ Rd × R

is closed and convex.



Existence of coarse correlated solutions

Theorem 1.

Grant assumptions A1–A6 and B, then there exists a coarse correlated
solution of the mean field game.

Proof based on observation by [Hart & Schmeidler, 1989]:
Let (Λ, µ) be a coarse correlated solution. Then optimality condition:

J(Λ, µ) ≤ inf
β∈A

J(β, µ) ⇐⇒ inf
β∈A

{J(β, µ)− J(Λ, µ)} ≥ 0.

Using a minimax theorem (due to K. Fan), we check that the auxiliary
zero-sum game

sup
(Λ,µ): admissible and consistent

inf
β∈A

{J(β, µ)− J(Λ, µ)}

has a value and that infβ sup(Λ,µ) . . . ≥ 0, thus getting existence of a
coarse correlated solution.

Relaxed controls are used to compactify the spaces of strategies in the
zero-sum game. Assumption B allows to return to ordinary strategies.



Example

Similar to [Lacker, 2016], [Bardi & F., 2019]: Choose

d = 1, A .
= [a, b] with a < 0 < b, b(t , x ,m, γ) = γ,

f ≡ 0, g(x ,m) = −x ·
∫
R

y m(dy), ν = δ0.

Costs associated with an admissible recommendation (Λ, µ) thus given
by

J(Λ, µ) .
= EP

[
−XT ·

∫
R

y µT (dy)
]
,

subject to
dXt = Λtdt + dWt , X0 = 0.

There exist two classical MFG solutions (in open loop strategies):

u+
t = b, µ+

t = L(tb + Wt); u−
t = a, µ−

t = L(ta + Wt).



Example (cont.)

Now, define the following “mixtures”:

µ1 .
= w1µ

+ + (1 − w1)µ
−, µ2 .

= w2µ
+ + (1 − w2)µ

−,

with weights w1,w2 ∈ [0, 1], and set

(Λ, µ)((i, j)) =


(u+, µ1) if (i, j) = (1, 1),
(u+, µ2) if (i, j) = (1, 2),
(u−, µ1) if (i, j) = (2, 1),
(u−, µ2) if (i, j) = (2, 2),

(i, j) ∈ Ω0 .
= {1, 2}2.

For any T > 0, there exist a probability density (pi,j)i,j=1,2 and weights
w1,w2 such that (Λ, µ) is a coarse correlated solution.

Consistency condition gives

w1 =
p1,1

p1,1 + p2,1
, w2 =

p1,2

p1,2 + p2,2
.



Example (cont.): infinitely many solutions

Figure: Case [a, b] = [−1, 1], T = 2. Colored points indicate values of
(p1,1, p1,2, p2,2) such that p1,1 + p1,2 + p2,2 = 1 − p2,1 for p2,1 = 0.0 (left),
p2,1 = 0.3 (center), and p2,1 = 0.7 (right), respectively. Yellow points
correspond to coarse correlated solutions of the mean field game.
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Approximate CCE: construction

Aim: Use coarse correlated MFG solution to construct approximate CCE
in the N-player game (N large enough).

Let ((Ω0,F0−,P0), Λ̂, µ̂) be a coarse correlated MFG solution.

(a) Disintegrate the joint law of (Λ̂, µ̂) as

P0((Λ̂, µ̂) ∈ C × B) =
∫

B
κ(C,m)ρ(dm)

for some stochastic kernel κ.

(b) Define Ω̄ = (×∞
1 Ω0)× C([0,T ];P2(Rd)), F̄ the product σ-field and

P̄(A1 × · · · × AN × B) =
∫

B

N∏
i=1

K (Ai ,m)ρ(dm), N ≥ 2,

where K is the regular conditional probability of P0 given µ̂.



Approximate CCE: construction (cont.)

(c) Build random variables Λi : (Ω̄, F̄ , P̄) → A(Fξi ,W i
), i ∈ N,

µ : (Ω̄, F̄ , P̄) → C([0,T ];P2(Rd)) such that, for all N ≥ 1,

P̄(Λ1 ∈ C1, . . . ,Λ
N ∈ CN , µ ∈ B) =

∫
B

N∏
i=1

κ(Ci ,m)ρ(dm).

Thus, P̄ ◦ (Λi , µ)−1 = P0 ◦ (Λ̂, µ̂)−1 for all i = 1, . . . ,N, and Λ1, . . . ,ΛN

are conditionally i.i.d. given µ.

Theorem 2.

Assume A1–A6. Let ((Ω0,F0−,P0), Λ̂, µ̂) be a coarse correlated solution.

Then there exist admissible recommendations ((Ω0,N ,F0−,N ,P0,N),ΛN)
such that ΛN = (Λ1, . . . ,ΛN) is an εN -CCE for the N-player game and
εN → 0 as N → ∞.



Sketch of proof

By symmetry, focus on deviations of player i = 1. Set

εN
.
= JN

1 (Λ
N)− inf

β∈AN

JN
1 (Λ

N,−1, β).

Then ΛN is an εN -coarse correlated equilibrium for every N ≥ 2.
Show that εN → 0.

Sufficient to prove the following:

J(Λ1, µ) ≤ J(βN , µ),(1a)

lim
N→∞

JN
1 (Λ

N) = J(Λ1, µ),(1b)

lim
N→∞

|JN
1 (β

N ,ΛN,−1)− J(βN , µ)| = 0.(1c)

The limits (1b), (1c) can be proved by continuity of the cost functions and
propagation of chaos arguments.



Sketch of proof (cont.)

To prove (1a): cannot exploit limit optimality as βN could depend on all
Wiener processes and initial conditions, not only on (ξ1,W 1).

But conditionally on the paths of (ξ i ,W i)N
i=2 we can compare J(βN , µ) to

J(Λ1, µ) and conclude:

J(Λ1, µ)− J(βN , µ)

= E

[
E

[∫ T

0
f (s,Xs, µs, λ

1
s)ds + g(XT , µT ) | (ξ i ,W i)N

i=2

]

− E

[∫ T

0
f (s,Zs, µs, β

N
s )ds + g(ZT , µT ) | (ξ i ,W i)N

i=2

]]

=

∫ (
J(Λ̂, µ̂)− J(β̃(x,w), µ̂)

)
Pν(dx, dw) ≤ 0,

where Pν is the law of (ξ i ,W i)N
i=2 and β̃(x,w) ∈ A.



Conclusions

Thank you.
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Examples of admissible N-player recommendations

If Λ takes only k ≥ 1 values α1, . . . , αk ∈ AN
N with probabilities

P0(Λ = αj) = pj , then it is admissible. In this case

λt(ω0, ω1) =
k∑

j=1

1{Λ=αj}(ω0)α
j
t(ω1).

More generally, if Λ takes at most countably many values, then it is
admissible. We have

λt(ω0, ω1) =
∞∑
j=1

1{Λ=αj}(ω0)α
j
t(ω1).

Let (λt)t∈[0,T ] be an A-valued progressively measurable as before,
define

Λ(ω0) = (λt(ω0, ·))t∈[0,T ]1Nc (ω0) + a01N(ω0)

for a0 ∈ A and N a P0-null subset of Ω0. Then Λ is an admissible
recommendation
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