# Proximal divergences and generative modeling

Luc Rey-Bellet

ICERM: Robust Optimization and Simulation of Complex Stochastic Systems

2024-09-13



### Team supported by NSF 🖤 and AFOSR

- Paul Dupuis (Brown University)
- Markos Katsoulakis (UMass Amherst)

- Panagiota Birmpa (UMass ightarrow Heriot Watt )
- Jeremiah Birrell (UMass  $\rightarrow$  Texas State San Marco)
- Ziyu Chen (UMass Amherst)
- Hyemin Gu (UMass Amherst)
- Yannis Pantazis (FORTH, Crete)
- Benjamin Zhang (UMass Amherst  $\rightarrow$  Brown)
- Wei Zhu (UMass Amherst  $\rightarrow$  Georgia Tech)









Panagiota

Jeremiah

Ziyu







Hyemin

Yannis

Benjamin



Wei

#### Some papers relevant to the talk

- J. Birrell, P. Dupuis, M. A. Katsoulakis, L. Rey-Bellet, J. Wang, *A Variational Formula for Rényi Divergences*, SIAM Data Science, (2021).
- P. Dupuis and Y. Mao, Formulation and properties of a divergence used to compare probability measures without absolute continuity, ESAIM: COCV, (2022).
- J. Birrell, M.A. Katsoulakis, L. Rey-Bellet, W. Zhu, *Structure-preserving GANs*. ICML 2022
- J. Birrell, P. Dupuis, M. A. Katsoulakis, Y. Pantazis, L. Rey-Bellet, (*f*, *\(\Gamma\)*) -Divergences: Interpolating between f-Divergences and Integral Probability Metrics, JMLR & NeurIPS, (2022)
- J. Birrell, P. Dupuis, M. A. Katsoulakis, Y. Pantazis, L. Rey-Bellet, *Function-space regularized Rényi divergences*, ICLR 2023
- Z. Chen, M. A. Katsoulakis, L. Rey-Bellet, W. Zhu, *Sample Complexity of Probability Divergences under Group Symmetry*, ICML 2023
- H. Gu, P. Birmpa, Y. Pantazis, M. A. Katsoulakis, and L. Rey-Bellet, *Lipschitz-regularized gradient flows and generative particles*, SIAM Data Science (2024), to appear.
- Z. Chen, M. A. Katsoulakis, L. Rey-Bellet, W. Zhu, *Statistical Guarantees of Group-Invariant GANs*, ArXiv, (2023).
- H. Gu, M. A. Katsoulakis, L. Rey-Bellet, B. Zhang, *Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold learning via well-posed generative flows*, ArXiv (2024)
- Z. Chen, H. Gu, M. A. Katsoulakis, L. Rey-Bellet, W. Zhu, *Learning heavy-tailed distributions with Wasserstein-proximalregularized a-divergences*, ArXiv (2024)

#### Goals of generative modeling

- Given data  $(X_i)_{i=1}^N$  with  $X_i \sim \pi$  with  $\pi$  unknown typically on  $\mathbb{R}^d$  with  $d \gg 1$ .
- Generative modeling = learn a representation of the random variable X
  - Pick a source ρ (easy to simulate)
  - Learn a generative map  $\Phi$  such that  $\Phi_{\#}\rho = \pi$ .
    - Alternatively learn a transport plan (i.e. a Markov kernel).
  - Or learn a generative flow via a vector field  $v_t(x)$  such that

 $dx_t = v_t(x_t) + \sigma_t dW_t \quad ext{such that} \quad x_0 \sim 
ho \quad ext{and} \quad x_T \sim \pi$ 

- $\circ \ \sigma = 0$  learn an ODE (normalizing flows, neural ODEs, etc...)
- $\circ~\sigma>0$  learn an SDE (diffusion models, score generative model, Schrödinger bridges, etc...)

