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Objects: all periodic crystals
We study solid crystalline materials at the
atomic level. What is a crystal on the left?

Questions: What is a crystal? What crystals
are the same? If different, how much different?



A periodic point set (crystal)
Any basis v1, . . . , vn of Rn defines the unit cell U

and generates the lattice Λ = {
n∑

i=1
civi : ci ∈ Z}.

For any finite motif M ⊂ U, the periodic point set
is the sum S = Λ + M = {v + p | v ∈ Λ,p ∈ M}.

Different pairs (basis, motif) give equivalent sets.



Three axioms of an equivalence
A relation A ∼ B between any data objects is
called an equivalence if the three axioms hold:

(1) reflexivity: any object A ∼ A;

(2) symmetry: if A ∼ B then B ∼ A;

(3) transitivity: if A ∼ B and B ∼ C, then A ∼ C.

The transitivity axiom guarantees that all
objects are in disjoint classes. Any justi-
fied classification needs an equivalence.

Equality is an equivalence: 0.5 = 50% = 1
2 = 2 ÷ 4



Different equivalence relations
Chemical: crystals A ∼ B if A,B have the same
composition. Ok, but diamond and graphite with
vastly different properties are in the same class.

By property: crystals A ∼ B if A,B have the
same property. Ok, but crystals that share one
property can differ by many other properties.

Space-group typess: crystals A ∼ B if A,B have
isomorphic space groups. Fedorov (1891): 219
or 230 classes. Then NaCl, MgO, TiC, LaN, NaI,
RbF, SrS, ... have the same group (225, Fm3̄m).



How about standard conventions?
IUCr online dictionary: “crystals are said to be
isostructural if they have the same structure ...
CaCO3, NaNO3, FeBO3 are isostructural”.

All conventional representa-
tions in the International Ta-
bles of Crystallography are
correct in theory but are no
longer practical because

all data are noisy and tiny displacements of
atoms need very different (standard) settings.



Discontinuity of conventional cells
Any reduced or conventional cell is discontin-
uous under noise and atomic displacements.

All discrete symmetry-based crystallography
cannot continuously quantify a distance be-
tween crystals. RMSD, 1-PXRD and all others
are discontinuous or fail the metric axioms.

Any pseudo-symmetry (equivalence up to a
threshold > 0) leads to a trivial classification.



What is the strongest relation?
P. Sacchi et al. Same or different - that is the
question: identification of crystal forms.
CrystEngComm, 22(43), 7170-7185 (2020).

Definitions are not final without equivalence.



Definition of a crystal structure
Since crystal structures are deter-
mined in a rigid form, the strongest
relation in practice is rigid motion
= translations + rotations in R3.

Slightly weaker: isometry = rigid motion +
reflections = any map preserving distances.

One Crystallographic Information File is not

a periodic structure = rigid class of crystals

=
infinitely many periodic crystals (CIFs) in R3

equivalence under rigid motion (or isometry)
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Descriptors vs isometry invariants
An invariant is a function I : { isometry classes
of crystals } → {a simpler space} of numbers,
vectors, ..., where comparisons are easier.

Crystals can be distinguished only by invariants
taking the same value on all equivalent objects.

If S ≃ Q are isometric, then I(S) = I(Q); or

if I(S) ̸= I(Q), then S ̸≃ Q are not isometric.



Crystals live in a continuous space
All crystals consist of discretely lo-
cated atoms, which have continuous
real-valued coordinates in R3.
A small perturbation produces a
slightly different crystal not rigidly
equivalent to the original structure.

If we restrict comparisons only to a fixed space
group, we cut the continuous space into disjoint
pieces (230 in 3D), so many near-duplicates fall
on different side of boundaries, which is tragic!



Importance of metric axioms
A metric d(S,Q) is a function on pairs (say,
invariants of crystals) satisfying three axioms:

d(I(S), I(Q)) = 0 ⇔ I(S) = I(Q),
symmetry d(I(S), I(Q)) = d(I(Q), I(S)),
triangle inequality d1 + d2 ≥ d3.

The discrete distance is a discontinuous metric:
d(S,Q) = 0 for equivalent S ≃ Q, else d = 1.

Rass et al (2024): if we allow the △ inequality to
fail with any small error, the results of k -means
clustering and DBSCAN can be pre-determined.
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Isometry classification problem
Find an easy continuous and complete isometry
invariant I for discrete sets of unordered points.

Invariance: if point sets S ≃ Q are isometric,
then I(S) = I(Q), so I should be well-defined on
isometry classes or I has no false negatives.

