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Generative modeling

Stable diffusion
ChatGPT

Molecular generation 
Hoogeboom et al. 2022
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Parametrized 
family of distributions; 
use Deep Learning/ 

neural networks

…
~    𝑝𝜃(𝑥)

What is Generative Modeling?
Given a dataset, e.g., images of bedrooms (LSUN dataset), create more data

Assume an unknown data distribution

pdata(x) = π(x)

Generative model distribution

pg(x) = pθ(x)

Goal: Find θ ∈ θ such that pθ(x) ≈ pdata(x) = π(x)
Generative because sampling from pθ(x) produces new unseen images

𝒟 = {x1, x2, . . . , xn} pθ*(x) ≈ π(x) �̃� = {x̃1, x̃2, . . . , x̃n}

Generative modeling 

More pressing math challenges in GMs

• Learning (a.k.a. quality assessment): What is the proper 
comparison metrics between probability distributions/data? 
Kullback-Leibler (KL) and a lot more, but…

• Maximum Likelihood is most important, Stat516



Generative modeling approaches
Main Goal: Given data  from an (unknown) target 
distribution  ,  reproduce new samples from 

Xi ∼ π, i = 1,⋯, N
π π

•  Pick a source distribution , easy to simulate (e.g. Gaussian). 

• Generative map (one-shot): Learn a transport map  such that:   


        (e.g. GANs, distillation methods)

Or

ρ
Φ

Φ#ρ ≈ π

• Generative flow: Learn a transport flow via a vector field  such that  

         

        s.t.  


              Normalizing flows  ( )  learn an ODE

         Diffusion models   ( )  learn a  SDE

v(x, t)

dx(t) = v(x(t), t) dt + σ dW(t) x(0) ∼ ρ x(T) ∼ π

σ = 0
σ > 0



Flow-based generative modeling 
• Given dataset  data distribution viewed as particles

• Flow-based generative modeling: based on ODE or SDE for 

transport of probability measures 

{Xi} ∼ π

Continuous normalizing flows
Grathwohl et al. ‘18

Score-based  
generative models

Song et al. ‘20
Ho et al. ‘20 GENERATIVE PARTICLE ALGORITHMS FOR HIGH-DIMENSIONAL SCARCE DATA 7

Figure 1: Sierpinski carpet embedded in 3D. Source data (purple particles) are transported
via GPA close to the target data (cyan particles). The target particles were sampled from a
Sierpinski carpet of level 4. See Figure 6 for a related 2D demonstration and a comparison to
GANs.

practical demonstration with real data sets we refer to the example in Section 7.

(a) (fKL,�1)-GPA (b) (fKL,�1)-GAN (c) Wasserstein-GAN

Figure 2: Comparison of the GPA algorithm (1.11) with various GANs for the MNIST data
base. The GPA is able to generate samples from small data sets, while in this low data regime
GANs fail. See Section 6 for additional details and discussion.

This paper is structured as follows. In Section 2, we construct Lipschitz-regularized gra-
dient flows in probability space by computing the first variation of Lipschitz-regularized di-
vergences. In Section 3 we define generative particle algorithms (GPA) for these gradient
flows. In Sections 4-7 we provide our primary demonstration examples as discussed earlier.
In particular in Subsection 7.2 we present the new DPI that provides performance guarantees
as we transition from latent to real space in very high-dimensional data sets. In Section 8 we
discuss connections of (1.6) with Fokker-Planck and porous medium PDE. MK: In the Appen-
dix we include additional examples, information on our experimental settings and background
material on Lipschitz-regularized divergences.

Wasserstein  
Gradient flows

JKO ‘98
Santambrogio ‘15

Hyemin Gu et al. ‘23



Continuous-time  normalizing flows
Target: π(x) Reference: ρref(x) = 𝒩(0,I)

Find velocity field: v = vθ

dx
dt

= vθ(x(t))

x(0) ∼ π(x), x(T) ∼ ρref(x)

⟺ min
θ

−𝔼π [log ρref(x(0)) + ∫
0

T
∇ ⋅ vθ(x(s), s) ds] : x(s) = x + ∫

s

T
vθ(x(s′ ), s′ ) ds′ , x ∼ π

Grathwohl et al. ‘18

min
θ

DKL(π∥fθ♯ρ0) The ‘usual’ divergence



Highlights in this talk
1. Mean-field games as a mathematical framework for generative flows:  

• optimal control of particle dynamics + cost functions/distances to target π 


• backward Hamilton-Jacobi + forward Transport PDE


See the posters by Hyemin Gu and Ben Zhang 

2. Model-form UQ + PDE regularity theory for generative flows: 


• Score-based, diffusion generative models are  robust 

3. Structure-informed learning: 

• Equivariance provably enhances generative algorithms 


See poster by Ziyu Chen
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Neural ODE flows & diffusion-based 
generative algorithms as MFG 

Benjamin Zhang,  
Brown

A Mean-field games laboratory 
for generative modeling:  



Mean-field games

http://www.science4all.org/article/mean-field-games/

Transport 
PDEOptimal control



Motivation

• Explaining — Understanding generative models in relation to each other


• Enhancing — MFGs inform exploitable mathematical structure


• Inventing — A laboratory for experimenting with new models


• Old & new mean-field games — new applications to Generative AI  & scalable 

computational methods for MFG (the “specialty” of generative algorithms)

