What is... the measurement variety?

Dániel Garamvölgyi (Alfréd Rényi Institute, Budapest)

Matroids, Rigidity, and Algebraic Statistics

ICERM, Providence, March 21, 2025

The **measurement variety** $M_{d,G}$ of a graph G is (informally) the variety of d-dimensional squared edge measurements of G.

The **measurement variety** $M_{d,G}$ of a graph G is (informally) the variety of d-dimensional squared edge measurements of G.

I will talk about:

- How does $M_{d,G}$ encode whether G is (globally) d-rigid?
- The dual variety of $M_{d,G}$ (the generic stress variety) and its algebraic matroid (the generic stress matroid).

The measurement variety

An irreducible affine variety $X \subseteq \mathbb{C}^E$ determines an **algebraic** matroid $\mathcal{M}(X)$ on the set E of coordinate axes in which a subset $E' \subseteq E$ is

- independent \Leftrightarrow projection $X \to \mathbb{C}^{E'}$ is dominant
- spanning \Leftrightarrow generic fiber of projection $X \to \mathbb{C}^{E'}$ is finite

The rank of $\mathcal{M}(X)$ is $\dim(X)$.

Important fact For generic $x \in X$, $\mathcal{M}(X) = \mathcal{M}(T_x(X))$. Fix a positive integer d and a graph G = (V, E).

We have

- the (complex) configuration space $(\mathbb{C}^d)^V$,
- the measurement space \mathbb{C}^{E} .

Definition

The (squared) measurement map $m_{d,G} : (\mathbb{C}^d)^V \to \mathbb{C}^E$ is defined by

$$m_{d,G}: p \mapsto \left(\left(p_u - p_v \right)^T \left(p_u - p_v \right) \right)_{uv \in E}$$

Definition

The d-dimensional **measurement variety** of G is

$$M_{d,G} = m_{d,G}((\mathbb{C}^d)^V).$$

For the complete graph K_V , M_{d,K_V} is the *d*-dimensional **Cayley-Menger variety** on vertex set V.

Definition

The d-dimensional generic rigidity matroid of G is

$$\mathcal{R}_d(G) = \mathcal{M}(M_{d,G})$$

Rigid graphs

Definition

We say that G = (V, E) is *d*-rigid if the projection $\pi : M_{d,K_V} \to M_{d,G}$ has finite fibers generically.

Rigid graphs

Definition

We say that G = (V, E) is *d*-rigid if the projection $\pi : M_{d,K_V} \to M_{d,G}$ has finite fibers generically.

If $|V| \ge d+1$, then $G \text{ is } d\text{-rigid} \iff \dim(M_{d,G}) = d|V| - \binom{d+1}{2}$.

Thus rigidity is intrinsic to the measurement variety. (At least if we know the number of vertices.)

Globally rigid graphs

Definition

We say that G is globally d-rigid if the projection $\pi: M_{d,K_V} \to M_{d,G}$

has fibers of size one generically.

Globally rigid graphs

Definition

We say that G is globally d-rigid if the projection $\pi: M_{d,K_V} \to M_{d,G}$ has fibers of size one generically.

If $|V| \ge d+2$, then

G is globally d-rigid \iff ???

Is there an intrinsic characterization?

(Spoiler: there is.)

The rigidity matrix and tangent spaces

Recall

$$\mathcal{R}_d(G) = \mathcal{M}(M_{d,G}) = \mathcal{M}(T_x(M_{d,G}))$$

for generic $x \in M_{d,G}$.

What are the tangent spaces of $M_{d,G}$?

The rigidity matrix and tangent spaces

Recall

$$\mathcal{R}_d(G) = \mathcal{M}(M_{d,G}) = \mathcal{M}(T_x(M_{d,G}))$$

for generic $x \in M_{d,G}$.

What are the tangent spaces of $M_{d,G}$?

Fix
$$p \in (\mathbb{C}^d)^V$$
. The **rigidity matrix** of (G, p) is
 $R(G, p) = Jac(m_{d,G})_p$.

