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Goals of generative modeling
Given data  with  with  unknown typically on  with .

Generative modeling = learn a representation of the random variable 

Pick a source  (easy to simulate)

Learn a generative map  such that .

Alternatively learn a transport plan (i.e. a Markov kernel).

Or learn a generative flow via a vector field  such that

 learn an ODE (normalizing flows, neural ODEs, etc…)

 learn an SDE (diffusion models, score generative model, Schrödinger
bridges, etc…)

(X ​) ​i i=1
N X ​ ∼i π π Rd d ≫ 1

X

ρ

Φ Φ ​ρ =# π

v ​(x)t

dx ​ =t v ​(x ​) +t t σ ​dW ​ such that x ​ ∼t t 0 ρ and x ​ ∼T π

σ = 0

σ > 0
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Generative modeling = information theoretic task
In oder to learn how to transport  to  (and so do the learning) we need to choose how
to measure the “distance” between  and .

KL divergence (or more generally -divergences  convex, see the
papers, typical is 

Good: Maximum likelihood and all that plus an excellent convex dual formula (Gibbs
variational formula)

Bad: Restricted to  which is not adequate in ML:  is often supported on low-
dimensional structure and  is known via its empirical distribution 

!

ρ π

ρ π

f x ln(x) → f(x)
​ )

α(α−1)
x −1α

D ​(ρ∥π) = E ​ ​ ln ​ =KL π [
dπ

dρ

dπ

dρ ] ​ E ​[ϕ] − logE ​[e ]
ϕ∈C ​(X)b

sup { ρ π
ϕ }

ρ ≪ π π

π π ​ =N

​ ​ δ ​

N
1 ∑i X ​i
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Integral probability metrics (IPM): pick a set  which is convex and closed
(weak* topology) such that  and  separate points in .

Bad: The optimization problem is “too linear”, not convex enough.

Good:  is often a very good set to optimize over!

 = -Lipschitz functions

 = Unit ball in RKHS  Kernel methods and MMD distance (Hilbert space
embedding of  )

 = Sets of Relu Neural Networks with spectral normalization (  bound on the
Lipschitz constant!): Neural IPMs

Γ ∈ C ​(X )b

f ∈ Γ ⟹ −f ∈ Γ Γ P(X)

W (ρ,π) =Γ
​{E ​[ϕ] − E ​[ϕ]}

ϕ∈Γ
sup ρ π

Γ

Γ L

Γ →
P(X)

Γ →
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Optimal transport: Wasserstein distances: given a weight. e.g., 

Bad: Costly to compute the optimal transport map/plan and optimization is “too
linear”. Optimal is not optimal!. Sinkhorn (Schrödinger bridges) is a popular tool.

Good: There is an implicit regularization. In the dual formula the supremum can
restricted to  where

For example for ,  is the IPM with -Lipschitz function.

Good: Benamou-Bremier representation (for )  Flows!

c(x, y) = ∥x − y∥p

W ​(ρ,π) = ​ ​ c(x, y)dγ(x, y) = ​E ​[ϕ] + E ​[ψ]p
p

γ coupling
inf ∫

X×X ϕ(x)+ψ(y)≤c(x,y)
sup ρ π

ϕ = ψc

ψ (x) = ​{c(x, y) + ϕ(x)} c − transformc

y
inf

p = 1 W ​(ρ,π)1 1

p > 1 →
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Moreau-Yosida regularization a.k.a inf-convolution
How to regularize a (convex) function?

Examples:

 is L-Lipschitz and .

 makes  finite, smooth, and preserves
convexity  proximal optimization algorithms

 is the -transform, key regularizing tool in optimal
transport e.g in Kantorovich-Rubinstein duality (provides compactness!)

f□g(x) = ​{f(y) +
y

inf g(x − y)} infimum convolution

f ​(x) =L inf ​{f(y) +y L∥x − y∥} lim ​ f ​(x) =L→∞ L f(x)

f ​(x) =λ inf ​{f(y) +y λ∥x − y∥ }2 f

→

f (x) =c inf ​{f(y) +y c(x, y)} c
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Proximal IPM divergences
Use an IPM to regularize KL-divergence (Dupuis, Mao) or general  divergences (Birell et
al.)