Mean-field games as a unifying mathematical framework

-  Normalizing flows as solutions of MFGs


- Score-based generative models as solutions of MFGs




Mean-field games
dx(t) = v(x(t), t) ds + σ(x(t), t) dW(t)
x(0) = x0

Agent dynamics ∂tρ + ∇ ⋅ (vρ) =
σ2

2
Δρ

ρ(x,0) = ρ0(x)

min
v,ρ

Jx,t(v, ρ) = min
v,ρ

𝔼 [M(x(T), ρ(x(T), T)) + ∫
T

t
I(x(s), ρ(x(s), s)) + L(x(s), v(x(s), s))ds]{Terminal cost {Interaction cost {Running cost

Agent cost function



Potential Mean-field games and optimality conditions

inf
v,ρ {ℳ(ρ( ⋅ , T)) + ∫

T

0
ℐ(ρ( ⋅ , t))dt + ∫

T

0 ∫ℝd

L(x, v)ρ(x, t) dx dt}

{ { {Terminal cost Interaction cost Running cost

s.t. ∂tρ + ∇ ⋅ (vρ) =
σ2

2
Δρ, ρ(x,0) = ρ0(x) [Lasry & Lions ’07]

Hamiltonian
H(x, p) = sup

v
− p⊤v − L(x, v)

v*(x, t) = − ∇pH(x, ∇U)

Optimal velocity field −∂tU + H(x, ∇U) −
σ2

2
ΔU =

δℐ
δρ

(x, ρ(x, t)) Hamilton-
Jacobi-Bellman

∂tρ − ∇ ⋅ (∇pH(x, ∇U)ρ) =
σ2

2
Δρ Fokker-Planck

U(x, T) =
δℳ
δρ

(x, ρ( ⋅ , T)), ρ(x,0) = ρ0(x)

Optimality conditions 
characterize solution!



Why mean-field games for generative modeling?
Training flow-based models looks like solving MFGs

s.t. dx(t) = v(x(t), t) dt + σ dW(t)
x(0) ∼ ρ0

min
v

𝒟(π, ρv( ⋅ , T)) + 𝔼 [∫
T

0
L(x, v) dt]

Generative model

Reference distribution

πTarget distribution

{ Loss

{Transport cost

Examples: KL Divergence, Cross-entropy, 

f-divergences, Jensen-Shannon

Example: Optimal transport cost

See [Onken et al. ’21]


Or L = 0



Generative modeling

dx(t) = v(x(t), t) dt + σ dW(t)

Optimization problem

x(0) ∼ ρ0

min
v

𝒟(π, ρv( ⋅ , T )) + 𝔼 [∫
T

0
L(x, v) dt] x(0) ∼ 𝒩(0,I)

dx(t) = v*(x(t), t) dt + σ dW(t)

x(T ) ∼ π

Generative model

Generative models as solutions to MFGs



Optimality conditions & 
 well-posedness

Hamiltonian

H(x, p) = sup
v

− p⊤v − L(x, v)

∂tρ − ∇ ⋅ (∇pH(x, ∇U)ρ) =
σ2

2
Δρ

Forward in time: Fokker-Planck

ρ(x,0) = ρ0(x)

Backward in time: Hamilton-Jacobi-Bellman
Coupled 

PDEs

Generative modeling

dx(t) = v(x(t), t) dt + σ dW(t)

Optimization problem

x(0) ∼ ρ0

min
v

𝒟(π, ρv( ⋅ , T )) + 𝔼 [∫
T

0
L(x, v) dt] x(0) ∼ 𝒩(0,I)

dx(t) = v*(x(t), t) dt + σ dW(t)

x(T ) ∼ π

Generative model

Generative model structure

v*(x, t) = arg sup
v

[−v⊤ ∇U − L(x, v)]
= − ∇pH(x, ∇U)

Generative models as solutions to MFGs

∂tρ + ∇ ⋅ (vρ) =
σ2

2
Δρ ρ(x,0) = ρ0(x)

Mean-field game

• Common backward-forward structure

• Backward eq. determines optimal velocity field 
• Forward eq. determines generation

• Applies to all flow and diffusion-based models 

v*(x, t) = arg sup
v

[−v⊤ ∇U − L(x, v)]
= − ∇pH(x, ∇U)

Optimal velocity fieldGenerator Identifies velocity field



Exhibit A: Continuous normalizing flows
Target: π(x) Reference: ρref(x) = 𝒩(0,I)

Find velocity field: v = vθ

dx
dt

= vθ(x(t))

x(0) ∼ π(x), x(T) ∼ ρref(x)

⟺ min
θ

−𝔼π [log ρref(x(0)) + ∫
0

T
∇ ⋅ vθ(x(s), s) ds] : x(s) = x + ∫

s

T
vθ(x(s′ ), s′ ) ds′ , x ∼ π

Grathwohl et al. ‘18

CNFs trained with KL divergence are ill-posed: discretization-dependent 
Sensitive to parametrization!

min
θ

DKL(π∥fθ♯ρ0) The ‘usual’ divergence



Continuous normalizing flows are ill-posed
Well-noted that CNFs are ill-posed. Study CNFs as MFG

Hamiltonian is 
degenerate!