### Generative modeling = information theoretic task

In oder to learn how to transport  $\rho$  to  $\pi$  (and so do the learning) we need to choose how to measure the "distance" between  $\rho$  and  $\pi$ .

• KL divergence (or more generally f-divergences  $x\ln(x) o f(x)$  convex, see the papers, typical is  $rac{x^lpha-1}{lpha(lpha-1)}$ )

$$D_{ ext{KL}}(
ho\|\pi) = E_{\pi}\left[rac{d
ho}{d\pi}\lnrac{d
ho}{d\pi}
ight] = \sup_{\phi\in C_b(X)}\left\{E_
ho[\phi] - \log E_{\pi}[e^{\phi}]
ight\}$$

- Good: Maximum likelihood and all that plus an excellent convex dual formula (Gibbs variational formula)
- Bad: Restricted to  $\rho \ll \pi$  which is not adequate in ML:  $\pi$  is often supported on lowdimensional structure and  $\pi$  is known via its empirical distribution  $\pi_N = \frac{1}{N} \sum_i \delta_{X_i}!$

• Integral probability metrics (IPM): pick a set  $\Gamma \in C_b(\mathcal{X})$  which is convex and closed (weak\* topology) such that  $f \in \Gamma \implies -f \in \Gamma$  and  $\Gamma$  separate points in  $\mathcal{P}(X)$ .

$$W^{\Gamma}(
ho,\pi) = \sup_{\phi\in\Gamma} \{E_{
ho}[\phi] - E_{\pi}[\phi]\}$$

- Bad: The optimization problem is "too linear", not convex enough.
- Good:  $\Gamma$  is often a very good set to optimize over!
  - $\circ \Gamma$  = *L*-Lipschitz functions
  - $\circ \ \Gamma$  = Unit ball in RKHS ightarrow Kernel methods and MMD distance (Hilbert space embedding of  $\mathcal{P}(X)$  )
  - $\circ~\Gamma$  = Sets of Relu Neural Networks with spectral normalization (  $\rightarrow$  bound on the Lipschitz constant!): Neural IPMs

• Optimal transport: Wasserstein distances: given a weight. e.g.,  $c(x,y) = \|x-y\|^p$ 

$$W^p_p(
ho,\pi) = \inf_{\gamma ext{ coupling }} \int_{X imes X} c(x,y) d\gamma(x,y) = \sup_{\phi(x)+\psi(y)\leq c(x,y)} E_
ho[\phi] + E_\pi[\psi]$$

- Bad: Costly to compute the optimal transport map/plan and optimization is "too linear". Optimal is not optimal!. Sinkhorn (Schrödinger bridges) is a popular tool.
- Good: There is an implicit regularization. In the dual formula the supremum can restricted to  $\phi=\psi^c$  where

$$\psi^c(x) = \inf_y \{c(x,y) + \phi(x)\}$$
 c – transform

For example for p=1,  $W_1(
ho,\pi)$  is the IPM with 1-Lipschitz function.

• Good: Benamou-Bremier representation (for p > 1)  $\rightarrow$  Flows!

#### Moreau-Yosida regularization a.k.a inf-convolution

How to regularize a (convex) function?

 $f \Box g(x) = \inf_y \{f(y) + g(x-y)\}$  infimum convolution

Examples:

•  $f_L(x) = \inf_y \{f(y) + L \|x - y\|\}$  is L-Lipschitz and  $\lim_{L o \infty} f_L(x) = f(x)$ .

•  $f_{\lambda}(x) = \inf_{y} \{f(y) + \lambda \|x - y\|^2\}$  makes f finite, smooth, and preserves convexity o proximal optimization algorithms

•  $f^c(x) = \inf_y \{f(y) + c(x, y)\}$  is the *c*-transform, key regularizing tool in optimal transport e.g in Kantorovich-Rubinstein duality (provides compactness!)



