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Objects: all periodic crystals

We study solid crystalline materials at the
atomic level. What is a crystal on the left?
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Questions: What is a crystal? What crystals
are the same? If different, how much different?



A periodic point set (crystal)
Any basis v, ..., v, of R"” defines the unit cell U

n
and generates the lattice A = {>_cjv; : ¢; € Z}.
i=1
For any finite motif M C U, the periodic point set
isthesum S=A+ M= {v+p\ velpe M}
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Different pairs (basis, motif) give equivalent sets.



Three axioms of an equivalence

A relation A ~ B between any data objects is
called an equivalence if the three axioms hold:

(1) reflexivity: any object A ~ A;
(2) symmetry: if A~ Bthen B ~ A;
(3) transitivity: if A~ Band B~ C,then A~ C.

The transitivity axiom guarantees that all

objects are in disjoint classes. Any justi-
=

fied classification needs an equivalence.

Equality is an equivalence: 0.5 =50% = 1 =2+ 4



Different equivalence relations

Chemical. crystals A ~ B if A, B have the same
composition. Ok, but diamond and graphite with
vastly different properties are in the same class.

By property: crystals A ~ B if A, B have the
same property. Ok, but crystals that share one
property can differ by many other properties.

Space-group typess: crystals A ~ B if A, B have
isomorphic space groups. Fedorov (1891): 219

or 230 classes. Then NaCl, MgO, TiC, LaN, Nal,
RbF, SrS, ... have the same group (225, Fm3m).



How about standard conventions?
IUCr online dictionary: “crystals are said to be
isostructural if they have the same structure ...
CaCO0O3, NaNOg3, FeBO3 are isostructural”.

" All conventional representa-
. tions in the International Ta-
bles of Crystallography are
correct in theory but are no
. longer practical because

all data are noisy and tiny displacements of
atoms need very different (standard) settings.



DISCOhtII‘IUItdy of conventional cells

Any reduced or conventional cell is discontin-
e | o | o| | UOuUsunder noise and atomic displacements.

e | o | e || All discrete symmetry-based crystallography
whatis a distance;  cannot continuously quantify a distance be-

e dunlieee? | tween crystals. RMSD, 1-PXRD and all others

e ®| o o | arediscontinuous or fail the metric axioms.

e ®| e *  Any pseudo-symmetry (equivalence up to a
e ®*| o * | threshold > 0) leads to a trivial classification.




What is the strongest relation?

P. Sacchi et al. Same or different - that is the
question: identification of crystal forms.
CrystEngComm, 22(43), 7170-7185 (2020).
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B [UCr ACTIVITIES

CHANGE TO THE DEFINITION OF "CRYSTAL" IN THE [UCr
ONLINE DICTIONARY OF CRYSTALLOGRAPHY

Definitions are not final without equivalence.



Definition of a crystal structure
\<ﬁ, y Since crystal Structures are deter-

mined in a rigid form, the strongest
translatlon

\< \< relation in practice is rigid motion
= translations + rotations in R3.

rotat|on

Slightly weaker: isometry = rigid motion +
reflections = any map preserving distances.



Definition of a crystal structure
\<ﬁ. Q/ Since crystal Structures are deter-

| mined in a rigid form, the strongest
translatlon

\< \< relation in practice is rigid motion
= translations + rotations in R3.

rotatmn

Slightly weaker: isometry = rigid motion +
reflections = any map preserving distances.

One Crystallographic Information File is not

a periodic structure = rigid class of crystals
__infinitely many periodic crystals (CIFs) in R3
~ equivalence under rigid motion (or isometry)




Descriptors vs isometry invariants
An invariant is a function / : { isometry classes
of crystals } — {a simpler space} of numbers,
vectors, ..., where comparisons are easier.

Crystals can be distinguished only by invariants
taking the same value on all equivalent objects.