H(x, p) = sup
v

− p⊤v − L(x, v)

= sup
v

− p⊤v

= ∞ if p ≠ 0
H(x, p) = 0 if p = 0

inf
v,ρ {ℳ(ρ( ⋅ , T)) + ∫

T

0
ℐ(ρ( ⋅ , t))dt + ∫

T

0 ∫ℝd

L(x, v)ρ(x, t) dx dt}

{ { {Terminal cost Interaction cost Running cost

s.t. ∂tρ + ∇ ⋅ (vρ) =
σ2

2
Δρ, ρ(x,0) = π(x)

inf
v,ρ {𝒟KL(ρ( ⋅ , T)∥ρref)}
s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = π(x)

{Reference distribution



Continuous normalizing flow as an MFG
Additional constraints yield well-posedness & math structure!

inf
v,ρ {𝒟KL(ρ( ⋅ , T)∥ρref) : ∥v∥ ≤ c}
s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = π(x)

Option 1: Bound the set of feasible velocities

−∂tU + c∥∇U∥ = 0 HJB: A level set equation!

∂tρ − c∇ ⋅ (ρ
∇U

∥∇U∥ ) = 0 Fokker-Planck

U(x, T) = 1 + log
ρ(x, T)
ρref(x)

, ρ(x,0) = π(x)

Hamiltonian
H(x, p) = sup

∥v∥<c
− p⊤v

= c∥p∥

v*(x, t) = − c
∇U(x, t)

∥∇U(x, t)∥

Optimal velocity field



Continuous normalizing flow as an MFG
Additional regularizations yield well-posedness and structure

inf
v,ρ {𝒟KL(ρ( ⋅ , T)∥ρref) + ∫

T

0 ∫ℝd

1
2

∥v(x, t)∥2ρ(x, t) dx dt}
s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = π(x)

Option 2: Optimal transport cost [Onken et al. ’21]

−∂tU +
1
2

∥∇U∥2 = 0 HJB

∂tρ − ∇ ⋅ (ρ∇U) = 0 Fokker-Planck

U(x, T) = 1 + log
ρ(x, T)
ρref(x)

, ρ(x,0) = π(x)

Hamiltonian
H(x, p) = sup

v
− p⊤v −

1
2

∥v∥2

=
1
2

∥p∥2

v*(x, t) = − ∇U(x, t)
Optimal velocity field



Mathematical structure of CNFs

−∂tU +
1
2

∥∇U∥2 = 0
Hamilton-Jacobi equation

v*(x, t) = − ∇U(x, t)

Optimal velocity field

Optimal transport  regularization • Mean-field games provide well-
posedness and structure to 
normalizing flows 

• Well-posedness of NF training tied to  
well-posedness of Hamilton-Jacobi  

• Empirically observed and explained 
via an Optimal Transport argument, 
Finlay et al, 2021:

See talk by L. Rey-Bellet ,  
poster by Hyemin Gu 

 on a complete analysis & 
experiments using  

Wasserstein Proximals and MFG

U(x, T) = 1 + log
ρ(x, T)
ρref(x)

How to Train Your Neural ODE: the World of Jacobian and Kinetic
Regularization

Chris Finlay 1 Jörn-Henrik Jacobsen 2 Levon Nurbekyan 3 Adam M Oberman 1

Abstract
Training neural ODEs on large datasets has not
been tractable due to the necessity of allowing
the adaptive numerical ODE solver to refine its
step size to very small values. In practice this
leads to dynamics equivalent to many hundreds
or even thousands of layers. In this paper, we
overcome this apparent difficulty by introducing
a theoretically-grounded combination of both op-
timal transport and stability regularizations which
encourage neural ODEs to prefer simpler dynam-
ics out of all the dynamics that solve a problem
well. Simpler dynamics lead to faster conver-
gence and to fewer discretizations of the solver,
considerably decreasing wall-clock time without
loss in performance. Our approach allows us to
train neural ODE-based generative models to the
same performance as the unregularized dynamics,
with significant reductions in training time. This
brings neural ODEs closer to practical relevance
in large-scale applications.

1. Introduction
Recent research has bridged dynamical systems, a
workhorse of mathematical modeling, with neural networks,
the defacto function approximator for high dimensional data.
The great promise of this pairing is that the vast mathemat-
ical machinery stemming from dynamical systems can be
leveraged for modelling high dimensional problems in a
dimension-independent fashion.

Connections between neural networks and ordinary differ-
ential equations (ODEs) were almost immediately noted
after residual networks (He et al., 2016) were first proposed.

1Department of Mathematics & Statistics, McGill Univer-
sity, Montréal, Québec, Canada 2Vector Institute, University of
Toronto, Toronto, Ontario, Canada 3Department of Mathemat-
ics, UCLA, California, USA. Correspondence to: Chris Finlay
<christopher.finlay@mcgill.ca>.

Proceedings of the 37 th
International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

(a) Optimal transport map (b) generic flow

Figure 1. Optimal transport map and a generic normalizing flow.

Indeed, it was observed that there is a striking similarity
between ResNets and the numerical solution of ordinary
differential equations (E, 2017; Haber & Ruthotto, 2017;
Ruthotto & Haber, 2018; Chen et al., 2018; 2019). In these
works, deep networks are interepreted as discretizations of
an underlying dynamical system, where time indexes the
“depth” of the network and the parameters of the discretized
dynamics are learned. An alternate viewpoint was taken by
neural ODEs (Chen et al., 2018), where the dynamics of
the neural network are approximated by an adaptive ODE
solver on the fly. This latter approach is quite compelling
as it does not require specifying the number of layers of the
network beforehand. Furthermore, it allows the learning of
homeomorphisms without any structural constraints on the
function computed by the residual block.