#### **Proximal IPM divergences**

Use an IPM to regularize KL-divergence (Dupuis, Mao) or general f divergences (Birell et al.)

$$D_{KL}^{\Gamma}(
ho\|\pi) = \inf_{\mu\in\mathcal{P}(X)} ig\{ W^{\Gamma}(
ho,\mu) + D_{KL}(\mu\|\pi)ig\}$$

Elementary properties:

- 1.  $D_{KL}^{\Gamma}(
  ho\|\pi) \leq \min\{W^{\Gamma}(
  ho,\pi), D_{KL}(
  ho\|\pi)\}$  so no absolute continuity needed!
- 2. Using the compactness and strict convexity of the level sets of  $ho\mapsto D_{KL}(
  ho,\pi)$  there is a unique optimizer  $\mu^*$

$$D_{KL}^{\Gamma}(
ho\|\pi)=W^{\Gamma}(
ho,\mu^*)+D_{KL}(\mu^*\|\pi)$$

This define a proximal operator  $\mu^* = \mathrm{prox}_{D_{KL}}(
ho)$ 

3. Interpolation: If we scale  $\Gamma$  with  $\Gamma_L = L\Gamma$  we have

$$egin{aligned} &\lim_{L o\infty} D^{\Gamma_L}_{KL}(
ho\|\pi) = D_{KL}(
ho\|\pi) \ &\lim_{L o0} rac{1}{L} D^{\Gamma_L}_{KL}(
ho\|\pi) = W^{\Gamma}(
ho,\pi) \end{aligned}$$

#### How to pick L?

- Sometimes in ML, the proximal  $\mu^* = \operatorname{prox}_{D_{KL}}(\rho)$  will serve as the model for  $\pi$  so we should adjust L accordingly that is L small enough.
- In other cases we choose L to stabilize the learning algorithm (often L=1.)
- More theory needed: convergence of the proximal

#### Variational principle for proximal IPM divergences

Theorem 1 (Gibbs variational principle)

$$egin{split} D_{KL}^{\Gamma}(
ho\|\pi) &= \inf_{\mu\in\mathcal{P}(\mathcal{X})} ig\{ W^{\Gamma}(
ho,\mu) + D_{KL}(\mu\|\pi) ig\} \ &= \sup_{\phi\in\Gamma} ig\{ E_{
ho}[\phi] - \log E_{\pi}[e^{\phi}] ig\} \end{split}$$

**Proof:** With  $I_{\Gamma}(\phi) = \infty 1_{\Gamma^c}(\phi)$  to impose the constraint and the fact that for Legendre transform  $(f + g)^* = f^* \Box g^*$  we find (using the duality pair  $(C_b(X), \mathcal{M}(X))$ ).

$$egin{aligned} &\sup_{\phi\in\Gamma}\left\{E_
ho[\phi]-\log E_\pi[e^\phi]
ight\}=\sup_{\phi\in C_b(X)}\left\{E_
ho[\phi]-\log E_\pi[e^\phi]+I_\Gamma(\phi)
ight\}\ &=(\log E_\pi[e^\phi]+I_\Gamma(\phi))^*=\log E_\pi[e^\phi]^*\Box I_\Gamma(\phi)^*\ &=(D_{KL}\Box W^\Gamma)(
ho) \end{aligned}$$



This captures the balance between transport (done by IPM) and mass redistribution (done by KL).

#### **Proximal OT divergences**

$$D^{p,\lambda}_{KL}(
ho\|\pi) = \inf_{\mu\in\mathcal{P}(X)} ig\{\lambda W^p_p(
ho,\mu) + D_{KL}(\mu\|\pi)ig\}$$

For p=1 this an IPM but for p>1 this regularizes with the  $p^{th}$  power of the Wasserstein distance. Here p=2 for illustration.