Set $x = m_{d,G}(p)$.

Fact $\operatorname{col}(R(G,p)) \subseteq T_x(M_{d,G}),$ with equality if p is generic.

Stresses and tangent hyperplanes

Definition

A vector $\omega \in \mathbb{C}^E$ is a stress of (G, p) if $R(G, p)^T \omega = 0$.

Using the previous slide and some linear algebra we get:

Important fact For generic p, ω is a stress of $(G, p) \Leftrightarrow T_x(M_{d,G}) \subseteq \omega^{\perp}$.

Mantra:

stresses of generic realizations
$$\$$
 $\$ tangent hyperplanes of $M_{d,G}$ at generic points

stresses are normal (vectors)

For a vector $\omega \in \mathbb{C}^E$, the **contact locus** of ω is

 $L(\omega) = \overline{\{x \in M_{d,G} : x \text{ is smooth and } T_x(M_{d,G}) \subseteq \omega^{\perp}\}}$

One can show that for a generic stress ω of a generic $({\cal G},p),$

$$L(\omega) = \overline{\{m_{d,G}(q) : q \in (\mathbb{C}^d)^V, \omega \text{ is a stress of } (G,q)\}}$$

Another important fact

For a "generic" tangent hyperplane $\omega \in \mathbb{C}^E$ (whatever that means), $L(\omega) \subseteq M_{d,G}$ is a linear subspace.

For a vector $\omega \in \mathbb{C}^E$, the **contact locus** of ω is

$$L(\omega) = \overline{\{x \in M_{d,G} : x \text{ is smooth and } T_x(M_{d,G}) \subseteq \omega^{\perp}\}}$$

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d + 2 vertices is globally d-rigid $\Leftrightarrow G$ is d-rigid and $\dim(L(\omega)) = \binom{d+1}{2}$ for a "generic" tangent hyperplane $\omega \in \mathbb{C}^E$.

For a vector $\omega \in \mathbb{C}^E$, the **contact locus** of ω is

$$L(\omega) = \overline{\{x \in M_{d,G} : x \text{ is smooth and } T_x(M_{d,G}) \subseteq \omega^{\perp}\}}$$

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid $\Leftrightarrow \dim(M_{d,G}) = d|V| - \binom{d+1}{2}$ and $\dim(L(\omega)) = \binom{d+1}{2}$ for a "generic" tangent hyperplane $\omega \in \mathbb{C}^E$.

For a vector $\omega \in \mathbb{C}^E$, the **contact locus** of ω is

$$L(\omega) = \overline{\{x \in M_{d,G} : x \text{ is smooth and } T_x(M_{d,G}) \subseteq \omega^{\perp}\}}$$

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid $\Leftrightarrow \dim(M_{d,G}) = d|V| - \binom{d+1}{2}$ and $\dim(L(\omega)) = \binom{d+1}{2}$ for a "generic" tangent hyperplane $\omega \in \mathbb{C}^E$.

Maybe the first condition can be replaced by $M_{d,G} \neq \mathbb{C}^E$. (True for d = 1, 2, open in general.)

The generic stress matroid

Let $X \subseteq \mathbb{C}^E$ be irreducible and homogeneous.

Definition

The **dual** of X, denoted by X^* , is the Zariski-closure of

$$\{\omega \in \mathbb{C}^E : T_x(X) \subseteq \omega^{\perp} \text{ for some } x \in X_{sm}\}$$

Intuitively, X^* is the variety of hyperplanes tangent to X.

Fact This is indeed a duality: $(X^*)^* = X$.

Definition

The d-dimensional generic stress variety of G is $S_{d,G} = (M_{d,G})^*$

Recall: tangent hyperplanes to $M_{d,G} \approx$ stresses of generic realizations.