Neural ODEs have shown great promise in the physical sci-
ences (Köhler et al., 2019), in modeling irregular time series
(Rubanova et al., 2019), mean field games (Ruthotto et al.,
2019), continuous-time modeling (Yildiz et al., 2019; Kanaa
et al., 2019), and for generative modeling through normaliz-
ing flows with free-form Jacobians (Grathwohl et al., 2019).
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Score-based generative modeling with SDEs

dY(s) = − f(Y(s), T − s)ds + σ(T − s)dW(s)
Y(0) ∼ π
Y(s) ∼ η( ⋅ , s)

dX(t) = [f(X(t), t) + σ(t)2 ∇log η(x, t)] dt + σ(t)dW(t)
X(0) ∼ η( ⋅ , T )

Noising process

Denoising process

min
θ

CESM(θ) = min
θ ∫

T

0 ∫ℝd

σ(T − s)2

2
∥𝗌θ(y, s) − ∇log η(y, s)∥2η(y, s) dy ds

min
θ

CISM(θ) = min
θ ∫

T

0 ∫ℝd

σ(T − s)2[ 1
2

∥𝗌θ(y, s)∥2 + ∇ ⋅ 𝗌θ(y, s)] η(y, s) dy ds

Score-matching 

Song et al. ‘20

Song et al. ‘20

Two SDEs



Exhibit B: SGM as an MFG

inf
v,ρ {ℳ(ρ( ⋅ , T)) + ∫

T

0
ℐ(ρ( ⋅ , t))dt + ∫

T

0 ∫ℝd

L(x, v)ρ(x, t) dx dt}

{ { {Terminal cost Interaction cost Running cost

s.t. ∂tρ + ∇ ⋅ (vρ) =
σ2

2
Δρ, ρ(x,0) = ρ0(x)

Cross Entropy

inf
v,ρ {−∫ ρ(x, T)log π(x)dx + ∫

T

0 ∫ℝd ( 1
2

∥v∥2 − ∇ ⋅ f) ρ(x, t) dx dt}
s.t. ∂tρ + ∇ ⋅ (( f + σv)ρ) =

σ2

2
Δρ, ρ(x,0) = η(x, T)

Cross Entropy

CE(π, ρ) = − 𝔼ρ[log π]

= − 𝔼ρ[log ρ] + 𝔼ρ [log
π
ρ ]

= Entropy + KL Divergence

Wasserstein Proximal of 
Cross Entropy when f=0



−∂tU − f⊤ ∇U +
1
2

∥σ∇U∥2 + ∇ ⋅ f =
σ2

2
ΔU Hamilton-

Jacobi-
Bellman

∂tρ + ∇ ⋅ (ρ( f − σ2 ∇U)) =
σ2

2
Δρ Controlled Fokker-Planck

U(x, T) = − log π(x), ρ(x,0) = η(x, T)

SGM as an MFG: optimality conditions

∂sη + ∇ ⋅ (−fη) =
σ2

2
Δη Uncontrolled 

Fokker-Planck

∂tρ + ∇ ⋅ (ρ( f + σ2 ∇log η)) =
σ2

2
Δρ Controlled Fokker-Planck

η(y,0) = π(y), ρ(x,0) = η(x, T)

U(x, t) = − log η(x, T − t)
Cole-Hopf

See also optimal control perspective [Berner et al. 2022]



SGM as an MFG: Noising SDE is a HJB

∂sη + ∇ ⋅ (−fη) =
σ2

2
Δη Uncontrolled 

Fokker-Planck

∂tρ + ∇ ⋅ (( f + σ2 ∇log η)ρ) =
σ2

2
Δρ Controlled Fokker-Planck

η(y,0) = π(y), ρ(x,0) = η(x, T)

HJB equation 
hiding in  

plain sight

(was HJB)

Fokker-Planck



Continuous normalizing flows vs score-based generative models
Less than meets the eye

inf
v,ρ {ℳ(ρ( ⋅ , T)) + ∫

T

0
ℐ(ρ( ⋅ , t))dt + ∫

T

0 ∫ℝd

L(x, v)ρ(x, t) dx dt}

{ { {Terminal cost Interaction cost Running cost

s.t. ∂tρ + ∇ ⋅ (vρ) =
σ2

2
Δρ, ρ(x,0) = ρ0(x)

Dynamics

OT-Flow (Alternate 
formulation)

SGM via SDEs

ℳ(ρ) ℐ(ρ) L(x, v)

𝒟KL(π∥ρ)

−𝔼ρ [log π]

0

0

1
2

∥v∥2

1
2

∥v∥2 − ∇ ⋅ f

dx = v dt

dx = ( f + σv) dt + σdW



inf
v,ρ {𝒟KL(π∥ρ( ⋅ , T )) + ∫

T

0 ∫ℝd

1
2

∥v(x, t)∥2ρ(x, t) dx dt}
s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = ρ0(x)

OT Normalizing flow (alternate form)

−∂tU − f⊤ ∇U +
1
2

∥σ∇U∥2 + ∇ ⋅ f =
σ2

2
ΔU

Hamilton-Jacobi-
Bellman

∂tρ + ∇ ⋅ (( f − σ2 ∇U)ρ) =
σ2

2
Δρ Fokker-Planck/

transport PDE

U(x, T) = − log π(x), ρ(x,0) = e−U(x,0)

SGM vs. Normalizing Flows: an optimality conditions comparison

inf
v,ρ {−∫ ρ(x, T )log π(x)dx + ∫

T

0 ∫ℝd ( 1
2

∥v∥2 − ∇ ⋅ f) ρ(x, t) dx dt}
s.t. ∂tρ + ∇ ⋅ (( f + σv)ρ) =

σ2

2
Δρ, ρ(x,0) = η(x, T )