By the Benamou-Bremier representation of optimal transport

$$egin{aligned} D^{2,\lambda}_{KL}(
ho\|\pi) &= \inf_{
ho,v} \left\{ D_{KL}(
ho\|\pi) + \lambda \int_0^1 E_{
ho_t} \left[rac{1}{2}\|v_t\|^2
ight] 
ight\} \ & ext{ subject to } \quad \partial_t 
ho_t + 
abla \cdot (v_t 
ho_t) = 0, \quad 
ho_0 = 
ho \end{aligned}$$

This is good way to build generative flows (see later in the talk)



## Gibbs variational principle for Wasserstein proximal

There is also a dual formula (not used further today)

Theorem 3 For general weights c(x,y) (bounded below and lower semicontinous) and X a Polish space we have the duality formula

$$egin{aligned} D^C_{KL}(
ho\|\pi) &= \inf_{\mu\in\mathcal{P}(X)} \left\{ W^c(
ho,\mu) + D_{KL}(\mu\|\pi) 
ight\} \ &= \sup_{\phi(x)+\psi(y)\leq c(x,y)} \left\{ E_
ho[\phi] - \log E_\pi[e^{-\psi}] 
ight\} \end{aligned}$$

- This divergences have nice properties, similar to proximal IPM (for another day).
- See Jeremiah Birrell for similar results and applications to DRO!

#### Generative adversarial networks (GANS)

Birell et. al (JMLR 2022)

- Choose a reference space  $(\Omega_{ref}, \rho)$  (usually Gaussian, low-dimensional) and an objective functional (usually a probability divergence).
- Optimization problem  $(KL-\Gamma)$ -GAN

$$\inf_g D(g_\#
ho\|\pi) = \inf_g \sup_{\phi\in\Gamma} ig\{ E_\pi[\phi] - \log E_{g_\#
ho}[e^\phi] ig\}$$

- Optimization over maps  $g: \Omega_{ref} o X$  (parametrized by suitable neural networks) provides the generative model  $\mu = g_{\#} 
  ho$  which approximates  $\pi$ .
- Solve via min-max algorithms
- Replacing  $\pi$  and  $\rho$  by corresponding their empirical measure (and mini-batches).

#### Findings:

- Provide a natural and theoretically grounded way to stabilize the training of f-GAN.: Proximal IPM divergences incorporate the Lipschitz regularization of neural networks (via spectral normalization or soft constraints) into the divergence.
- Empirically, that *KL*-Lischitz GAN outperform Wasserstein GANs ([more robust, less sensitive to choise of hyper parameters and learning rates]{.red}) Intuitively the objective functional is much more (strictly) convex so better convergence of the algorithms is expected. A proof of this would be nice!
- f-GAN (for suitable choices of f) perform very well for heavy tail data (go talk to Ziyu and see his poster)



f-Gan is more stable with respect to learning rates than W-Gan (CIFAR-10 data sets)

#### First variation of proximal divergences

- Infimum convolution has a smoothing effect:
- The KL-divergence has a well defined first variation

$$rac{\delta D_{KL}}{\delta 
ho}(
ho\|\pi) = rg \sup_{\phi} ig\{ E_{
ho}[\phi] - \log E_{\pi}[e^{\phi}] ig\} = \phi^* = \log rac{d
ho}{d\pi}$$

Theorem 4 The  $\Gamma$ -KL proximal divergence has a well defined first variation. If  $\phi^* = \arg \sup_{\phi \in \Gamma} \left\{ E_{\rho}[\phi] - \log E_{\pi}[e^{\phi}] \right\}$  (unique on  $\operatorname{supp}(\rho + \pi)$ ) then  $\frac{\delta D_{KL}^{\Gamma}}{\delta \rho}(\rho \| \pi) = \inf_{y} \{ \phi^*(y) + \| x - y \| \} = \overline{\phi}^*$  Lipschitz regularization

which is defined for all x.

A similar result holds for Wasserstein proximals.

