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Goals of generative modeling

e Given data (Xz)f\il with X; ~ 7 with 7 unknown typically on R¢ with d > 1.
e Generative modeling = learn a representation of the random variable X
= Pick a source p (easy to simulate)

= Learn a generative map ® suchthat @4 p = .
o Alternatively learn a transport plan (i.e. a Markov kernel).

= Orlearn a generative flow via a vector field v¢ () such that
dr; = vi(x¢) + 0;dW; suchthat zy~p and zp~7

o o = 0 learn an ODE (normalizing flows, neural ODEs, etc...)

o o > ( learn an SDE (diffusion models, score generative model, Schrédinger
bridges, etc...)



Generative modeling = information theoretic task

In oder to learn how to transport p to 7 (and so do the learning) we need to choose how
to measure the “distance” between p and 7.

e KL divergence (or more generally f-divergences x ln(az) — f(a:) convex, see the
z”—1

papers, typical is m)

dp dp]
Dxr1,(p||m :EW[ In — sup {E,[¢] —logE,[e?
alplm) = Be | g 37| = suwp {Blp e}

= Good: Maximum likelihood and all that plus an excellent convex dual formula (Gibbs
variational formula)

= Bad: Restricted to p < 7 which is not adequate in ML: 7 is often supported on low-
dimensional structure and 7r is known via its empirical distribution Ty =

% Zz 5Xi!



e Integral probability metrics (IPM): pick asetI' € Cy(X’) which is convex and closed
(weak* topology) suchthat f € I' = —f & I" and I separate pointsin P(X).

W' (p,m) = Zgg{Ep 6] — Ex[¢]}

= Bad: The optimization problem is “too linear”, not convex enough.
= Good: I is often a very good set to optimize over!
o I'= L-Lipschitz functions

o I'=Unit ball in RKHS — Kernel methods and MMD distance (Hilbert space
embedding of P(X))

o I'=Sets of Relu Neural Networks with spectral normalization (— bound on the
Lipschitz constant!): Neural IPMs




e Optimal transport: Wasserstein distances: given a weight. e.g., c(z,y) = ||z — y||P
Wipm = wf [ i@ = s Blgl+ By
7y coupling / ¥ x ¢(z) -+ (y)<c(z,y)

= Bad: Costly to compute the optimal transport map/plan and optimization is “too
linear”. Optimal is not optimal!l. Sinkhorn (Schrédinger bridges) is a popular tool.

= Good: Thereis an implicit regularization. In the dual formula the supremum can
restricted to ¢ = 1 where

P(x) = ir;f{c(a:, y) + ¢(x)} ¢ — transform

For example forp = 1, W1 (p, 7) is the IPM with 1-Lipschitz function.

» Good: Benamou-Bremier representation (for p > 1) — Flows!




Moreau-Yosida regularization a.k.a inf-convolution

How to regularize a (convex) function?

flg(z) = inf{ f(y) + g(r —y)} infimum convolution
y

Examples:

e fr(z) =inf, {f(y) + L||z — y||} is L-Lipschitzand lim_,» fr(z) = f(2).

o fa(z) =inf,{f(y) + Allz — y||*} makes f finite, smooth, and preserves
convexity — proximal optimization algorithms

o f(x)=1inf,{f(y) + c(x,y)} is the c-transform, key regularizing tool in optimal
transport e.g in Kantorovich-Rubinstein duality (provides compactness!)



Proximal IPM divergences

Use an IPM to regularize KL-divergence (Dupuis, Mao) or general f divergences (Birell et
al.)

D — inf {W?' D
xr(p|T) Mgg(x){ (o, 1) + Drcp (]| 7)}

Elementary properties:

1. DY (p||7) < min{W'(p, ), Dxr(p||m)} sono absolute continuity needed!

2. Using the compactness and strict convexity of the level sets of p — Dg 1 (p, ) there

is a unique optimizer
Dy (pllm) = WH(p, u*) + D (p*||7)

This define a proximal operator p* = proxp_ (p)



3. Interpolation: If we scale I’ with I';, = LI we have

lim DY, (pllw) = Dicr(plm)

L—o0
1. r
11}2% EDKL(PHW) =W (p, )

How to pick L?