Score-based Generative Model

∂tρ − ∇ ⋅ (ρ∇U) = 0

−∂tU +
1
2

∥∇U∥2 = 0

U(x, T ) = −
π(x)

ρ(x, T )
, ρ(x,0) = ρ0(x)initial/terminal 

conditions

In SGM: HJB decouples from FP due to terminal condition 
and can be solved first, to provide the optimal velocity  

field for the FP (see reverse SDE)



MFG-informed generative models

Physics + Data informed

Space of Data-informed Models

1

MFG formulation describes 

math structure


We learn in a restricted, more 
relevant space

Math and data informed

Provably yields: 

- Better generative models

- Better training objectives

- Better regularizers


See posters by  Hyemin Gu, 
Ben Zhang



A modular mean-field games laboratory

See full chart: 

arXiv:2304.1353!

Experiment with your 
own algorithm here…



• Score probability flow as an MFG — 
Fisher information as interaction


• Learn robustly distributions on manifolds 
via MFG & Wasserstein proximals, see 
poster by Hyemin Gu


• SGM MFG approximates Wasserstein 
proximal operator,  poster by Ben Zhang

Successful generative flows & diffusions are mean-field games

Common backward-forward mathematical structure

Backward equation determines optimal velocity field

Applies to all flow and diffusion-based models

Forward equation determines generation

Other related topics & recent extensions

Wasserstein proximal 
operators describe SGMs 
and resolve memorization

Generative modeling benefits from PDE analysis

vs.

Ben Zhang, Siting Liu, Wuchen Li, M.K., & Stan Osher



Score-based generative models are 
provably robust: a UQ perspective

Mimikos-Stamotopoulos, 
N., Zhang, B. J., & 
Katsoulakis, M. A. (2024). 
arXiv preprint 
arXiv:2405.15754

Nikiforos Mimikos-
Stamatopoulos, 
UChicago   

Université Côte d'Azur

Benjamin Zhang, Brown 



Score-based generative modeling with SDEs

dY(s) = − f(Y(s), T − s)ds + σ(T − s)dW(s)
Y(0) ∼ π
Y(s) ∼ η( ⋅ , s)

dX(t) = [f(X(t), t) + σ(t)2 ∇log η(x, t)] dt + σ(t)dW(t)
X(0) ∼ η( ⋅ , T )

Noising process

Denoising process

min
θ

CESM(θ) = min
θ ∫

T

0 ∫ℝd

σ(T − s)2

2
∥𝗌θ(y, s) − ∇log η(y, s)∥2η(y, s) dy ds

min
θ

CISM(θ) = min
θ ∫

T

0 ∫ℝd

σ(T − s)2[ 1
2

∥𝗌θ(y, s)∥2 + ∇ ⋅ 𝗌θ(y, s)] η(y, s) dy ds

min
θ

CDSM(θ) = min
θ ∫

T

0 ∫ℝd ∫ℝd

σ(T − s)∥sθ(y, s) − ∇log η(y, s |y′ )∥2η(y, s |y′ )π(y′ )dy dy′ ds

Different score-matching objectives 

Song et al. ‘20

Song et al. ‘20

Two SDEs



Errors of SGM
• Finite sample error 


• Choice of score-matching objective 


• Score function approximation 

e1

e2

e3

Research question: 

• Reference measure 


• Early stopping 


• Discretization error 

e4

e5

e6

d(ν1, ν2) = sup
ψ∈𝒳 ∫ ψ(x) d(ν1 − ν2)Integral probability metric (IPM): 

How well does generative distribution mg(T) approximate data distribution π?

E.g., Wasserstein-1, 𝒳 = {ψ : Ω → ℝ,∥∇ψ∥∞ ≤ 1}

"d(mg(T), π) ≤ ℱ(e1, e2, e3, e4, e5)"

K. Chowdhary and P. Dupuis, Distinguishing and 
integrating aleatoric and epistemic variation in 
uncertainty quantification, ESAIM: M^2NA (2013) 



Model form uncertainty quantification for SGMs
Wasserstein Uncertainty Propagation (WUP) theorem (partial)

∂tm1 − ∇ ⋅ (m1b1) = Δm1, m1(0) = m1 ∂tm2 − ∇ ⋅ (m2b2) = Δm2, m2(0) = m2

d1(m2(T), m1(T)) ≤ CR3/2 (1 + ∥∇b1∥∞)(d1(m1, m2) + ε)

If  error is boundedL2(m2)

Then the Wasserstein distance between distributions  and  is boundedm1(T) m2(T)

∥b2 − b1∥2
L2(m2) = ∫

T

0 ∫Ω
∥b2(x, t) − b1(x, t)∥2 m2(t, x) dx dt ≤ ε2

Two SDEs with drifts  and  on domain b1 b2 Ω = R𝕋d

Model form error

Direct bound for Wasserstein-1 without appealing to KL divergence!