Let us say that $\omega \in \mathbb{C}^E$ is an **almost generic** *d*-stress of *G* if ω is the stress of some generic realization (G, p) in \mathbb{C}^d . Then

 $S_{d,G} = \overline{\{\omega \in \mathbb{C}^E : \omega \text{ is an almost generic } d\text{-stress of } G\}}$

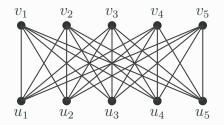
Definition

The d-dimensional generic stress matroid of G is $\mathcal{S}_d(G) = \mathcal{M}(S_{d,G})$

A set $E' \subseteq E$ is

- independent in S_d(G) if for almost all ω' ∈ C^{E'}, there is an almost generic d-stress ω of G with ω|_{E'} = ω';
- spanning in S_d(G) if for almost all ω' ∈ C^{E'}, there are finitely many almost generic d-stresses ω of G with ω|_{E'} = ω'.

Example: stresses of $K_{5,5}$ in \mathbb{C}^3



Take a generic realization $(K_{5,5}, p)$ in \mathbb{C}^3 .

Choose affine dependencies $\sum_{i=1}^{5} a_i p(u_i) = \sum_{i=1}^{5} b_i p(v_i) = 0$. Then $\omega = (a_i b_j)_{i,j=1}^{5}$ is a stress of $(K_{5,5}, p)$. By a result of Bolker and Roth, every almost generic 3-stress of $K_{5,5}$ arises in this way.

Example: the stress matroid of $K_{5,5}$

Corollary

The stress variety $S_{3,K_{5,5}}$ is

$$\{ab^T: a, b \in \mathbb{C}^5, \sum_{i=1}^5 a_i = \sum_{j=1}^5 b_j = 0\} \subseteq \mathbb{C}^{5 \times 5} \cong \mathbb{C}^E$$

Equivalently, $S_{3,K_{5,5}}$ is the variety of 5×5 matrices of rank 1 with zero row and column sums.

- $S_3(K_{5,5}) \le \mathcal{R}_1(K_{5,5})$ (= graphic matroid of $K_{5,5}$),
- $\operatorname{rank}(\mathcal{S}_3(K_{5,5})) = \dim(S_{3,K_{5,5}}) = 7$,
- vertex stars are dependent in $\mathcal{S}_3(K_{5,5})$,
- complements of vertex stars are spanning in $S_3(K_{5,5})$.

The stress matroid $S_d(G)$ describes the global geometry of stresses of generic realizations.

Understanding this matroid seems useful.

The stress matroid $S_d(G)$ describes the global geometry of stresses of generic realizations.

Understanding this matroid seems useful. For example:

Question (Connelly 2011)

Suppose G is obtained by first gluing two redundantly d-rigid graphs (each on at least d + 2 vertices) along d + 1 vertices, and then deleting a common edge. Is G redundantly d-rigid?

The stress matroid $S_d(G)$ describes the global geometry of stresses of generic realizations.

Understanding this matroid seems useful. For example:

Question (Connelly 2011)

Suppose G is obtained by first gluing two redundantly d-rigid graphs (each on at least d + 2 vertices) along d + 1 vertices, and then deleting a common edge. Is G redundantly d-rigid?

Theorem (G 2023+)

Yes!

Note that if $e \in E$ is a bridge in $\mathcal{R}_d(G)$ (i.e., it is generically unstressable), then $S_{d,G} \subseteq \{\omega_e = 0\}$, and e is a loop in $\mathcal{S}_d(G)$.

Note that if $e \in E$ is a bridge in $\mathcal{R}_d(G)$ (i.e., it is generically unstressable), then $S_{d,G} \subseteq \{\omega_e = 0\}$, and e is a loop in $\mathcal{S}_d(G)$.

Theorem (G 2023+)

Fix G=(V,E) and let $E'\subseteq E$ be a set of edges. If

- ${\cal G}[E']$ is a forest on at most d+2 vertices, and
- none of the edges in E' are bridges in $\mathcal{R}_d(G)$,

then E' is independent in $\mathcal{S}_d(G)$.

This is tight: vertex stars are dependent in $S_3(K_{5,5})$.

Proof idea: we can use projective transformations to prescribe stresses on a small number of edges.