If S ~ Q are isometric, then I(S) = I(Q); or
if I(S) # 1(Q), then S % Q are not isometric.

non-invariants invariants can distinguish some, possibly not all
atomic coordinates  crystals: complete invariants, e.g. conventional
in a cell basis, cannot density, representations distinguish all in theory

distinguish crystas symmetry ‘continuous fast & reconstructable



Crystals live in a continuous space
~ All crystals consist of discretely lo-

cated atoms, which have continuous
7N real-valued coordinates in R3.
/A small perturbation produces a
L slightly different crystal not rigidly
- equivalent to the original structure.

AN

If we restrict comparisons only to a fixed space
group, we cut the continuous space into disjoint
pieces (230 in 3D), so many near-duplicates fall
on different side of boundaries, which is tragic!



Importance of metric axioms
A metric d(S, Q) is a function on pairs (say,
invariants of crystals) satisfying three axioms:

d(I(S), [(Q)) = 0 = I(S) = I(Q),
symmetry AS) Q) - (. (S))
triangle inequality dy + d> > 0s.



Importance of metric axioms
A metric d(S, Q) is a function on pairs (say,
invariants of crystals) satisfying three axioms:

d d(/(S), I(Q)) =0« I(S) = 1(Q),
symmetry d(/(S), /(Q)) = d(/(Q), I(S)),
triangle inequality dy + d> > 0s.
The discrete distance is a discontinuous metric:

d(S,Q) =0 forequivalent S~ Q, else d = 1.

Rass et al (2024): if we allow the A inequality to
fail with any small error, the results of k-means
clustering and DBSCAN can be pre-determined.
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Isometry classification problem
Find an easy continuous and complete isometry
invariant / for discrete sets of unordered points.

Invariance: if point sets S ~ Q are isometric,
then /(S) = /(Q), so I should be well-defined on
isometry classes or [ has no false negatives.
Completeness: if /(S) = /(Q), then S~ Q are
isometric, hence I has no false positives.
Continuity: find a metric d and a constant A
such that if any point of S is perturbed within its
e-neighborhood, then /(S) changes by max JAe.



Harder practical requirements

Reconstruction (inverse design): any S ¢ R”
can be reconstructed from its invariant /(S).



Harder practical requirements

Reconstruction (inverse design): any S ¢ R”
can be reconstructed from its invariant /(S).

Computability: /, d, and reconstruction of S
from /(S) can be obtained in polynomial time in
the motif size (number of atoms in a unit cell),
hence no infinite/exponential size invariants.

If all conditions hold, / is universal for all types
of periodic crystals, independent of symmetry.

If /is simple enough, / defines geographic-style
coordinates on the space of all periodic crystals.



Average Minimum Distance: AMD
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For a finite or periodic set S C R”, let di be the
distance from a point p; in a motif, i =1,..., m,
to its k-th nearest neighbor in S. For k > 1,
Average Minimum Distance AMDy = 1L 3" d.




Stronger invariants (finite case)

For each of m points in a finite set S, we write
distances to k nearest neighbours in increasing
order in the m x k matrix, so unordered points

of S are mapped 1-1 to unordered rows.
T 2

ﬁ@ 2 PDD(T;S):<1/2 vz 2 m)#

1/2|v2 V10 4

< M~ 1/4] v2 v2 4
PDD(K;3)=| 1/2| v2 2 10

2\[—o 1/41v10 V10 4

Collapse any I identical rows in the matrix and
assign the weight //m in the 1st extra column.



Earth Mover’s Dlstance (EMD)

o ¢ o o anysmall T T
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Thm (continuity). If we perturb all points of a set

S within their e-neighbourhoods, the perturbed
set S’ has EMD(PDD(S; k), PDD(S;

PDD(S;4)=|weight 1/ 1 [ 1 [ 1 [ 1] PDD(S";4)=

EMD = 0.5 (0.2+0.005) = 0.1025 < 0.2 bound

k)) < 2e.

weight 0.5

0.8

1.005(1.005

1.2

weight 0.5

1

1 [1.005

1.005

EMD minimises a cost of matching weighted rows.