Elementary properties:

1.  so no absolute continuity needed!

2. Using the compactness and strict convexity of the level sets of  there
is a unique optimizer 

This define a proximal operator 

f

D ​(ρ∥π) =KL
Γ

​ W (ρ,μ) + D ​(μ∥π)
μ∈P(X)

inf { Γ
KL }

D ​(ρ∥π) ≤KL
Γ min{W (ρ,π),D ​(ρ∥π)}Γ

KL

ρ ↦ D ​(ρ,π)KL

μ∗

D ​(ρ∥π) =KL
Γ W (ρ,μ ) +Γ ∗ D ​(μ ∥π)KL

∗

μ =∗ prox ​(ρ)D ​KL
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3. Interpolation: If we scale  with  we have

How to pick ?

Sometimes in ML, the proximal  will serve as the model for  so
we should adjust  accordingly that is  small enough.

In other cases we choose  to stabilize the learning algorithm (often .)

More theory needed: convergence of the proximal

Γ Γ ​ =L LΓ

​D ​(ρ∥π) = D ​(ρ∥π)
L→∞
lim KL

Γ ​L
KL

​ ​D ​(ρ∥π) = W (ρ,π)
L→0
lim

L

1
KL
Γ ​L Γ

L

μ =∗ prox ​(ρ)D ​KL
π

L L

L L = 1
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Variational principle for proximal IPM divergences
Theorem 1 (Gibbs variational principle)

Proof: With  to impose the constraint and the fact that for Legendre
transform  we find (using the duality pair ).

​ ​

D ​(ρ∥π)KL
Γ = ​ W (ρ,μ) + D ​(μ∥π)

μ∈P(X )
inf { Γ

KL }

= ​ E ​[ϕ] − logE ​[e ]
ϕ∈Γ
sup { ρ π

ϕ }

I ​(ϕ) =Γ ∞1 ​(ϕ)Γc

(f + g) =∗ f □g∗ ∗ (C ​(X), M(X))b

​ ​

​ E ​[ϕ] − logE ​[e ] = ​ E ​[ϕ] − logE ​[e ] + I ​(ϕ)
ϕ∈Γ
sup { ρ π

ϕ }
ϕ∈C ​(X)b

sup { ρ π
ϕ

Γ }

= (logE ​[e ] + I ​(ϕ)) = logE ​[e ] □I ​(ϕ)π
ϕ

Γ
∗

π
ϕ ∗

Γ
∗

= (D ​□W )(ρ)KL
Γ
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One also obtains the following characterization of the proximal  (for =Lipschitz)

Theorem 2 For  -Lipschitz, if

and

then we have

This captures the balance between transport (done by IPM) and mass redistribution (done
by KL).

μ∗ Γ

ΓL

ϕ =∗ arg ​ E ​[ϕ] − logE ​[e ]
ϕ∈Γ

max { ρ π
ϕ }

μ = arg ​{W (ρ,μ) + D ​(μ∥π)} proximal∗

μ∈P(X)
min Γ

KL

​ =
dπ

dμ∗

eϕ
∗
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Proximal OT divergences

For  this an IPM but for  this regularizes with the  power of the
Wasserstein distance. Here  for illustration.

By the Benamou-Bremier representation of optimal transport

This is good way to build generative flows (see later in the talk)

D ​(ρ∥π) =KL
p,λ

​ λW ​(ρ,μ) + D ​(μ∥π)
μ∈P(X)

inf { p
p

KL }

p = 1 p > 1 pth

p = 2

​ ​

D ​(ρ∥π)KL
2,λ = ​ D ​(ρ∥π) + λ ​ E ​ ​ ∥v ​∥

ρ,v
inf { KL ∫

0

1

ρ ​t
[

2
1

t
2]}

subject to ∂ ​ρ ​ + ∇ ⋅ (v ​ρ ​) = 0, ρ ​ = ρt t t t 0
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Gibbs variational principle for Wasserstein
proximal
There is also a dual formula (not used further today)

Theorem 3 For general weights  (bounded below and lower semicontinous) and
 a Polish space we have the duality formula

This divergences have nice properties, similar to proximal IPM (for another day).

