The Crystal Isometry Principle infers chemistry from geometry

Vitaliy Kurlin's Data Science group: Dan Widdowson, Yury Elkin, Olga Anosova, ... Materials Innovation Factory, Liverpool, UK Royal Society APEX fellowship (2023-2025)

ROYAL SOCIETY

Objects: all periodic crystals We study solid crystalline materials at the atomic level. What is a crystal on the left?

Questions: What is a crystal? What crystals are the same? If different, how much different?

A periodic point set (crystal)

Any basis v_1, \ldots, v_n of \mathbb{R}^n defines the *unit cell* Uand generates the lattice $\Lambda = \{\sum_{i=1}^n c_i v_i : c_i \in \mathbb{Z}\}$. For any finite *motif* $M \subset U$, the *periodic point set* is the sum $S = \Lambda + M = \{v + p \mid v \in \Lambda, p \in M\}$.

Different pairs (basis, motif) give equivalent sets.

Three axioms of an equivalence

- A relation $A \sim B$ between any data objects is called an *equivalence* if the three axioms hold:
- (1) *reflexivity*: any object $A \sim A$;
- (2) *symmetry*: if $A \sim B$ then $B \sim A$;
- (3) *transitivity*: if $A \sim B$ and $B \sim C$, then $A \sim C$.

The transitivity axiom guarantees that all objects are in disjoint classes. Any justified classification needs an equivalence.

Equality is an equivalence: $0.5 = 50\% = \frac{1}{2} = 2 \div 4$

Different equivalence relations

Chemical: crystals $A \sim B$ if A, B have the same composition. Ok, but diamond and graphite with vastly different properties are in the same class.

By property: crystals $A \sim B$ if A, B have the same property. Ok, but crystals that share one property can differ by many other properties.

Space-group types: crystals $A \sim B$ if A, B have isomorphic space groups. Fedorov (1891): 219 or 230 classes. Then NaCl, MgO, TiC, LaN, Nal, RbF, SrS, ... have the same group (225, Fm3m).

How about standard conventions?

IUCr online dictionary: "crystals are said to be *isostructural* if they have the same structure ... CaCO3, NaNO3, FeBO3 are isostructural".

All conventional representations in the International Tables of Crystallography are *correct in theory* but are **no longer practical** because

all data are noisy and tiny displacements of atoms need very different (standard) settings.

Discontinuity of conventional cells • • • • • Any reduced or conventional cell is discontin-

•	•	•	•
•	•	•	٠
•	•	•	•

what is a distance between these near duplicates?

V₂

Any *reduced or conventional* cell is discontinuous under noise and atomic displacements.

All discrete *symmetry-based crystallography* cannot continuously quantify a distance between crystals. RMSD, 1-PXRD and all others are discontinuous or fail the metric axioms.

Any *pseudo-symmetry* (equivalence up to a threshold > 0) leads to a trivial classification.

What is the strongest relation?

P. Sacchi et al. Same or different - that is the

question: identification of crystal forms.

CrystEngComm, 22(43), 7170-7185 (2020).

IUCr ACTIVITIES

CHANGE TO THE DEFINITION OF "CRYSTAL" IN THE IUCr Online Dictionary of Crystallography

Definitions are not final without equivalence.

Definition of a crystal structure Since crystal structures are determined in a *rigid form*, the strongest relation in practice is **rigid motion** = translations + rotations in \mathbb{R}^3 .

Slightly weaker: **isometry** = rigid motion + reflections = any map preserving distances.

Definition of a crystal structure Since crystal structures are determined in a *rigid form*, the strongest relation in practice is **rigid motion** = translations + rotations in \mathbb{R}^3 .

Slightly weaker: **isometry** = rigid motion + reflections = any map preserving distances.