Robustness under explicit score matching

Two SDEs: True drift ∇log ηπ and approximate drift: bθ = sθ(T − t, x)

∂tmg − ∇ ⋅ (mgbθ) = Δmg, mg(0) =
1

vol(R𝕋d)
Denoising process

Data distribution π ∈ 𝒫(Ω) on domain Ω = R𝕋d

If ESM error is enn : ∫
T

0 ∫ℝd

∥sθ(s, y) − ∇log η(y, s)∥2η(y, s) dy ds < enn,  then

d1(π, mg(T)) ≤ CR3/2 (1 + ∥∇sθ∥∞) (Re− ωT
R2 d1 (π,

1
vol(R𝕋d) ) + enn)

Application of WUP to SGM with explicit score matching

Model form error

Choice of reference measure ESM error
Direct bound for Wasserstein-1 without appealing to KL divergence!



Robustness under denoising score matching
Main result

d1(π, mg(T)) ≲ ϵ + R3/2(1 + ∥∇sθ∥∞)(Re− ωT
R2 d1 (π,

1
vol(R𝕋d) ) + e′ nn),

CN
DSM(θ) = ∫

T

ϵ ∫ℝd ∫ℝd

σ(T − s)∥sθ(y, s) − ∇log η(y, s |y′ )∥2η(y, s |y′ ) ̂πN(y′ )dy dy′ ds < enn

Then, 

where
e′ nn ≲ enn + (1 +

| log(δ) |

ϵ
+ T∥sθ∥2

C2([0,T]×Ω)) d1(πN, π) .

Assume score   learned via DSM with early stopping, which provides density lower bound 
 

sθ
πϵ > δ, ̂πN,ϵ > δ

Model form error

Early stopping
Choice of reference measure

Choice of score matching objective

Finite sample errorDSM error

DSM to ESM 
bridgeDirect bound for IPMs 

without appealing to 
KL divergence!



Regularity theory of HJB PDEs enables UQ in SGMs

• Regularizing test functions allows us to bound stronger TV norm with a 
weaker Wasserstein-1 norm. 

Step 1: Kolmogorov backward equation determines suitable test functions

Step 2: Integral probability metrics bounds depend on gradient estimates

Step 3: Bernstein estimates from HJB equations provide gradient estimates

Main ideas of Wasserstein Uncertainty Propagation proof



Regularity theory of HJB PDEs enables UQ in SGMs

Step 1: Kolmogorov backward equation (KBE) determines suitable test functions

Main ideas of Wasserstein Uncertainty Propagation proof

∂tm1 − ∇ ⋅ (m1b1) = Δm1, m1(0) = m1 ∂tm2 − ∇ ⋅ (m2b2) = Δm2, m2(0) = m2

λ = m1 − m2 satisfies 

∂tλ − Δλ − ∇ ⋅ (λb1 + m2(b1 − b2)) = 0 in (0,T) × Ω, λ(0) = m2 − m1 in Ω .

Integrate against a test function  that satisfies KBE with terminal condition ϕ(t, x) ψ ∈ 𝒳
−∂tϕ − Δϕ + b1 ⋅ ∇ϕ = 0 in [0,T) × Ω, ϕ(T, x) = ψ(x) in Ω

Difference of measures evolution



Regularity theory of HJB PDEs enables UQ in SGMs
Main ideas of Wasserstein Uncertainty Propagation proof

Step 2: Integral probability metrics bounds depend on gradient estimates

d(m1(T), m2(T)) ≤ sup
ψ∈𝒳 ∫Ω

λ(0,x)ϕ(0,x)dx + sup
ψ∈𝒳 ∫

T

0 ∫Ω
m2 ∇ϕ ⋅ (b2 − b1)dxdt .

{∂tλ − Δλ − ∇ ⋅ (λb1 + m2(b1 − b2)) = 0 in (0,T) × Ω, λ(0) = m2 − m1 in Ω .
−∂tϕ − Δϕ + b1 ⋅ ∇ϕ = 0 in [0,T) × Ω, ϕ(T, x) = ψ(x) in Ω

Integrate first equation against the second, then integrate by parts. Then,

Bounds needs gradient estimates! For Wasserstein-1, sup
ψ∈𝒳 ∫Ω

λ(0,x)ϕ(0,x)dx ≤ d1(m1, m2)∥∇ϕ(0,x)∥∞

Backward-forward 
structure once 
again!



Regularity theory of HJB PDEs enables UQ in SGMs
Main ideas of Wasserstein Uncertainty Propagation proof

Step 3: Bernstein estimates from HJB theory provide gradient estimates

d(m1(T), m2(T)) ≤ sup
ψ∈𝒳 ∫Ω

λ(0,x)ϕ(0,x)dx + sup
ψ∈𝒳 ∫

T

0 ∫Ω
m2 ∇ϕ ⋅ (b2 − b1)dxdt .

−∂tϕ − Δϕ + b1 ⋅ ∇ϕ = 0 in [0,T) × Ω, ϕ(T, x) = ψ(x) in Ω

• Derive a PDE for 


• Apply the maximum principle to obtain a bound on 


• Derive a bound for , bound the IPM.

z =
1
2

∥∇log ϕ∥2

z(t, x) ≤ C∥ log ψ∥∞ + c∥∇log ψ∥∞

∇ϕ(t, x)



Conclusion and ongoing work

• Making the bounds explicitly computable: provide a posteriori estimates on 
the quality of a generative model


• Most useful for guarantees in likelihood-free inference settings & use IPM:


• Extensions to other generative flows with similar UQ issues (learning a drift) 
e.g.,  normalizing flows

UQ and PDE regularity theory contributes to analysis, 
robustness of generative AI algorithms

𝔼πh − 𝔼mg(T)h ≤ d(mg(T), π) ≤ ℱ(e1, e2, e3, e4, e5) .