Key results from NeurlPS 2022

Increasing a number k of neighbors only adds
more columns, k is a degree of approximation.

Thm (strength). Any generic periodic point set
S (with distinct inter-point distances ignoring
periodicity) can be uniquely reconstructed from
a lattice of S and PDD(S; k) with distances up
to a double covering radius of S in any R”".

Thm (time). For any finite or periodic set S with
m motif points in R"”, PDD(S; k) is computable in
near-linear time O(kmlog(m) log? k) for fixed n.



3 pairs of ‘needles in a haystack’
S T2-14vs T2-15

. \ | \ crashed Platon
NN SN comparisons.

200B+ pairwise cdmparisbns of PDD invariants
over two days on a modest desktop for 660K+
periodic crystals in the Cambridge Structural
Database (CSD)




3 pairs of ‘needles in a haystack’
‘A O T2-14 vs T2-15

g \ \ crashed Platon
NN (£ . comparisons.

200B+ pairwise cdmparisbns of PDD invariants
over two days on a modest desktop for 660K+
periodic crystals in the Cambridge Structural
Database (CSD) detected five isometric pairs
with different chemistry, which seems physically
impossible, under investigation by 5 journals:

HIFCAB vs JEPLIA (one atom Cd < Mn), ...




Detecting (near-)duplicates
CSD Mercury’s RMSD (on 15 molecules) was
estimated to require 1000+ years for all pairwise
comparisons on the same desktop computer.

All energy minimization can output many
approximations to the same local minimum.

Loophole: take the CIF (and structure factors)
of a real crystal, change (or double) a unit cell,
perturb atoms (to get a new motif in a larger
primitive cell), swap atoms, and claim as new.

Olga’s talk on Google’s GNoME: Tuesday 4pm.



CRISP: Crystal Isometry Principle

Map: {any crystal} — {set of atomic centres}
sends different crystals to non-isometric sets,
checked for all perlodlc crystals in the CSD, so

: chemistry reduces to geome-

try.

d, Angstroms (,&)



CRISP: Crystal Isometry Principle

Map: {any crystal} — {set of atomic centres}
sends different crystals to non-isometric sets,
checked for all perlodlc crystals in the CSD, so

: chemistry reduces to geome-
try. All known and undiscov-
ered periodic crystals live in
the Crystal Isometry Space
(CRIS) of isometry classes of
periodic sets. All real crystals
are ‘visible stars’ in this con-
4 Angstoms (&) tinuous crystal universe.




Vision of the crystal universe

In the past: only peaks of height = —energy, no locations.
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CSD in meaningful coordinates
AMD+ = average distance to 1st atomic neighbour.
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It's a projection with well-defined coordinates.
Any crystal has a unique location on such maps.



All visible artefacts are explained

OXALOH x100, OXALCH x92,
OXALBH x93, OXACDH x71, ‘x’~
OXACBH x66

(oxalic acid dihydrate) y‘. ‘r& ‘rl-
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MOKYAP x18, MOJPOT x100
UREAXX x40 (MOF CPO-27-Cu)

(urea)



Geo-graphic-style maps in GDS
Non-invariant (or incomplete or discontinuous)

descriptors lose data in cramped latent spaces.
: what's a relation?
structure (of an object)

—

useful property

past work| loss of data ~~ GDS shows properties
incomplete or ,/ ona geographic-style map
discontinuous  opaque / parametrization by complete
descriptors prediction and continuous invariants

black box latent space ./ moduli space of objects

Geometric Data Science puts all (equivalence
classes of) real data objects at uniquely defined
locations on a continuous map (moduli space).



Geometric Data Science
geographic-style maps on spaces%
of data modulo an equivalence s

rigid classification of  Crystal Isometry Space
unordered point clouds of all periodic crystals

(i C) : : ( tability)
m ;I% metric i computability

The key GDS problem (complete, continuous,
computable, and realizable invariants) makes

sense for any data objects (instead of crystals)
and equivalence relation (instead of isometry).
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