#### Wasserstein gradient flow

With the first variation we can consider Wasserstein gradient flow

$$\partial_t 
ho_t = ext{div} \left( 
ho_t 
abla rac{\delta D_{KL}^{\Gamma}}{\delta 
ho} (
ho_t \| \pi) 
ight)$$

which we can think as a Lipschitz regularization of the Fokker-Planck equation

We do not need to assume densities which leads to Particle Algorithms which are very well suited for learning tasks from data.

**Gradient Particle algorithm** Given data  $X_i \sim \pi$  and source samples  $Y_j \sim 
ho$  Euler method gives

$$egin{aligned} Y_{j,n+1} &= Y_{j,n} - \Delta t 
abla \phi_n^*(Y_{j,n}) \ \phi_n^* &= rgmax \ \phi \in \Gamma_L^{NN} \left\{ rac{1}{M} \sum_{i=1}^M \phi(Y_{i,n}) - \log rac{1}{N} \sum_i e^{\phi(X_i)} 
ight\} \end{aligned}$$

- Since  $\phi^*$  is Lipschitz we have finite speed propagation (CFL-type condition)  $\rightarrow$  stability of the numerical schemes.
- The gradient structure implies that

$$rac{d}{dt}D_{KL}^{\Gamma_L}(
ho_t\|\pi)=-I_f^{\Gamma_L}(
ho_t\|\pi)\leq 0$$

where we define the Lipschitz-regularized Fisher Information as

$$I_{KL}^{\Gamma_L}(
ho_t \| \pi) = E_{
ho_t} \left[ |
abla \phi^*|^2 
ight] \, .$$

For particles this is just the total kinetic energy of the particles

$$I_{KL}^{\Gamma_L}(\hat{
ho}_n^M \| \hat{\pi}^N) = rac{1}{M} \sum_{i=1}^M |
abla \phi_n^{L,*}(Y_n^{(i)})|^2 \,,$$

 $D_{KL}^{\Gamma}$  and the Fisher information  $I_{KL}^{\Gamma_L}$  can be monitored to ensure convergence.

#### Sierpinksi carpet



The other guys

GPA

 $\mathbf{Q}$ 

#### MNIST with scarce data and generalization



(a) Fixed target samples with sample size(b) M = 600 transported particles frommultaneously transported from  $(f_{\rm KL}, \Gamma_5)$ -N = 200 $(f_{\rm KL}, \Gamma_5)$ -GPA GPA

Figure 5: (MNIST) GPA for image generation given scarce target data. (a) A subset of the N = 200 target



500 training epochs

#### Heavy-tailed Distributions (Ziyu's poster)

- Learn heavy-tailed distributions using generative models
- Theory in Ziyu's poster!
- GPA and  $\Gamma$ -GANS perfom best compared to other generative algorithms



Figure 4: Learning a 2D isotropic Student-t with degree of freedom  $\nu = 1$  (tail index  $\beta = 3.0$ ) using generative models based on  $W_2$ - $\alpha$ -divergences with  $\alpha = 1$ . Models with  $W_2$ -proximal regularizations, (b) and (c), learn the heavy-tailed distribution significantly better than that without, (a). See Section 5.1 for detailed explanations of the models.



Figure 5: Sample generation of inter-arrival time between keystrokes. Generative models with  $W_1$ -proximal regularization, panel (a), outperform those with  $W_2$ -proximal regularization, panel (b), in capturing the tails. This observation suggests that  $W_1$ -proximal algorithms can potentially handle heavier tails more effectively than  $W_2$ -proximal methods.

#### Normalizing flows

Continuous normalizing flows (many different variants) train ODE's

$$rac{dx_t}{dt} = v_t(x_t) \quad ext{ with } x_0 \sim \pi ext{ and } x_1 \sim 
ho$$

by minimizing  $D_{KL}(\pi|g_{\#}\rho)$  where g=time-1 map. Use the change of variables for densities to evaluate KL.