Structure-informed generative 
modeling

Ziyu Chen, UMass 
Amherst

Jeremiah Birrell,   
Texas State, see poster



Structured-informed learning:  target data & distribution π

π

equivariance equiprobable⟹
• How to build embedded 

structure into generative 
models for data-efficient 
distribution learning?


• Can we use structure/
physics to learn faster?


• Quantify the gains in 
performance

Equivariant Diffusion for Molecule Generation in 3D

Figure 2. Overview of the Equivariant Diffusion Model. To generate molecules, coordinates x and features h are generated by denoising
variables zt starting from standard normal noise zT . This is achieved by sampling from the distributions p(zt�1|zt) iteratively. To train
the model, noise is added to a datapoint x,h using q(zt|x,h) for the step t of interest, which the network then learns to denoise.

A distribution is invariant to R transformations if

p(y) = p(Ry) for all orthogonal R. (10)

Köhler et al. (2020) showed that an invariant distribution
composed with an equivariant invertible function results
in an invariant distribution. Furthermore, Xu et al. (2022)
proved that if x ⇠ p(x) is invariant to a group and the
transition probabilities of a Markov chain y ⇠ p(y|x) are
equivariant, then the marginal distribution of y at any time
step is invariant to group transformations as well. This is
helpful as it means that if p(zT ) is invariant and the neural
network used to parametrize p(zt�1|zt) is equivariant, then
the marginal distribution p(x) of the denoising model will
be an invariant distribution as desired.

Points and Features in E(3) In this paper, we consider
point clouds x = (x1, . . . ,xM ) 2 RM⇥3 with correspond-
ing features h = (h1, . . . ,hM ) 2 RM⇥nf. The features h
are invariant to group transformations, and the positions
are affected by rotations, reflections and translations as
Rx + t = (Rx1 + t, . . . ,RxM + t) where R is an or-
thogonal matrix1. The function (zx, zh) = f(x,h) is E(3)
equivariant if for all orthogonal R and t 2 R3 we have:

Rzx + t, zh = f(Rx+ t,h) (11)

E(n) Equivariant Graph Neural Networks (EGNNs)
(Satorras et al., 2021b) are a type of Graph Neural Net-
work that satisfies the equivariance constraint (11). In this
work, we consider interactions between all atoms, and there-
fore assume a fully connected graph G with nodes vi 2 V .
Each node vi is endowed with coordinates xi 2 R3 as
well as features hi 2 Rd. In this setting, EGNN consists
of the composition of Equivariant Convolutional Layers

1As a matrix-multiplication the left-hand side would be written
xRT . Formally Rx can be seen as a group action of R on x.

xl+1,hl+1 = EGCL[xl,hl] which are defined as:

mij = �e

�
hl
i,h
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hl
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l
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where l indexes the layer, and dij = kxl
i � xl

jk2 is the
euclidean distance between nodes (vi, vj), and aij are op-
tional edge attributes. The difference (xl

i � xl
j) in Equa-

tion 12 is normalized by dij + 1 as done in (Satorras
et al., 2021a) for improved stability, as well as the at-
tention mechanism which infers a soft estimation of the
edges ẽij = �inf (mij). All learnable components (�e,
�h, �x and �inf ) are parametrized by fully connected
neural networks (cf. Appendix B for details). An entire
EGNN architecture is then composed of L EGCL lay-
ers which applies the following non-linear transformation
x̂, ĥ = EGNN[x0,h0]. This transformation satisfies the
required equivariant property in Equation 11.

3. EDM: E(3) Equivariant Diffusion Model
In this section we describe EDM, an E(3) Equivariant Diffu-
sion Model. EDM defines a noising process on both node
positions and features, and learns the generative denois-

ing process using an equivariant neural network. We also
determine the equations for log-likelihood computation.

3.1. The Diffusion Process

We first define an equivariant diffusion process for coordi-
nates xi with atom features hi that adds noise to the data.
Recall that we consider a set of points {(xi,hi)}i=1,...,M ,
where each node has associated to it a coordinate represen-
tation xi 2 Rn and an attribute vector hi 2 Rnf. Let [·, ·]
denote a concatenation. We define the equivariant noising
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Figure 2. Overview of the Equivariant Diffusion Model. To generate molecules, coordinates x and features h are generated by denoising
variables zt starting from standard normal noise zT . This is achieved by sampling from the distributions p(zt�1|zt) iteratively. To train
the model, noise is added to a datapoint x,h using q(zt|x,h) for the step t of interest, which the network then learns to denoise.

A distribution is invariant to R transformations if

p(y) = p(Ry) for all orthogonal R. (10)

Köhler et al. (2020) showed that an invariant distribution
composed with an equivariant invertible function results
in an invariant distribution. Furthermore, Xu et al. (2022)
proved that if x ⇠ p(x) is invariant to a group and the
transition probabilities of a Markov chain y ⇠ p(y|x) are
equivariant, then the marginal distribution of y at any time
step is invariant to group transformations as well. This is
helpful as it means that if p(zT ) is invariant and the neural
network used to parametrize p(zt�1|zt) is equivariant, then
the marginal distribution p(x) of the denoising model will
be an invariant distribution as desired.