* Sometimes in ML, the proximal u* = proxp__(p) will serve as the model for 7 so
we should adjust L accordingly that is L small enough.

* In other cases we choose L to stabilize the learning algorithm (often L = 1.)

e More theory needed: convergence of the proximal
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Variational principle for proximal IPM divergences

Theorem 1 (Gibbs variational principle)

Dk (pll7) = N;gf {WF (p, ) + Dgr (]| ) }

=sup {E,[¢] — log E, [e¢]}
pel’

Proof: With It (¢) = 0olr<(¢) to impose the constraint and the fact that for Legendre
transform (f + g)* = f*[g* we find (using the duality pair (Cy(X ), M(X))).

sup {E,[¢] — log E,[e?]} = SUp {E,[¢] — log Bx[e”] + Ir(¢) }
= (log Ex[e?] + Ir(¢))" = log E.[e”]*OIr(¢)*
= (DgOW")(p)
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One also obtains the following characterization of the proximal ™ (for I'=Lipschitz)

Theorem 2 For I' L-Lipschitz, if
= E,[¢| — log E,|e?
¢" = argmax { Ey[¢] — log Ex[e”]}
and

w" = arg min {W"(p, ) + Dgr(pl|lw)} proximal
HeP(X)

then we have

d,Ll,* *
o 0
dm €

This captures the balance between transport (done by IPM) and mass redistribution (done
by KL).
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Proximal OT divergences

Digy(plm) = inf {AWE(p, ) + Dics(pillm)}

For p = 1 thisan IPM but for p > 1 this regularizes with the pth power of the

Wasserstein distance. Here p = 2 for illustration.

By the Benamou-Bremier representation of optimal transport
1
2.\ : 1 5
Dy (plim) =inf ¢ Dxr(plim) + A 0 Ep, | 5 llvel
subject to  Opr + V - (vipr) =0, po=p

This is good way to build generative flows (see later in the talk)



14

Gibbs variational principle for Wasserstein
proximal

Thereis also a dual formula (not used further today)

Theorem 3 For general weights c(«, y) (bounded below and lower semicontinous) and
X a Polish space we have the duality formula

D% (pllT) ot {W*(p, u) + Dz (ulm)}

= sup {E,[¢] —logE.[e "]}
(x)+9(y)<c(z,y)

e This divergences have nice properties, similar to proximal IPM (for another day).

e See Jeremiah Birrell for similar results and applications to DRO!
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Generative adversarial networks (GANS)

Birell et. al (JMLR 2022)

e Choose a reference space (Qref, p) (usually Gaussian, low-dimensional) and an
objective functional (usually a probability divergence).

e Optimization problem (K L — I')-GAN

inf D(gxp||7) = inf sup { E;[¢] — log Eg#p[6¢]}
g 9 ¢el

= Optimization over maps g : Qref — X (parametrized by suitable neural
networks) provides the generative model ;4 = g p which approximates 7r.

= Solve via min-max algorithms

= Replacing 7t and p by corresponding their empirical measure (and mini-batches).
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Findings:

e Provide a natural and theoretically grounded way to stabilize the training of f-GAN.:
Proximal IPM divergences incorporate the Lipschitz regularization of neural networks
(via spectral normalization or soft constraints) into the divergence.

e Empirically, that K L-Lischitz GAN outperform Wasserstein GANs ([more robust, less

sensitive to choise of hyper parameters and learning rates}{.red}) Intuitively the
objective functional is much more (strictly) convex so better convergence of the
algorithms is expected. A proof of this would be nice!

e f-GAN (for suitable choices of f) perform very well for heavy tail data (go talk to Ziyu
and see his poster)
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f—Gan is more stable with respect to learning rates than W-Gan (CIFAR-10 data sets)




First variation of proximal divergences

e |Infimum convolution has a smoothing effect:

e The KL-divergence has a well defined first variation

0p

dp

(pliw) = argsup { E,[¢] — log Er[e?|} = ¢" = log - -
¢ TT

Theorem 4 The I'-KL proximal divergence has a well defined first variation.
if * = arg supyer { E,[¢] — log Ex[e?]} (unique on supp(p + 7)) then
oD,
op

(p||7) = inf{é*(y) + |z — y||} = ¢  Lipschitz regularization
y

which is defined for all .

