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The plan

The measurement variety Md,G of a graph G is (informally)

the variety of d-dimensional squared edge measurements of G.

I will talk about:

• How does Md,G encode whether G is (globally) d-rigid?

• The dual variety of Md,G (the generic stress variety)

and its algebraic matroid (the generic stress matroid).
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Algebraic matroids recap

An irreducible affine variety X ⊆ CE determines an algebraic

matroid M(X) on the set E of coordinate axes in which a

subset E ′ ⊆ E is

• independent ⇔ projection X → CE′
is dominant

• spanning ⇔ generic fiber of projection X → CE′
is finite

The rank of M(X) is dim(X).

Important fact

For generic x ∈ X, M(X) = M(Tx(X)).



The measurement map

Fix a positive integer d and a graph G = (V,E).

We have

• the (complex) configuration space (Cd)V ,

• the measurement space CE.

Definition

The (squared) measurement map md,G : (Cd)V → CE

is defined by

md,G : p 7→
(
(pu − pv)

T (pu − pv)
)
uv∈E



The measurement variety

Definition

The d-dimensional measurement variety of G is

Md,G = md,G((Cd)V ).

For the complete graph KV , Md,KV
is the d-dimensional

Cayley-Menger variety on vertex set V .

Definition

The d-dimensional generic rigidity matroid of G is

Rd(G) = M(Md,G)



Rigid graphs

Definition

We say that G = (V,E) is d-rigid if the projection

π : Md,KV
→ Md,G

has finite fibers generically.

If |V | ≥ d+ 1, then

G is d-rigid ⇐⇒ dim(Md,G) = d|V | −
(
d+1
2

)
.

Thus rigidity is intrinsic to the measurement variety.

(At least if we know the number of vertices.)
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Globally rigid graphs

Definition

We say that G is globally d-rigid if the projection

π : Md,KV
→ Md,G

has fibers of size one generically.

If |V | ≥ d+ 2, then

G is globally d-rigid ⇐⇒ ???

Is there an intrinsic characterization?
(Spoiler: there is.)
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The rigidity matrix and tangent spaces

Recall

Rd(G) = M(Md,G) = M(Tx(Md,G))

for generic x ∈ Md,G.

What are the tangent spaces of Md,G?

Fix p ∈ (Cd)V . The rigidity matrix of (G, p) is

R(G, p) = Jac(md,G)p.

Set x = md,G(p).

Fact

col(R(G, p)) ⊆ Tx(Md,G),

with equality if p is generic.
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Stresses and tangent hyperplanes

Definition

A vector ω ∈ CE is a stress of (G, p) if R(G, p)Tω = 0.

Using the previous slide and some linear algebra we get:

Important fact

For generic p, ω is a stress of (G, p) ⇔ Tx(Md,G) ⊆ ω⊥.

Mantra:

stresses of generic realizations

↕
tangent hyperplanes of Md,G at generic points



A life lesson

stresses are normal (vectors)



The contact locus

One last definition

For a vector ω ∈ CE, the contact locus of ω is

L(ω) = {x ∈ Md,G : x is smooth and Tx(Md,G) ⊆ ω⊥}

One can show that for a generic stress ω of a generic (G, p),

L(ω) = {md,G(q) : q ∈ (Cd)V , ω is a stress of (G, q)}

Another important fact

For a “generic” tangent hyperplane ω ∈ CE
(whatever that means),

L(ω) ⊆ Md,G is a linear subspace.



Geometric Gortler-Healy-Thurston

One last definition

For a vector ω ∈ CE, the contact locus of ω is

L(ω) = {x ∈ Md,G : x is smooth and Tx(Md,G) ⊆ ω⊥}

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d + 2 vertices is globally d-rigid

⇔ G is d-rigid and dim(L(ω)) =
(
d+1
2

)
for a “generic”

tangent hyperplane ω ∈ CE.

Maybe the first condition can be replaced by Md,G ̸= CE.

(True for d = 1, 2, open in general.)
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The generic stress matroid



Duality for affine varieties

Let X ⊆ CE be irreducible and homogeneous.

Definition

The dual of X, denoted by X∗, is the Zariski-closure of

{ω ∈ CE : Tx(X) ⊆ ω⊥ for some x ∈ Xsm}

Intuitively, X∗ is the variety of hyperplanes tangent to X.

Fact

This is indeed a duality: (X∗)∗ = X.



The generic stress variety

Definition

The d-dimensional generic stress variety of G is

Sd,G = (Md,G)
∗

Recall: tangent hyperplanes to Md,G ≈ stresses of generic

realizations.

Let us say that ω ∈ CE is an almost generic d-stress of G if

ω is the stress of some generic realization (G, p) in Cd. Then

Sd,G = {ω ∈ CE : ω is an almost generic d-stress of G}



The generic stress matroid

Definition

The d-dimensional generic stress matroid of G is

Sd(G) = M(Sd,G)

A set E ′ ⊆ E is

• independent in Sd(G) if for almost all ω′ ∈ CE′
, there is

an almost generic d-stress ω of G with ω|E′ = ω′;

• spanning in Sd(G) if for almost all ω′ ∈ CE′
, there are

finitely many almost generic d-stresses ω of G with

ω|E′ = ω′.



