A tropical approach to counting realisations of frameworks

Oliver Clarke* Sean Dewar[†] Daniel Green-Tripp[†] James Maxwell[†] Anthony Nixon[‡] Yue Ren* <u>Ben Smith</u>[‡]

ICERM: Matroids, Rigidity and Algebraic Statistics 20th March 2025

^{*}University of Durham

[†]University of Bristol

[‡]Lancaster University

- Realisation numbers as root counts of polynomials
- 2 The Bergman fan of a graph
- Proof by tropical geometry
- Combinatorial upper bounds

- 1 Realisation numbers as root counts of polynomials
- 2 The Bergman fan of a graph
- Proof by tropical geometry
- 4 Combinatorial upper bounds

Generic rigidity

(G,p) framework where G=(V,E) graph, $p:V\to\mathbb{F}^d$ realisation $(\mathbb{F}\in\{\mathbb{R},\mathbb{C}\})$.

- (G, p) is *rigid* if all length preserving continuous motions are trivial.
- G is d-rigid if there exists generic (G, p) in \mathbb{F}^d that is rigid.
- G is minimally d-rigid if d-rigid and G e is not d-rigid $\forall e \in E$.

Question

How many frameworks with the same edge lengths are there?

Counting realisations of d-rigid graphs

Definition

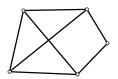
Given G = ([n], E) with $n \ge d + 1$, its *rigidity map* is

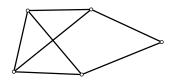
$$f_{G,d} \colon \mathbb{F}^{n \cdot d} o \mathbb{F}^E, \quad p \mapsto \left(\sum_{k=1}^d (p_{i,k} - p_{j,k})^2
ight)_{ij \in E}.$$

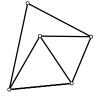
The *realisation space* of (G, p)

$$C_d(G,p) := f_{G,d}^{-1}(f_{G,d}(p))/\sim \qquad p \sim q \Leftrightarrow p_i = Aq_i + r, A \in O_d(\mathbb{F}), r \in \mathbb{F}^d$$

- $\mathbb{F} = \mathbb{R}$: $|C_d(G, p)|$ is not constant over generic $p \in \mathbb{R}^{n \cdot d}$
- $\mathbb{F} = \mathbb{C}$: $|C_d(G, p)|$ is constant over generic $p \in \mathbb{C}^{n \cdot d}$.







Counting realisations of minimally d-rigid graphs

$$f_{G,d}: \mathbb{C}^{n\cdot d} \to \mathbb{C}^E, \quad (p_{i,k})_{i\in[n],k\in[d]} \mapsto \left(\sum_{k=1}^d (p_{i,k}-p_{j,k})^2\right)_{ij\in E}.$$

Theorem (Folklore?)

For a graph G with $n \ge d + 1$, the following are equivalent:

- G is d-rigid;
- ② $C_d(G,p) = f_{G,d}^{-1}(f_{G,d}(p))/\sim$ is finite for generic $p \in \mathbb{C}^{n \cdot d}$;
- **3** $f_{G,d}^{-1}(\lambda)/\sim$ is finite for generic $\lambda\in \overline{f_{G,d}(\mathbb{C}^{n\cdot d})}$.

Moreover, G is minimally d-rigid iff it is d-rigid and $\overline{f_{G,d}(\mathbb{C}^{n\cdot d})}=\mathbb{C}^E$.