A similar result holds for Wasserstein proximals.

18
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Wasserstein gradient flow

With the first variation we can consider Wasserstein gradient flow

, 6Dy,
Oypy = div (Ptv 5;@ (PtHﬂ)

which we can think as a Lipschitz regularization of the Fokker-Planck equation

We do not need to assume densities which leads to Particle Algorithms which are very well
suited for learning tasks from data.

Gradient Particle algorithm Given data X; ~ 7 and source samples Y; ~ p Euler
method gives

Yini1 = Yjn — AtV (Yin)

M
1 1
* -\ - é(X3)
¢, = argmax i ;_1 gb(an) log ~ EZ e

NN
pel'y



e Since @* is Lipschitz we have finite speed propagation (CFL-type condition) — stability

of the numerical schemes.

e The gradient structure implies that

d
%DE{LL(IOtHT‘-) = —I;*(ptllm) <0

where we define the Lipschitz-regularized Fisher Information as

Iy (pellm) = By, [[V[] .

For particles this is just the total kinetic energy of the particles

M
N ~ 1 * 1
I (GMIAY) = - 37 [Vgke (V)
1=1

DE{L and the Fisher information I};LL can be monitored to ensure convergence.
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(f) Output of SGM [58]

21




22

TERMNORRMOLI QN

o~ OWn a.\QIOI/oO&A
Wit &N 3 =Dy =0
M- NDS ™0 >0
QU TrIda~xdN
=0T N by

GPA

ko)
' )]
Mes Lo iy = — ) ca g 8 ko 62 O\ © M O~ kn
NOAUXNTCIOTR m mm (TSRO N— >
EALQI SN~V I CLINBOINQYD
VDO N H,.m Z . D O R A VR ¥
QeurIeodnN T O &, N~ OO & w®
NOD~NDNYIXNL .m rm. o ~ o™
323&:1[@000./7 m ..mA oo OgosQ M
BN OD 0N I > of 2 Qh S Nt N~
DI AN SN < M TONAm—Dae~
z

N FQoOoNIPDO~2N

ITFEMNMHOQOMNN
WM B MM N  INes
MWV Ny~~~
7-3/7& NG~
N O % o N

(c) WGAN [4] trained with 200 original

500 training epochs

MNIST with scarce data and generalization

HRYUNN M~ N0y
NOXNFNAE~VONS
NN SN O Mg
QuwwbomdnN I
QOSSO OMI M~

VAR X O—N%
o MM NI MO NN
A MWNFAm O~ o
NOFTHIF G nm\
~ O D—~F~NQmi

(fxe,T's)-GPA

O My NN AL S o
VEOSNTNIO~—
K ~% NFT T\
S A mQUYNxANQ
M= OTOHFD R~
Q20N e+ Q ¥
SQAr>JTON ~ F
N Q) oM Ty TN Ny -
N D0 WY = — Og ™~
MmN Nse My Ly 3

200

(a) Fixed target samples with sample size(b) M = 600 transported particles frommultaneously transported from (fxv,I's)-

N

Figure 5: (MNIST) S}PA for image generation given scarce target data.

(a) WGAN [4] trained with 200 original (b) WGAN [4] trained with original 1400 data and 1200 GPA-augmented data for
data for 500 training epochs

data for 3000 training epochs
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Heavy-tailed Distributions (Ziyu’s poster)

e Learn heavy-tailed distributions using generative models
e Theoryin Ziyu’s poster!

e GPA and I'-GANS perfom best compared to other generative algorithms

300 — 10°

200 L1 error=5.61

100

-100

—200 < true

generated

-300 1077
-200 0 200 10° 10t 10?

200 e . L1 error=3.41 200 generated L1 error=1.46

1071

-100 -100
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generated

-200

-300 102
-200 o 200 10° 10* 102 -200 0 200

-300

(b) OT flow (c) VE-SGM

Figure 4: Learning a 2D isotropic Student-t with degree of freedom v = 1 (tail index 8 = 3.0) using generative models
based on Ws-a-divergences with o = 1. Models with W,-proximal regularizations, (b) and (c), learn the heavy-tailed
distribution significantly better than that without, (a). See Section 5.1 for detailed explanations of the models.