One Crystallographic Information File is not

a **periodic structure** = *rigid class* of crystals = $\frac{\text{infinitely many periodic crystals (CIFs) in } \mathbb{R}^3}{equivalence under rigid motion (or isometry)}$

Descriptors vs isometry invariants

An **invariant** is a function $I : \{ \text{ isometry classes}$ of crystals $\} \rightarrow \{a \text{ simpler space}\}$ of numbers, vectors, ..., where comparisons are easier.

Crystals can be distinguished only by *invariants* taking the same value on all equivalent objects.

If $S \simeq Q$ are *isometric*, then I(S) = I(Q); or

if $I(S) \neq I(Q)$, then $S \not\simeq Q$ are not isometric.

non-invariants atomic coordinates in a cell basis, *cannot* distinguish crystas invariants can distinguish some, possibly not all crystals: complete invariants, e.g. conventional density, representations distinguish all *in theory* symmetry continuous fast & reconstructable

Crystals live in a continuous space

All crystals consist of discretely located atoms, which have *continuous* real-valued coordinates in \mathbb{R}^3 .

A small perturbation produces a slightly different crystal not rigidly equivalent to the original structure.

If we restrict comparisons only to a fixed space group, we cut the continuous space into disjoint pieces (230 in 3D), so many near-duplicates fall on different side of boundaries, which is tragic!

Importance of metric axioms

A metric d(S, Q) is a function on pairs (say, invariants of crystals) satisfying three axioms:

$$d(I(S), I(Q)) = 0 \Leftrightarrow I(S) = I(Q),$$
2 symmetry $d(I(S), I(Q)) = d(I(Q), I(S)),$
• triangle inequality $d_1 + d_2 \ge d_3.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Importance of metric axioms

A metric d(S, Q) is a function on pairs (say, invariants of crystals) satisfying three axioms:

$$d(I(S), I(Q)) = 0 \Leftrightarrow I(S) = I(Q),$$
symmetry $d(I(S), I(Q)) = d(I(Q), I(S)),$
triangle inequality $d_1 + d_2 \ge d_3.$

The discrete distance is a discontinuous metric: d(S, Q) = 0 for equivalent $S \simeq Q$, else d = 1. Rass et al (2024): if we allow the \triangle inequality to *fail with any small error*, the results of *k*-means clustering and DBSCAN can be pre-determined.

Isometry classification problem

Find an easy continuous and complete isometry invariant *I* for discrete sets of *unordered points*.

Invariance: if point sets $S \simeq Q$ are isometric, then I(S) = I(Q), so *I* should be well-defined on isometry classes or *I* has *no false negatives*.

Completeness: if I(S) = I(Q), then $S \simeq Q$ are isometric, hence *I* has *no false positives*.

Continuity: find a *metric d* and a constant λ such that if any point of *S* is perturbed within its ε -neighborhood, then I(S) changes by max $\lambda \varepsilon$.

Harder practical requirements

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reconstruction (inverse design): any $S \subset \mathbb{R}^n$

can be reconstructed from its invariant I(S).

Harder practical requirements

Reconstruction (inverse design): any $S \subset \mathbb{R}^n$ can be reconstructed from its invariant I(S).

Computability: *I*, *d*, and reconstruction of *S* from I(S) can be obtained in polynomial time in the motif size (number of atoms in a unit cell), hence *no infinite/exponential size* invariants.

If all conditions hold, *I* is *universal* for all types of periodic crystals, independent of symmetry.

If *I* is simple enough, *I* defines geographic-style coordinates on the space of all periodic crystals.

For a finite or periodic set $S \subset \mathbb{R}^n$, let d_{ik} be the distance from a point p_i in a motif, i = 1, ..., m, to its *k*-th nearest neighbor in *S*. For $k \ge 1$, *Average Minimum Distance* $AMD_k = \frac{1}{m} \sum_{i=1}^m d_{ik}$.

・ロ・・ 日・ ・ 田・ ・ 田

Stronger invariants (finite case)

For each of *m* points in a finite set *S*, we write distances to *k* nearest neighbours in increasing order in the $m \times k$ matrix, so unordered points of *S* are mapped 1-1 to unordered rows.

$$\begin{array}{c|c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\$$

Collapse any *I* identical rows in the matrix and assign the weight I/m in the 1st extra column.