Definition

The *d-realisation number* $c_d(G)$ of a minimally *d*-rigid graph G is

$$c_d(G) := |C_d(G, p)|$$
 for generic $p \in \mathbb{C}^{d \cdot n}$
= $|f_{G,d}^{-1}(\lambda)/ \sim |$ for generic $\lambda \in \mathbb{C}^E$

d-Realisation numbers as a root count

Proposition (Capco et al. '18, Clarke et al. '25+)

Let G a minimally d-rigid graph, and $I \subseteq \mathbb{C}[y_{ii,k}^{\pm} \mid ij \in E(G), k \in [d]]$ ideal generated by

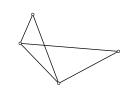
(edge lengths)
$$f_{ij} := \sum_{k=1}^{d} y_{ij,k}^2 - a_{ij}$$
 for $ij \in E(G)$

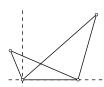
$$(\textit{vertex pinning}) \quad \textit{g}_{i,\ell} := \sum_{k=1}^d c_{\ell,k} \textit{y}_{1i,k} \quad \textit{ for } i \in [d] \setminus \{1\} \textit{ and } \ell \in [d+1-i]$$

$$(s,t) \in C$$
 where $a_{ij}, c_{\ell,k} \in \mathbb{C}$ generic. Then $2^d \cdot c_d(G) = |V(I)|$, where $V(I)$ solution set of I .

(cycle sum) $h_{C,k} := \sum y_{st,k}$ for each directed cycle C of G and $k \in [d]$,

Idea: Write $y_{ij,k} := p_{i,k} - p_{j,k}$, gives 'isomorphism' between V(I) and C(G,p).





2-Realisation numbers as a root count

When d = 2, do change of variables:

$$y_{ij,1} \mapsto y_{ij,1} + i \cdot y_{ij,2}, \ y_{ij,2} \mapsto y_{ij,1} - i \cdot y_{ij,2},$$
 $f_{ij} := y_{ij,1}^2 + y_{ij,2}^2 - a_{ij} \rightsquigarrow f'_{ij} := y_{ij,1} \cdot y_{ij,2} - a_{ij}.$

We can kill these equations and half the variables by setting $y_{ij,2} = a_{ij}y_{ii,1}^{-1}$.

Corollary

Let G a minimally 2-rigid graph, and $I'\subseteq \mathbb{C}[y_{ij}^{\pm}\mid ij\in E(G)]$ be the ideal generated by

$$h'_{C,1} := \sum_{(i,j) \in C} y_{ij}$$
 for each directed cycle C of G , $h'_{C,2} := \sum_{(i,j) \in C} a_{ij}y_{ij}^{-1}$ for each directed cycle C of G , $g'_{12} := c_{1,1}y_{12}^2 + c_{1,2}$.

where $a_{ij}, c_{1,k} \in \mathbb{C}$ generic. Then $4 \cdot c_2(G) = |V(I')|$.

Key Point

Realisation numbers are generic root counts of a polynomial system with special shape.

- Realisation numbers as root counts of polynomials
- The Bergman fan of a graph
- Proof by tropical geometry
- Combinatorial upper bounds

Flats of a graph

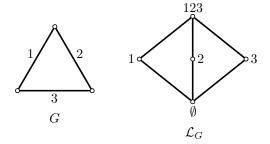
If you like matroids...

We specialise constructions to graphic matroids, all work for arbitrary matroids!

Given G = (V, E) graph, define

$$\mathsf{rk} \colon 2^E \to \mathbb{Z}_{\geq 0} \quad , \quad \mathsf{rk}(A) = \mathsf{max}\{|\mathcal{T}| \ \colon \ \mathcal{T} \subseteq A \ \mathsf{forest}\}$$

- $F \subseteq E$ a flat if rk(F + e) = rk(F) + 1 for all $e \in E \setminus F$.
- The flats are G are disjoint unions of induced subgraphs.
- They form a graded lattice \mathcal{L}_{G} with minimum \emptyset and maximum E.



Flats of a graph

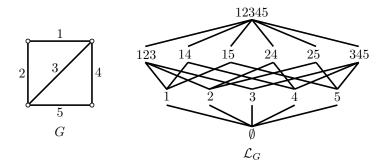
If you like matroids...

We specialise constructions to graphic matroids, all work for arbitrary matroids!