Completeness: if I(S) = I(Q), then S ≃ Q are
isometric, hence I has no false positives.

Continuity: find a metric d and a constant λ
such that if any point of S is perturbed within its
ε-neighborhood, then I(S) changes by max λε.



Harder practical requirements
Reconstruction (inverse design): any S ⊂ Rn

can be reconstructed from its invariant I(S).

Computability: I,d , and reconstruction of S
from I(S) can be obtained in polynomial time in
the motif size (number of atoms in a unit cell),
hence no infinite/exponential size invariants.

If all conditions hold, I is universal for all types
of periodic crystals, independent of symmetry.

If I is simple enough, I defines geographic-style
coordinates on the space of all periodic crystals.
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Average Minimum Distance: AMD

For a finite or periodic set S ⊂ Rn, let dik be the
distance from a point pi in a motif, i = 1, . . . ,m,
to its k -th nearest neighbor in S. For k ≥ 1,
Average Minimum Distance AMDk = 1

m

∑m
i=1 dik .



Stronger invariants (finite case)
For each of m points in a finite set S, we write
distances to k nearest neighbours in increasing
order in the m × k matrix, so unordered points
of S are mapped 1-1 to unordered rows.
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Collapse any l identical rows in the matrix and
assign the weight l/m in the 1st extra column.



Earth Mover’s Distance (EMD)

Thm (continuity). If we perturb all points of a set
S within their ε-neighbourhoods, the perturbed
set S′ has EMD(PDD(S; k),PDD(S′; k)) ≤ 2ε.

EMD minimises a cost of matching weighted rows.



Key results from NeurIPS 2022
Increasing a number k of neighbors only adds
more columns, k is a degree of approximation.

Thm (strength). Any generic periodic point set
S (with distinct inter-point distances ignoring
periodicity) can be uniquely reconstructed from
a lattice of S and PDD(S; k) with distances up
to a double covering radius of S in any Rn.

Thm (time). For any finite or periodic set S with
m motif points in Rn, PDD(S; k) is computable in
near-linear time O(km log(m) log2 k) for fixed n.



5 pairs of ‘needles in a haystack’
T2-14 vs T2-15
crashed Platon
comparisons.

200B+ pairwise comparisons of PDD invariants
over two days on a modest desktop for 660K+
periodic crystals in the Cambridge Structural
Database (CSD)

detected five isometric pairs
with different chemistry, which seems physically
impossible, under investigation by 5 journals:

HIFCAB vs JEPLIA (one atom Cd ↔ Mn), ...



5 pairs of ‘needles in a haystack’
T2-14 vs T2-15
crashed Platon
comparisons.

200B+ pairwise comparisons of PDD invariants
over two days on a modest desktop for 660K+
periodic crystals in the Cambridge Structural
Database (CSD) detected five isometric pairs
with different chemistry, which seems physically
impossible, under investigation by 5 journals:

HIFCAB vs JEPLIA (one atom Cd ↔ Mn), ...



Detecting (near-)duplicates
CSD Mercury’s RMSD (on 15 molecules) was
estimated to require 1000+ years for all pairwise
comparisons on the same desktop computer.

All energy minimization can output many
approximations to the same local minimum.

Loophole: take the CIF (and structure factors)
of a real crystal, change (or double) a unit cell,
perturb atoms (to get a new motif in a larger
primitive cell), swap atoms, and claim as new.

Olga’s talk on Google’s GNoME: Tuesday 4pm.



CRISP: Crystal Isometry Principle
Map: {any crystal} → {set of atomic centres}
sends different crystals to non-isometric sets,
checked for all periodic crystals in the CSD, so

chemistry reduces to geome-
try.

All known and undiscov-
ered periodic crystals live in
the Crystal Isometry Space
(CRIS) of isometry classes of
periodic sets. All real crystals
are ‘visible stars’ in this con-
tinuous crystal universe.
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Vision of the crystal universe
In the past: only peaks of height = −energy, no locations.



CSD in meaningful coordinates
AMD1 = average distance to 1st atomic neighbour.

It’s a projection with well-defined coordinates.
Any crystal has a unique location on such maps.



All visible artefacts are explained



Geo-graphic-style maps in GDS
Non-invariant (or incomplete or discontinuous)
descriptors lose data in cramped latent spaces.

Geometric Data Science puts all (equivalence
classes of) real data objects at uniquely defined
locations on a continuous map (moduli space).



The key GDS problem (complete, continuous,
computable, and realizable invariants) makes
sense for any data objects (instead of crystals)
and equivalence relation (instead of isometry).