Points and Features in E(3) In this paper, we consider
point clouds x = (x1, . . . ,xM ) 2 RM⇥3 with correspond-
ing features h = (h1, . . . ,hM ) 2 RM⇥nf. The features h
are invariant to group transformations, and the positions
are affected by rotations, reflections and translations as
Rx + t = (Rx1 + t, . . . ,RxM + t) where R is an or-
thogonal matrix1. The function (zx, zh) = f(x,h) is E(3)
equivariant if for all orthogonal R and t 2 R3 we have:

Rzx + t, zh = f(Rx+ t,h) (11)

E(n) Equivariant Graph Neural Networks (EGNNs)
(Satorras et al., 2021b) are a type of Graph Neural Net-
work that satisfies the equivariance constraint (11). In this
work, we consider interactions between all atoms, and there-
fore assume a fully connected graph G with nodes vi 2 V .
Each node vi is endowed with coordinates xi 2 R3 as
well as features hi 2 Rd. In this setting, EGNN consists
of the composition of Equivariant Convolutional Layers

1
As a matrix-multiplication the left-hand side would be written

xR
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. Formally Rx can be seen as a group action of R on x.

xl+1,hl+1 = EGCL[xl,hl] which are defined as:
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where l indexes the layer, and dij = kxl
i � xl

jk2 is the
euclidean distance between nodes (vi, vj), and aij are op-
tional edge attributes. The difference (xl

i � xl
j) in Equa-

tion 12 is normalized by dij + 1 as done in (Satorras
et al., 2021a) for improved stability, as well as the at-
tention mechanism which infers a soft estimation of the
edges ẽij = �inf (mij). All learnable components (�e,
�h, �x and �inf ) are parametrized by fully connected
neural networks (cf. Appendix B for details). An entire
EGNN architecture is then composed of L EGCL lay-
ers which applies the following non-linear transformation
x̂, ĥ = EGNN[x0,h0]. This transformation satisfies the
required equivariant property in Equation 11.

3. EDM: E(3) Equivariant Diffusion Model
In this section we describe EDM, an E(3) Equivariant Diffu-
sion Model. EDM defines a noising process on both node
positions and features, and learns the generative denois-

ing process using an equivariant neural network. We also
determine the equations for log-likelihood computation.

3.1. The Diffusion Process

We first define an equivariant diffusion process for coordi-
nates xi with atom features hi that adds noise to the data.
Recall that we consider a set of points {(xi,hi)}i=1,...,M ,
where each node has associated to it a coordinate represen-
tation xi 2 Rn and an attribute vector hi 2 Rnf. Let [·, ·]
denote a concatenation. We define the equivariant noising

π
Structure + Data informed

Math + Data informed

informed

Math + Structure +Data

Space of Data-informed Models

1

Learning from data,  math- & physics-informed structures

We learn in (an even more)  restricted & relevant space



Sample Complexity of Probability Divergences under Symmetry: 
Quantify the gains in data needed for the same performance 

see poster by Ziyu Chen

|DΓ
fα(P∥π) − DΓΣ

fα (Pm∥πn) | ≤ C1 ( 1
|Σ |m )

1
d + s

+ C2 ( 1
|Σ |n )

1
d + s
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reduction in # of 
needed data due 
to equivariance 
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Wasserstein gradient flows
Gradient flows on the space of probability distributions

∂ρ
∂t

= ∇ ⋅ (ρ∇
δℱ
δρ )

ℱ(ρ) = 𝒟KL(ρ∥π) = 𝔼ρ [log
ρ
π ]

ℱ(ρ) = 𝒟α(ρ∥π) = 𝔼π [fα ( ρ
π )]

Overdamped 
Langevin

Porous 
medium 
equation

fα(x) =
xα

α(α − 1)

Describes a path on the space 
 of probability distributions



Wasserstein gradient flows as solutions to MFGs

inf
v,ρ {ℱ(ρ( ⋅ , T)) + ∫

T

0

e−t/ϵ

ϵ
ℱ(ρ( ⋅ , t)) dt + ∫

T

0 ∫ℝd

e−t/ϵ

2
∥v∥2ρ(x, t) dx dt}

s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = ρ0(x)

−ϵ
∂U
∂t

+ U +
ϵ
2

|∇U |2 =
δℱ
δρ

∂ρ
∂t

− ∇ ⋅ (ρ∇U) = 0.

U(x, T) =
δℱ
δρ

(ρ( ⋅ , T)), ρ(x,0) = ρ0(x)

ϵ → 0 U =
δℱ
δρ

∂ρ
∂t

− ∇ ⋅ (ρ∇U) = 0

ρ(x,0) = ρ0(x)

Relaxation 
limit enforces 

a “local 
equilibrium” :


 U ≈
δℱ
δρ



MFGs reveal an interpolation between Wasserstein gradient  flows & normalizing flows 

inf
v,ρ {ℱ(ρ( ⋅ , T)) + ∫

T

0

e−t/ϵ

ϵ
ℱ(ρ( ⋅ , t)) dt + ∫

T

0 ∫ℝd

e−t/ϵ

2
∥v∥2ρ(x, t) dx dt}

s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = ρ0(x)

ϵ → 0

U =
δℱ
δρ

∂ρ
∂t

− ∇ ⋅ (ρ∇U) = 0

ρ(x,0) = ρ0(x)

ϵ → ∞

Wasserstein gradient flows Optimal transport normalizing flow

inf
v,ρ {ℱ(ρ( ⋅ , T )) + ∫

T

0 ∫ℝd

1
2

∥v∥2ρ(x, t) dx dt}
s.t. ∂tρ + ∇ ⋅ (vρ) = 0, ρ(x,0) = ρ0(x)

0 < ϵ < ∞

?