Thm (continuity). If we perturb all points of a set *S* within their ε -neighbourhoods, the perturbed set *S'* has EMD(PDD(*S*; *k*), PDD(*S'*; *k*)) $\leq 2\varepsilon$. PDD(S;4)=[weight 1 1 1 1 1 PDD(S';4)=[weight 0.5]0.8 1.005 1.005 1.2]

EMD = 0.5 (0.2+0.005) = 0.1025 ≤ 0.2 bound

 weight 0.5
 0.8
 1.005
 1.005
 1.2

 weight 0.5
 1
 1
 1.005
 1.005

EMD minimises a cost of matching weighted rows.

Key results from NeurIPS 2022 Increasing a number *k* of neighbors only adds more columns, *k* is a *degree of approximation*.

Thm (strength). Any *generic* periodic point set *S* (with distinct inter-point distances ignoring periodicity) can be uniquely reconstructed from a lattice of *S* and PDD(*S*; *k*) with distances up to a double covering radius of *S* in any \mathbb{R}^n .

Thm (time). For any finite or periodic set *S* with *m* motif points in \mathbb{R}^n , PDD(*S*; *k*) is computable in *near-linear* time $O(km\log(m)\log^2 k)$ for fixed *n*.

5 pairs of 'needles in a haystack'

T2-14 vs T2-15 crashed Platon comparisons.

< □ > < □ > < □ > < □ > < □ > < □ >

200B+ pairwise comparisons of PDD invariants over *two days on a modest desktop* for 660K+ periodic crystals in the Cambridge Structural Database (CSD)

5 pairs of 'needles in a haystack'

T2-14 vs T2-15

crashed Platon

comparisons. 200B+ pairwise comparisons of PDD invariants over two days on a modest desktop for 660K+ periodic crystals in the Cambridge Structural Database (CSD) detected five isometric pairs with different chemistry, which seems physically impossible, under investigation by 5 journals:

HIFCAB vs JEPLIA (one atom Cd \leftrightarrow Mn), ...

Detecting (near-)duplicates CSD Mercury's RMSD (on 15 molecules) was estimated to require 1000+ years for all pairwise comparisons on the same desktop computer. All energy minimization can output many approximations to the same local minimum. **Loophole:** take the CIF (and structure factors) of a real crystal, change (or double) a unit cell, perturb atoms (to get a new motif in a larger primitive cell), swap atoms, and claim as *new*. Olga's talk on Google's GNoME: Tuesday 4pm.

CRISP: Crystal Isometry Principle Map: $\{any crystal\} \rightarrow \{set of atomic centres\}\$ sends *different crystals* to *non-isometric sets*, checked for all periodic crystals in the CSD, so

try.

^{Å)} chemistry *reduces* to geome-

CRISP: Crystal Isometry Principle Map: $\{any crystal\} \rightarrow \{set of atomic centres\}$ sends different crystals to non-isometric sets, checked for all periodic crystals in the CSD, so

CL

 \cap

S

Vision of the crystal universe

In the past: only peaks of height = -energy, no locations.

barriers

deep minima complete invariants

map the crystal space

currently available CSP landscapes consist of •• only isolated dots without any metric information

CSD in meaningful coordinates AMD_1 = average distance to 1st atomic neighbour. 1.6diamond 200 AMD_1 (Angstroms) graphite 1.4-150 1.2-100

1 -

0.5

It's a projection with well-defined coordinates. Any crystal has a *unique location* on such maps.

1 5

2 5

à

3 5

50

All visible artefacts are explained

Geometric Data Science puts all (equivalence classes of) real data objects at *uniquely defined locations* on a continuous map (moduli space).

The **key GDS problem** (*complete, continuous, computable, and realizable* invariants) makes sense for **any data** objects (instead of crystals) and **equivalence** relation (instead of isometry).