(a) Wi-a GPA (left), Wi-a GAN (right) (b) W3 flow (left), VE SGM (right)

Figure 5: Sample generation of inter-arrival time between keystrokes. Generative models with W;-proximal regulariza-
tion, panel (a), outperform those with W,-proximal regularization, panel (b), in capturing the tails. This observation
suggests that Wi -proximal algorithms can potentially handle heavier tails more effectively than W-proximal methods.




Normalizing flows

Continuous normalizing flows (many different variants) train ODE’s

dzy
dt

— v(xy) withaxg ~mandz; ~ p

by minimizing D 1.(7|g4 p) where g=time-1 map. Use the change of variables for
densities to evaluate KL.
e One need to invert the flow to generate 7 from p (backward-forward flows).

e The trainingis unstable and depends on the time discretization.

e Autoencoder and specialized archtecture are needed.

e Fortarget 7r which are singular the use of densities is a bit suspicious.
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W1 + Wo proximal (Hyemin’s poster)
Main ideas:

e Use Benamou-Bremier and I/V22 proximal to stabilize the learning of the flow

e Replace {Dgr by DF{L to handle singular 7.]{.red}

Putting all together we find the functional

inf{sup {Eu[qﬁ] — log Ew[€¢]} =+ )\/0 ;Ept“vtz]}

U, ¢€FL
dx
subject to i ve(x), To ~ P, T1 ~

dt

e Adversarial training like in GANs so no need to invert the flow.

e Capture high dimensional strucutre without auto-encoder!

25



Example: capturing low-d structure

2D, W1/W2 proximal

7D, W1/W2 proximal

2'!D, w2 rjproxlimalz

12D, W2 proximal

12D, W1/W2 proximal

22D, w2 E)roxlimal2

nnnnn
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—— 2D, W1/W2 proximal
2D, W1 proximal
—— 7D, W1/W2 proximal
=== 7D, W1 proximal
—— 12D, W1/W2 proximal
=== 12D, W1 proximal
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0 5000 10000 15000 20000 25000
training iteration

(a) 20K generated samples from W; & W,-flows (top), Wa-flows

(bottom) (b) Optimality indicator (44)
-t Tt T YT TTTTTTTTTO T T T T T T TTT o TTTT T T T T D I |

Dataset Wi & W5 flow | W5 flow | Potential Flow GAN [23] | OT flow [17]
Pinwheel 2D 0.00852 | 0.00691 0.01325 0.19793
Pinwheel 7D 0.01074 - 16.88652 | 4.5831e+09
Pinwheel 12D 0.01662 - 3.76265 | 7.9118e+26
Moons 2D 0.08768 | 0.26356 10.11568 2.51535
Moons 7D 0.02986 - 221.65057 | 3.4141e+06
Moons 12D 0.05259 - 2229.81445 | 1.6721e+14

Table 1: Wasserstein-2 distance [8] between the original 2D data manifold and generated 2D data
manifold. 5K samples are chosen from the original dataset and the generated dataset. Unlike Potential



Mean-field game analysis

Markos’ talk: the optimzation is a mean-field game with optimality conditions in the form
of a forward Fokker-Planck equation and a backward Hamilton-Jacobi equation:

: | 5DF
8,U; + —\VUt\ with  Ui(e) = (|
VU, :
&spt—V-(pt )\t) =0  with po = p-
and with optimal velocity v; () = —%VUt(x).

Theorem 5

o W proximal implies that we have well-defined terminal condition for HBJ +
uniqueness of classical solution

e W5 proximal provides a meaningful PDE + linear optimal trajectories
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JKO + Wasserstein gradient flow

Wasserstein gradient flow for D}, ; (p||)

, 6 DY
Oy pp = div (ptV 5;@ (ptHW))

= regularized Fokker-Planck

e Explicit Euler = GPA algorithms!

e Implicit Euler= W7 + W5 proximal!
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Conclusion

We need more good ideas from
Paul for many years to come!
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