- One need to invert the flow to generate  $\pi$  from  $\rho$  (backward-forward flows).
- The training is unstable and depends on the time discretization.
- Autoencoder and specialized archtecture are needed.
- For target  $\pi$  which are singular the use of densities is a bit suspicious.

## $W_1+W_2$ proximal (Hyemin's poster)

Main ideas:

- Use Benamou-Bremier and  $W_2^2$  proximal to stabilize the learning of the flow
- Replace  $\{D_{KL} ext{ by } D_{KL}^{\Gamma} ext{ to handle singular } \pi. ] \{. ext{red} \}$

Putting all together we find the functional

$$egin{aligned} &\inf_{v,\mu}\left\{\sup_{\phi\in\Gamma_L}\left\{\mathbb{E}_\mu[\phi]-\log E_\pi[e^\phi]
ight\}+\lambda\int_0^1rac{1}{2}E_{
ho_t}[|v_t|^2]
ight\}\ & ext{subject to} \quad rac{dx_t}{dt}=v_t(x_t),\,x_0\sim
ho,x_1\sim\mu \end{aligned}$$

- Adversarial training like in GANs so no need to invert the flow.
- Capture high dimensional strucutre without auto-encoder!

#### Example: capturing low-d structure



|   | Dataset      | $\mathcal{W}_1\oplus\mathcal{W}_2$ flow | $\mathcal{W}_2$ flow | Potential Flow GAN [23] | OT flow [17] |
|---|--------------|-----------------------------------------|----------------------|-------------------------|--------------|
| - | Pinwheel 2D  | 0.00852                                 | 0.00691              | 0.01325                 | 0.19793      |
|   | Pinwheel 7D  | 0.01074                                 | -                    | 16.88652                | 4.5831e+09   |
|   | Pinwheel 12D | 0.01662                                 | -                    | 3.76265                 | 7.9118e+26   |
| _ | Moons 2D     | 0.08768                                 | 0.26356              | 10.11568                | 2.51535      |
|   | Moons 7D     | 0.02986                                 | -                    | 221.65057               | 3.4141e+06   |
|   | Moons 12D    | 0.05259                                 | -                    | 2229.81445              | 1.6721e+14   |

----

Table 1: Wasserstein-2 distance [8] between the original 2D data manifold and generated 2D data manifold. 5K samples are chosen from the original dataset and the generated dataset. Unlike Potential

#### Mean-field game analysis

Markos' talk: the optimzation is a mean-field game with optimality conditions in the form of a forward Fokker-Planck equation and a backward Hamilton-Jacobi equation:

$$egin{aligned} \partial_t U_t + rac{1}{2\lambda} |
abla U_t|^2 &= 0 & ext{with} & U_1(x) = rac{\delta D_f^\Gamma}{\delta 
ho}(\mu \| \pi) \ \partial_t 
ho_t - 
abla \cdot \left( 
ho_t rac{
abla U_t}{\lambda} 
ight) &= 0 & ext{with} & 
ho_0 = 
ho. \end{aligned}$$

and with optimal velocity  $v_t(x) = -rac{1}{\lambda} 
abla U_t(x)$ .

#### **Theorem 5**

- $W_1$  proximal implies that we have well-defined terminal condition for HBJ + uniqueness of classical solution
- $W_2$  proximal provides a meaningful PDE + linear optimal trajectories

#### JKO + Wasserstein gradient flow

Wasserstein gradient flow for  $D_{KL}^{\Gamma}(
ho\|\pi)$ 

$$\partial_t 
ho_t = ext{div} \left( 
ho_t 
abla rac{\delta D_{KL}^{\Gamma}}{\delta 
ho} (
ho_t \| \pi) 
ight)$$

= regularized Fokker-Planck

• Explicit Euler = GPA algorithms!

• Implicit Euler =  $W_1$  +  $W_2$  proximal!

#### Conclusion

## We need more good ideas from Paul for many years to come!

