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Matrix completion problems - some variants

Assuming the diagonal
entries are always known,
It has an application to the
maximum likelihood
threshold:

e Gross-Sullivant 2018
e Blekherman-Sinn 2018
e Bernstein-Dewar-

Gortler-Nixon-
Sitharam-Theran 2024
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Let k be afield, E = {x{, ..., X,},and

P be aprimeideal in k[x;, ..., x,].

We define the collection of independent sets:
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A matroid obtained from this construction is
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”I' An independent set of algebraic matroid of

§"="(C) corresponds to a partial matrix that can
be completed to rank < m.
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Intro 3 - Tropical algebra and tropicalization

Define a tropical hypersurface

trop(V(f)) = {W € R"| the minimum of trop( f)(W) }

attained at least twice

eX)f=x+y+1 trop(f) = min{x,y,0}
y

I:anidealin K[x;, ..., x, | with V = V(I)

trop(V) = ﬂ trop(V(f)) (atropical variety)
fel
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combinatorial invariants of an algebraic variety Thm 3.3.5)
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Q. What can we say about the tropicalization
of rank 2 symmetric matrices?
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An n X n tropical matrix M has tropicalrank < r An n X n symmetric tropical matrix M has
if allits (¥ + 1) X (r + 1) tropical minors vanish. symmetric tropical rank < rif all its
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So, symmetric tropical rank 3
(even though it has tropical rank 2)
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Theorem (Markwig-Yu 2009) The space

of tropical rank 2 matrices forms a simplicial
fan structure of bicolored trees.
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Theorem (Cai-L.-Yu 2025) The space of

symmetric tropical rank 2 matrices forms a

simplicial fan structure of symmetric
bicolored trees (symbic trees).
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° The tree can be translated by

1 adding a proper matrix.
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Regular symbic trees (all inner
edges have positive length)
correspond to top-dimensional cells
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Regular symbic trees (all inner
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The matroids of symbic trees

alo 1 000 00O0O0O
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We define a matroid of a symbic tree by
a linear matroid of this parameter matrix.
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The matroids of symbic trees

7' Can we use symbic trees to study algebraic Technical lemmas (cf. Bernstein 2017)

matroids of rank 2 symmetric matrices? o [isindependent in the algebraic matroid of
& ,’;32(6) if and only if / is independent in a

Bernstein (2017) described the independent matroid of a regular symbic tree with n

sets of algebraic matroids of rank 2 skew- vertices.

symmetric and non-symmetric matrices o Bisabasis of a matroid of a regular symbic

(partial matrices that can be completed to rank 2). tree if and only if B is a basis of a matroid of
some regular symbic tree obtained by a
transition.

Can we find a family of symbic trees that

determine the algebraic matroid of rank 2
symmetric matrices?
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Theorem (Cai-L.-Yu 2025) The collection of

bases in the algebraic matroid of rank 2

symmetric matrices is the union of bases of
matroids of trees with caterpillar branches.

. Trees with caterpillar branches

The matroids of symbic trees

Conjecture Caterpillar symbic trees are
sufficient to determine the algebraic

matroid of rank 2 symmetric matrices.

(One evidence...?)

Theorem (Al Amadieh-Cai-Yu)
A symbic tree is caterpillar if and only if
Its corresponding matrix has symmetric

Barvinok rank 2.

For a more generalized conjecture, see
Conjecture 5.4 of
Brakensiek-Dhar-Gao-Gopi-Larson
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Tropical convexity

A set S C R"is called tropically convex if
foranyx,y € Sanda,b € R,

aOxPboOyeSs.

Remark If § is tropically convex, then
S + R1 C S.Hence, it is natural to work
on R"/R1.

Theorem (Develin-Santos-Sturmfels

2005) Let M be a d X n matrix. Then the
troprank(M) = dim tconv(columns of M) + 1



