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(Combinatorial understanding of algebraic 
geometry) 

Theorem (Maclagan-Sturmfels textbook 
Thm 3.3.5)  
If  is an irreducible variety of -dimensional, 
then  is the support of a balanced fan 
of pure dimension  connected through 
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Q. What can we say about the tropicalization 
of rank  symmetric matrices?
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if all its  tropical minors vanish. 

ex)  
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• Symmetric Barvinok rank 

• Star tree rank 

• Tree rank 
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Theorem (Markwig-Yu 2009) The space 
of tropical rank  matrices forms a simplicial 
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Theorem (Cai-L.-Yu 2025) The space of 
symmetric tropical rank  matrices forms a 
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The tree can be translated by 
adding a proper matrix.
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d + e 2e e + f
d + f e + f 2f
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The space of  symmetric tropical rank  matrices3 × 3 2
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1 1
0 0

2 2b

Regular symbic trees (all inner 
edges have positive length) 
correspond to top-dimensional cells

0 0 0
0 a a
0 a a + b a
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1 1
0 0

2 2

codim
ension-

 cell
10 0 0

0 a a
0 a a + b

Regular symbic trees (all inner 
edges have positive length) 
correspond to top-dimensional cells
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0 0 0
0 a a
0 a a]
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1 1
0 0

2 2
1 1

0 0

2 2

codim
ension-

 cell
10 0 0

0 a a
0 a a + b

[
0 0 0
0 a a
0 a a]

e

Singular symbic trees 
correspond to lower-
dimensional cells

Regular symbic trees (all inner 
edges have positive length) 
correspond to top-dimensional cells
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1 1
0 0
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0 0
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1 1
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2 2

codim
ension-

 cell
10 0 0

0 a a
0 a a + b

[
0 0 0
0 a a
0 a a]

0 0 0
0 a + b a
0 a a

e

Regular symbic trees (all inner 
edges have positive length) 
correspond to top-dimensional cells
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0 0

1 1
1 1

0 0

2 2

Transition of edges

codim
ension-

 cell
10 0 0

0 a a
0 a a + b

[
0 0 0
0 a a
0 a a]

0 0 0
0 a + b a
0 a a

e

Regular symbic trees (all inner 
edges have positive length) 
correspond to top-dimensional cells
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The matroids of symbic trees 

1

3

22

1

3

44

a a
b

c

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1
2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2

a
b
c
d
e
f
g

(Yu 2017) The tropicalization preserves the algebraic matroids. 
Bases of matroids of symbic trees characterize bases of rank  
symmetric matrices.

2



The matroids of symbic trees 

1

3

22

1

3

44

a a
b

c

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1
2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2

a
b
c
d
e
f
g

We define a matroid of a symbic tree by 
a linear matroid of this parameter matrix.
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🌴 Can we use symbic trees to study algebraic 
matroids of rank  symmetric matrices?  

Bernstein (2017) described the independent 
sets of algebraic matroids of rank  skew-
symmetric and non-symmetric matrices  
(partial matrices that can be completed to rank ). 

Technical lemmas (cf. Bernstein 2017)  
•  is independent in the algebraic matroid of 

 if and only if  is independent in a 
matroid of a regular symbic tree with  
vertices.  

•  is a basis of a matroid of a regular symbic 
tree if and only if  is a basis of a matroid of 
some regular symbic tree obtained by a 
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🌴 Can we use symbic trees to study algebraic 
matroids of rank  symmetric matrices?  

Bernstein (2017) described the independent 
sets of algebraic matroids of rank  skew-
symmetric and non-symmetric matrices  
(partial matrices that can be completed to rank ). 

Technical lemmas (cf. Bernstein 2017)  
•  is independent in the algebraic matroid of 

 if and only if  is independent in a 
matroid of a regular symbic tree with  
vertices.  

•  is a basis of a matroid of a regular symbic 
tree if and only if  is a basis of a matroid of 
some regular symbic tree obtained by a 
transition.  

Can we find a family of symbic trees that 
determine the algebraic matroid of rank  
symmetric matrices?
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Theorem (Cai-L.-Yu 2025) The collection of 
bases in the algebraic matroid of rank  
symmetric matrices is the union of bases of 
matroids of trees with caterpillar branches. 
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Theorem (Cai-L.-Yu 2025) The collection of 
bases in the algebraic matroid of rank  
symmetric matrices is the union of bases of 
matroids of trees with caterpillar branches. 

Conjecture Caterpillar symbic trees are 
sufficient to determine the algebraic 
matroid of rank  symmetric matrices.  
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The matroids of symbic trees 

Theorem (Cai-L.-Yu 2025) The collection of 
bases in the algebraic matroid of rank  
symmetric matrices is the union of bases of 
matroids of trees with caterpillar branches. 

Conjecture Caterpillar symbic trees are 
sufficient to determine the algebraic 
matroid of rank  symmetric matrices.  

(One evidence…?) 
Theorem (Al Amadieh-Cai-Yu)  
A symbic tree is caterpillar if and only if 
its corresponding matrix has symmetric 
Barvinok rank . 

For a more generalized conjecture, see 
Conjecture 5.4 of 
Brakensiek-Dhar-Gao-Gopi-Larson
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A set  is called tropically convex if 
for any  and , 

. 

Remark If  is tropically convex, then 
. Hence, it is natural to work 

on . 

Theorem (Develin-Santos-Sturmfels 
2005) Let  be a  matrix. Then the 

S ⊂ ℝn

x, y ∈ S a, b ∈ ℝ
a ⊙ x ⊕ b ⊙ y ∈ S

S
S + ℝ1 ⊂ S

ℝn/ℝ1

M d × n
troprank(M) = dim tconv(columns of M) + 1

Tropical convexity