Given
$$G = ([n], E)$$
 graph, define

$$\mathsf{rk} \colon 2^E o \mathbb{Z}_{\geq 0} \quad , \quad \mathsf{rk}(A) = \mathsf{max}\{|T| \ \colon \ T \subseteq A \ \mathsf{forest}\}$$

- $F \subseteq E$ a flat if rk(F + e) = rk(F) + 1 for all $e \in E \setminus F$.
- The flats are *G* are disjoint unions of induced subgraphs.
- They form a graded lattice $\mathcal{L}_{\mathcal{G}}$ with minimum \emptyset and maximum \mathcal{E} .



The Bergman fan of a graph

For $e \in E$, write $\chi_e \in \mathbb{R}^E$ for corresponding unit vector,

For $A \subseteq E$, write $\chi_A = \sum_{e \in A} \chi_e \in \mathbb{R}^E$.

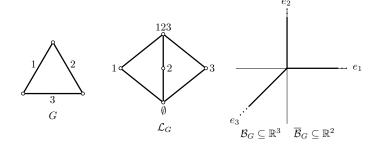
Definition

Given a chain of flats $\mathcal{F}: \emptyset \subsetneq F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_k \subsetneq E$, define

$$\sigma_{\mathcal{F}} = \mathsf{cone}(\chi_{F_i} : F_i \in \mathcal{F}) + \mathbb{R} \cdot \chi_E$$
.

The Bergman fan of G is the (n-1)-dimensional fan in \mathbb{R}^E

$$\mathcal{B}_{\mathsf{G}} = \bigcup_{\mathcal{F} \subset \mathcal{L}_{\mathsf{G}}} \sigma_{\mathcal{F}} \subseteq \mathbb{R}^{\mathsf{E}} \,, \qquad \overline{\mathcal{B}}_{\mathsf{G}} := \mathcal{B}_{\mathsf{G}}/(\mathbb{R} \cdot \chi_{\mathsf{E}}) \subseteq \mathbb{R}^{\mathsf{E}}/(\mathbb{R} \cdot \chi_{\mathsf{E}}) \cong \mathbb{R}^{|\mathsf{E}|-1}$$



The Bergman fan of a graph

For $e \in E$, write $\chi_e \in \mathbb{R}^E$ for corresponding unit vector, For $A \subseteq E$, write $\chi_A = \sum_{e \in A} \chi_e \in \mathbb{R}^E$.

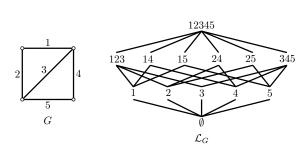
Definition

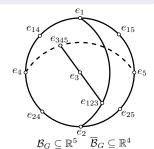
Given a chain of flats $\mathcal{F}: \emptyset \subsetneq F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_k \subsetneq E$, define

$$\sigma_{\mathcal{F}} = \mathsf{cone}(\chi_{F_i} : F_i \in \mathcal{F}) + \mathbb{R} \cdot \chi_E$$
.

The Bergman fan of G is the (n-1)-dimensional fan in \mathbb{R}^E

$$\mathcal{B}_{\mathcal{G}} = \bigcup_{\mathcal{F} \subseteq \mathcal{L}_{\mathcal{G}}} \sigma_{\mathcal{F}} \subseteq \mathbb{R}^{\mathcal{E}} \,, \qquad \overline{\mathcal{B}}_{\mathcal{G}} := \mathcal{B}_{\mathcal{G}}/(\mathbb{R} \cdot \chi_{\mathcal{E}}) \subseteq \mathbb{R}^{\mathcal{E}}/(\mathbb{R} \cdot \chi_{\mathcal{E}}) \cong \mathbb{R}^{|\mathcal{E}|-1}$$





Realisation numbers from Bergman fans

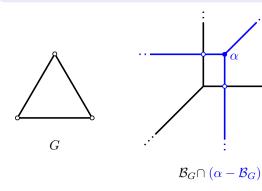
When G a minimally 2-rigid graph, |E| = 2n - 3