See Jeremiah Birrell for similar results and applications to DRO!

c(x, y)
X

​ ​

D ​(ρ∥π)KL
C = ​ W (ρ,μ) + D ​(μ∥π)

μ∈P(X)
inf { c

KL }

= ​ E ​[ϕ] − logE ​[e ]
ϕ(x)+ψ(y)≤c(x,y)

sup { ρ π
−ψ }
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Generative adversarial networks (GANS)
Birell et. al (JMLR 2022)

Choose a reference space  (usually Gaussian, low-dimensional) and an
objective functional (usually a probability divergence).

Optimization problem -GAN

Optimization over maps  (parametrized by suitable neural
networks) provides the generative model  which approximates .

Solve via min-max algorithms

Replacing  and  by corresponding their empirical measure (and mini-batches).

(Ω ​, ρ)ref

(KL − Γ)

​D(g ​ρ∥π) =
g

inf # ​ ​ E ​[ϕ] − logE ​[e ]
g

inf
ϕ∈Γ
sup { π g ​ρ#

ϕ }

g : Ω ​ →ref X

μ = g ​ρ# π

π ρ
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Findings:

Provide a natural and theoretically grounded way to stabilize the training of -GAN.:
Proximal IPM divergences incorporate the Lipschitz regularization of neural networks
(via spectral normalization or soft constraints) into the divergence.

Empirically, that -Lischitz GAN outperform Wasserstein GANs ([more robust, less
sensitive to choise of hyper parameters and learning rates}{.red}) Intuitively the
objective functional is much more (strictly) convex so better convergence of the
algorithms is expected. A proof of this would be nice!

-GAN (for suitable choices of ) perform very well for heavy tail data (go talk to Ziyu
and see his poster)

f

KL

f f
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-Gan is more stable with respect to learning rates than W-Gan (CIFAR-10 data sets)f
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First variation of proximal divergences
Infimum convolution has a smoothing effect:

The KL-divergence has a well defined first variation

Theorem 4 The -KL proximal divergence has a well defined first variation.
If  (unique on ) then

which is defined for all .

A similar result holds for Wasserstein proximals.

​ (ρ∥π) =
δρ

δD ​KL arg ​ E ​[ϕ] − logE ​[e ] =
ϕ

sup { ρ π
ϕ } ϕ =∗ log ​

dπ

dρ

Γ
ϕ =∗ arg sup ​ E ​[ϕ] − logE ​[e ]ϕ∈Γ { ρ π

ϕ } supp(ρ + π)

​ (ρ∥π) =
δρ

δD ​KL
Γ

​{ϕ (y) +
y

inf ∗ ∥x − y∥} = ​  Lipschitz regularizationϕ
∗

x
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Wasserstein gradient flow
With the first variation we can consider Wasserstein gradient flow

which we can think as a Lipschitz regularization of the Fokker-Planck equation

We do not need to assume densities which leads to Particle Algorithms which are very well
suited for learning tasks from data.

Gradient Particle algorithm Given data  and source samples  Euler
method gives

∂ ​ρ ​ =t t div ρ ​∇ ​ (ρ ​∥π)( t
δρ

δD ​KL
Γ

t )

X ​ ∼i π Y ​ ∼j ρ

​ ​

Y ​j,n+1

ϕ ​n
∗

= Y ​ − Δt∇ϕ ​(Y ​)j,n n
∗

j,n

= ​ ​ ​ϕ(Y ​) − log ​ ​e
ϕ∈Γ ​

L
NN

argmax {
M

1

i=1

∑
M

i,n
N

1

i

∑ ϕ(X ​)i }
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Since  is Lipschitz we have finite speed propagation (CFL-type condition)  stability
of the numerical schemes.