Theorem (G 2023+)

Fix G = (V, E) and $E' \subseteq E$. If E - E' spans at most d+1 vertices in G, then E' is spanning in $\mathcal{S}_d(G)$.

It follows that $\mathcal{S}_d(G)$ has no bridges.

Theorem (G 2023+)

Fix G = (V, E) and $E' \subseteq E$. If E - E' spans at most d+1 vertices in G, then E' is spanning in $\mathcal{S}_d(G)$.

It follows that $\mathcal{S}_d(G)$ has no bridges.

In fact, we have a **global rigidity** result.

Theorem (G 2023+)

If $\omega \in S_{d,G}$ is generic, $\omega' \in \mathbb{C}^E$ is a stress of some realization in general position, and $\{e \in E : \omega(e) \neq \omega'(e)\}$ spans at most d + 1 vertices, then $\omega = \omega'$.

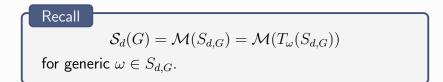
Theorem (G 2023+)

If $\omega \in S_{d,G}$ is generic, $\omega' \in \mathbb{C}^E$ is a stress of some realization in general position, and $\{e \in E : \omega(e) \neq \omega'(e)\}$ spans at most d + 1 vertices, then $\omega = \omega'$.

Example:

- Take a generic realization of K₄ in ℝ². It has a nonzero stress ω.
- Change the value of ω on a single edge uv arbitrarily to obtain another vector $\omega'.$
- Then in any realization (K_4, q) that has ω' as a stress, we must have q(u) = q(v).

A mysterious duality



What are the tangent spaces of $S_{d,G}$?

A mysterious duality

Recall

$$\mathcal{S}_d(G) = \mathcal{M}(S_{d,G}) = \mathcal{M}(T_\omega(S_{d,G}))$$

for generic $\omega \in S_{d,G}$.

What are the tangent spaces of $S_{d,G}$?

I do not know, but:

Mysterious fact

For generic $\omega \in S_{d,G}$, we have

$$T_{\omega}(S_{d,G})^{\perp} = L(\omega).$$

By taking algebraic matroids, this implies

$$\mathcal{S}_d(G)^* = \mathcal{M}(L(\omega)).$$

The stress matroid of globally rigid graphs

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid $\Leftrightarrow \dim(M_{d,G}) = d|V| - \binom{d+1}{2}$ and $\dim(L(\omega)) = \binom{d+1}{2}$ for generic $\omega \in S_{d,G}$.

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid $\Leftrightarrow \dim(M_{d,G}) = d|V| - \binom{d+1}{2}$ and $\dim(S_{d,G}) = |E| - \binom{d+1}{2}$.

Theorem (Gortler-Healy-Thurston 2010)

A graph G on at least d+2 vertices is globally d-rigid $\Leftrightarrow \dim(M_{d,G}) = d|V| - \binom{d+1}{2}$ and $\dim(S_{d,G}) = |E| - \binom{d+1}{2}$.

When d = 1 or d = 2, $S_d(G)$ is a uniform matroid for every globally *d*-rigid graph.

This fails for $d \ge 3!$

Characterizing these matroids is closely related to deciding whether the edge directions of a generic realization lie on a conic at infinity. Measurement variety:

- Intrinsic characterization of global rigidity?
- What is the geometric relationship between $M_{d,G}$ and M_{d+1,G^*} , where G^* is the cone graph of G?

The stress matroid:

- Characterize $S_2(G)$ for all G.
- Characterize $S_d(G)$ for globally *d*-rigid *G* when $d \ge 3$.



Thank you!

Some references:

- Gortler, Theran, Thurston, Generic unlabeled global rigidity, *Forum of Mathematics, Sigma*, 2019.
- Garamvölgyi, Stress-linked pairs of vertices and the generic stress matroid, 2023. arXiv:2308.16851
- Rosen, Sidman, Theran, Algebraic matroids in action, *The American Mathematical Monthly*, 2020.