Matrix completion and tensor codes

Joshua Brakensiek, Manik Dhar, Jiyang Gao, Sivakanth Gopi, Matt Larson arXiv:2405.00778

March 20, 2025

Definition (Matrix completion matroid)

Fix $m \le n$ and $0 \le d \le m$. The matrix completion matroid $\mathcal{B}_{m,n}(d, d)$ is the matroid on $[m] \times [n]$ whose bases are the subsets S of size $dm + dn - d^2$ such that, if you fill in the entries in an $m \times n$ matrix labeled by S with generic complex numbers, you can fill in the remaining entries so the matrix has rank at most d.

Theorem (Bernstein)

S is independent in $\mathcal{B}_{m,n}(2,2)$ if and only if the corresponding bipartite graph has an edge orientation with no alternating or directed cycles.

- The bipartite rigidity matroid $\mathcal{B}_{m,n}(a, b)$ is a matroid on $[m] \times [n]$ of rank na + mb ab, introduced by Kalai–Nevo–Novik.
- Contraction of a matrix completion matroid.
- Hyperconnectivity matroid (Kalai): matroid on (^[n]₂), generalizing skew symmetric matrix completion.
- Symmetric matrix completion matroid: matroid on ^[n]₂ ⊔ [n].

- Suppose we have an $m \times n$ array of servers. The data on each server is an element of a field k.
- For redundancy, each column is required to lie in a fixed subspace of k^m , and each row is required to lie in fixed subspace of k^n .
- Suppose the servers labeled by *S* fail. Can we recover all of the data?
- For simplicity, we will assume that the subspaces are generic.

- Let k a field of characteristic p ≥ 0. Let v₁,..., v_m be m generic vectors in k^s and w₁,..., w_n be n generic vectors in k^r.
- We have mn vectors $v_i \otimes w_j$ in $k^s \otimes k^r$.

Definition (Tensor matroid)

Let $T_{m,n}(s, r, p)$ be the matroid on $[m] \times [n]$ whose bases are the sets S of size rs for which $\{v_i \otimes w_j : (i, j) \in S\}$ is a basis for $k^s \otimes k^r$.

• S is spanning in $T_{m,n}(s, r, p)$ if and only if no data is lost when the servers labeled by S^c fail.

• $T_{m,n}(s,r,p)$: vectors in $k^s \otimes k^r$, where k has characteristic p.

Theorem (Brakensiek–Dhar–Gao–Gopi–L.)

 $\mathcal{B}_{m,n}(a, b)$ is the matroid dual of $T_{m,n}(m-a, n-b, 0)$.

- No data is lost when the servers labeled by S fail if and only if S is independent in B_{m,n}(a, b).
- The hyperconnectivity matroid is dual to a ∧² matroid, and the symmetric matrix completion matroid is dual to a Sym² matroid.

Applications to m - a small

- If m a is small, then we can analyze $\mathcal{B}_{m,n}(a, b)$ using $T_{m,n}(m a, n b, 0)$.
- We describe cocircuits in $\mathcal{B}_{m,n}(a, b)$ when $m a \leq 3$ and give a polynomial time algorithm to check independence.

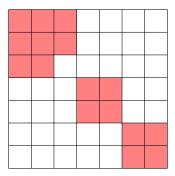
Theorem (Brakensiek–Dhar–Gao–Gopi–L.)

Write $S = \bigcup_{i=1}^{m} \{i\} \times A_i \subseteq [m] \otimes [n]$. Let S_k be the set of $j \in [n]$ which appear in exactly k of the A_i . S is independent in $T_{m,n}(3, r, 0)$ if and only if

$$\begin{aligned} |A_i \cap A_j \cap A_k \cap A_\ell| &= 0 \\ |A_i \setminus S_3| + |S_3| \le r \\ |(A_i \cap A_j) \setminus S_3| + |(A_k \cap A_\ell) \setminus S_3| + |S_3| \le r \\ |A_i \setminus S_3| + |A_j \setminus S_3| + |S_2 \setminus (S_3 \cup A_i \cup A_j)| + 2|S_3| \le 2r \\ |S_1| + 2|S_2| + 3|S_3| \le 3r \end{aligned}$$

Applications to m - a small

- We do not know a nice description of the independent sets or circuits of $\mathcal{B}_{m,n}(a, b)$ when m a = 3.
- $\mathcal{B}_{m,n}(a, b)$ has a Laman-like description when $m a \leq 2$.



• A circuit of $T_{m,n}(4,4,p)$ for any p.

- Applications use $T_{m,n}(s, r, p)$ when p > 0, especially p = 2.
- We have

 $\mathrm{T}_{m,n}(m-d,n-d,p)^{\perp} \subseteq \mathsf{matrix} \text{ completion in char } p \subseteq \mathcal{B}_{m,n}(d,d).$

Theorem (Brakensiek–Dhar–Gao–Gopi–L.)

If $s \leq 3$, $m - s \leq 1$, or m - s = n - r = 2, then $T_{m,n}(s, r, p)$ is independent of p.

Theorem (Bernstein)

S is independent in $\mathcal{B}_{m,n}(2,2)$ if and only if the corresponding bipartite graph has an edge orientation with no alternating or directed cycles.

- We show that if the corresponding bipartite graph has an edge orientation with no alternating or directed cycles, then S is independent in the dual of $T_{m,n}(m-2, n-2, p)$ for any p.
- We prove a determinant is nonzero by constructing an explicit monomial with coefficient ±1. Bicoloring the edges of a bipartite graph is equivalent to orienting the edges.

- In all examples, $T_{m,n}(s, r, p)$ is independent of $p \ge 0$.
- Also true for the \wedge^2 matroid, and for the Sym² matroid except when p = 2.

Theorem (Bernstein)

S is independent in the rank 2 skew-symmetric matrix completion matroid if and only if the corresponding graph has an edge orientation with no directed cycles or alternating closed trails.

• Our argument produces bases (in any characteristic) which satisfy a different-looking condition.