The gradient structure implies that

where we define the Lipschitz-regularized Fisher Information as

For particles this is just the total kinetic energy of the particles

 and the Fisher information  can be monitored to ensure convergence.

ϕ∗ →

​D ​(ρ ​∥π) =
dt

d
KL
Γ ​L

t −I ​(ρ ​∥π) ≤f
Γ ​L

t 0

I ​
(ρ ​

∥π) =KL
Γ ​L

t E ​ ∣∇ϕ ∣ .ρ ​t
[ ∗ 2]

I ​
(

​ ​
∥ ) =KL

Γ ​L ρ̂n
M π̂N ​ ​ ∣∇ϕ ​(Y ​)∣ ,

M

1

i=1

∑
M

n
L,∗

n
(i) 2

D ​KL
Γ I ​KL

Γ ​L
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Sierpinksi carpet

GPA 

The other guys 
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MNIST with scarce data and generalization
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Heavy-tailed Distributions (Ziyu’s poster)
Learn heavy-tailed distributions using generative models

Theory in Ziyu’s poster!

GPA and -GANS perfom best compared to other generative algorithmsΓ
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Normalizing flows
Continuous normalizing flows (many different variants) train ODE’s

by minimizing  where =time-1 map. Use the change of variables for
densities to evaluate KL.

One need to invert the flow to generate  from  (backward-forward flows).

The training is unstable and depends on the time discretization.

Autoencoder and specialized archtecture are needed.

For target  which are singular the use of densities is a bit suspicious.

​ =
dt

dx ​t
v ​(x ​)  with x ​ ∼t t 0 π and x ​ ∼1 ρ

D ​(π∣g ​ρ)KL # g

π ρ

π
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 proximal (Hyemin’s poster)
Main ideas:

Use Benamou-Bremier and  proximal to stabilize the learning of the flow

Replace {  by  to handle singular .]{.red}

Putting all together we find the functional

Adversarial training like in GANs so no need to invert the flow.

Capture high dimensional strucutre without auto-encoder!

W ​ +1 W ​2

W ​2
2

D ​KL D ​KL
Γ π

​ ​

​ ​ E ​[ϕ] − logE ​[e ] + λ ​ ​E ​[∣v ​∣ ]
v,μ
inf {

ϕ∈Γ ​L

sup { μ π
ϕ } ∫

0

1

2
1

ρ ​t t
2 }

 subject to  ​ = v ​(x ​), x ​ ∼ ρ,x ​ ∼ μ
dt

dx ​t
t t 0 1
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Example: capturing low-d structure
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Mean-field game analysis
Markos’ talk: the optimzation is a mean-field game with optimality conditions in the form
of a forward Fokker-Planck equation and a backward Hamilton-Jacobi equation:

and with optimal velocity .

Theorem 5  

 proximal implies that we have well-defined terminal condition for HBJ +
uniqueness of classical solution

 proximal provides a meaningful PDE + linear optimal trajectories

∂ ​U ​ + ​ ∣∇U ​∣ = 0 with  U ​(x) = ​ (μ∥π)t t 2λ
1

t
2

1
δρ

δD ​f
Γ

∂ ​ρ ​ − ∇ ⋅ ρ ​ ​ = 0 with  ρ ​ =t t ( t
λ

∇U ​t ) 0 ρ.

v ​(x) =t − ​ ∇U ​(x)
λ
1

t

W ​1

W ​2
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JKO + Wasserstein gradient flow
Wasserstein gradient flow for 

= regularized Fokker-Planck

Explicit Euler = GPA algorithms!

Implicit Euler =  +  proximal!

D ​(ρ∥π)KL
Γ

∂ ​ρ ​ =t t div ρ ​∇ ​ (ρ ​∥π)( t
δρ

δD ​KL
Γ

t )

W ​1 W ​2
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Conclusion

We need more good ideas from
Paul for many years to come!
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