Example: stresses of K5,5 in C3

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

Take a generic realization (K5,5, p) in C3.

Choose affine dependencies
∑5

i=1 aip(ui) =
∑5

i=1 bip(vi) = 0.

Then ω = (aibj)
5
i,j=1 is a stress of (K5,5, p).

By a result of Bolker and Roth, every almost generic 3-stress

of K5,5 arises in this way.



Example: the stress matroid of K5,5

Corollary

The stress variety S3,K5,5 is

{abT : a, b ∈ C5,
5∑

i=1

ai =
5∑

j=1

bj = 0} ⊆ C5×5 ∼= CE

Equivalently, S3,K5,5 is the variety of 5 × 5 matrices of

rank 1 with zero row and column sums.

• S3(K5,5) ≤ R1(K5,5) (= graphic matroid of K5,5),

• rank(S3(K5,5)) = dim(S3,K5,5) = 7,

• vertex stars are dependent in S3(K5,5),

• complements of vertex stars are spanning in S3(K5,5).



Why study the stress matroid?

The stress matroid Sd(G) describes the global geometry of

stresses of generic realizations.

Understanding this matroid seems useful.

For example:

Question (Connelly 2011)

Suppose G is obtained by first gluing two redundantly d-rigid

graphs (each on at least d+ 2 vertices) along d+ 1 vertices,

and then deleting a common edge. Is G redundantly d-rigid?

Theorem (G 2023+)

Yes!
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Independent sets in the stress matroid

Note that if e ∈ E is a bridge in Rd(G) (i.e., it is generically

unstressable), then Sd,G ⊆ {ωe = 0}, and e is a loop in Sd(G).

Theorem (G 2023+)

Fix G = (V,E) and let E ′ ⊆ E be a set of edges. If

• G[E ′] is a forest on at most d+ 2 vertices, and

• none of the edges in E ′ are bridges in Rd(G),

then E ′ is independent in Sd(G).

This is tight: vertex stars are dependent in S3(K5,5).

Proof idea: we can use projective transformations to prescribe

stresses on a small number of edges.
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Spanning sets in the stress matroid

Theorem (G 2023+)

Fix G = (V,E) and E ′ ⊆ E. If E−E ′ spans at most d+1

vertices in G, then E ′ is spanning in Sd(G).

It follows that Sd(G) has no bridges.

In fact, we have a global rigidity result.

Theorem (G 2023+)

If ω ∈ Sd,G is generic, ω′ ∈ CE is a stress of some realization

in general position, and {e ∈ E : ω(e) ̸= ω′(e)} spans at

most d+ 1 vertices, then ω = ω′.
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Is this surprising?

Theorem (G 2023+)

If ω ∈ Sd,G is generic, ω′ ∈ CE is a stress of some realization

in general position, and {e ∈ E : ω(e) ̸= ω′(e)} spans at

most d+ 1 vertices, then ω = ω′.

Example:

• Take a generic realization of K4 in R2. It has a nonzero

stress ω.

• Change the value of ω on a single edge uv arbitrarily to

obtain another vector ω′.

• Then in any realization (K4, q) that has ω
′ as a stress, we

must have q(u) = q(v).



A mysterious duality

Recall

Sd(G) = M(Sd,G) = M(Tω(Sd,G))

for generic ω ∈ Sd,G.

What are the tangent spaces of Sd,G?

I do not know, but:

Mysterious fact

For generic ω ∈ Sd,G, we have

Tω(Sd,G)
⊥ = L(ω).

By taking algebraic matroids, this implies

Sd(G)∗ = M(L(ω)).
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The stress matroid of globally rigid graphs

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid ⇔
dim(Md,G) = d|V | −

(
d+1
2

)
and dim(L(ω)) =

(
d+1
2

)
for

generic ω ∈ Sd,G.

When d = 1 or d = 2, Sd(G) is a uniform matroid for every

globally d-rigid graph.

This fails for d ≥ 3!

Characterizing these matroids is closely related to deciding

whether the edge directions of a generic realization lie on a

conic at infinity.



The stress matroid of globally rigid graphs

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid ⇔
dim(Md,G) = d|V |−

(
d+1
2

)
and dim(Sd,G) = |E|−

(
d+1
2

)
.

When d = 1 or d = 2, Sd(G) is a uniform matroid for every

globally d-rigid graph.

This fails for d ≥ 3!

Characterizing these matroids is closely related to deciding

whether the edge directions of a generic realization lie on a

conic at infinity.



The stress matroid of globally rigid graphs

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid ⇔
dim(Md,G) = d|V |−

(
d+1
2

)
and dim(Sd,G) = |E|−

(
d+1
2

)
.

When d = 1 or d = 2, Sd(G) is a uniform matroid for every

globally d-rigid graph.

This fails for d ≥ 3!

Characterizing these matroids is closely related to deciding

whether the edge directions of a generic realization lie on a

conic at infinity.



Some open questions

Measurement variety:

• Intrinsic characterization of global rigidity?

• What is the geometric relationship between Md,G and

Md+1,G∗ , where G∗ is the cone graph of G?

The stress matroid:

• Characterize S2(G) for all G.

• Characterize Sd(G) for globally d-rigid G when d ≥ 3.
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