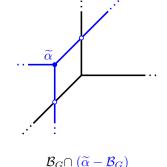
$$\Rightarrow \mathcal{B}_G \subseteq \mathbb{R}^{2n-3} \,,\, \overline{\mathcal{B}}_G \subseteq \mathbb{R}^{2n-4} \text{ of codimension } n-2.$$

Theorem (Clarke et al. 25+)

G a minimally 2-rigid graph and $\alpha \in \mathbb{R}^{|E|-1}$ generic,

$$c_2(G) = \frac{1}{2} |\overline{\mathcal{B}}_G \cap (\alpha - \overline{\mathcal{B}}_G)|.$$





- Realisation numbers as root counts of polynomials
- 2 The Bergman fan of a graph
- Proof by tropical geometry
- Combinatorial upper bounds

Tropical geometry

Motto

Tropical varieties are the combinatorial/polyhedral shadow of algebraic varieties.

Given
$$f = \sum_{a \in S} c_a X^a \in \mathbb{C}[X_1^\pm, \dots, X_n^\pm]$$
 with support $S \subseteq \mathbb{Z}^n$,

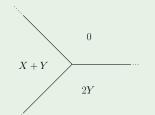
$$\operatorname{\mathsf{trop}}(f) \colon \operatorname{\mathbb{R}}^n o \operatorname{\mathbb{R}}$$
 $p \mapsto \min_{a \in S} (a \cdot p)$

The *tropical hypersurface* defined by *f* is

$$\mathcal{T}(f) = \{ p \in \mathbb{R}^n \mid \operatorname{trop}(f)(p) \text{ attains minimum at least twice } \}$$

Example

$$f=Y^2+XY+1\in\mathbb{C}[X^\pm,Y^\pm]$$
 $\mathsf{trop}(f)=\mathsf{min}(2Y,X+Y,0)$



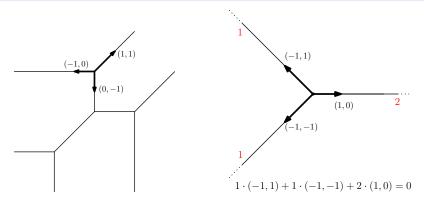
Tropical geometry

Given $I \subseteq \mathbb{C}[X_1^{\pm},\ldots,X_n^{\pm}]$ ideal, its *tropical variety* is

$$\mathcal{T}(I) = \bigcap_{f \in I} \mathcal{T}(f).$$

Structure Theorem (abridged)

 $\mathcal{T}(I)$ is a balanced polyhedral complex with multiplicities, of the same dimension as V(I).



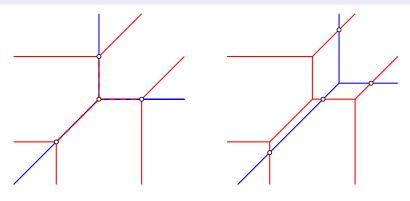
Stable intersection

Non-generic intersections of tropical varieties may not be tropical varieties.

Definition

Let Σ_1, Σ_2 be polyhedral complexes in \mathbb{R}^n . Their *stable intersection* is

$$\Sigma_1 \wedge \Sigma_2 := \lim_{\epsilon \to 0} \bigl(\Sigma_1 \cap \bigl(\Sigma_2 + \epsilon \nu \bigr) \bigr) \,, \quad \epsilon > 0 \,, \; \nu \in \mathbb{R}^n \text{ generic } .$$



Tropical root counts

Recall
$$|V(I)|=4\cdot c_2(G)$$
 where $I=H_1+H_2+J$:
$$H_1:=\langle\sum_{(i,j)\in C}y_{ij}\mid C \text{ cycle of }G\rangle \qquad \mathcal{T}(H_1)=\mathcal{B}_G\,,$$

$$H_2:=\langle\sum_{(i,j)\in C}a_{ij}y_{ij}^{-1}\mid C \text{ cycle of }G\rangle \qquad \mathcal{T}(H_2)=-\mathcal{B}_G\,,$$

$$J:=\langle c_{1,1}y_{12}^2+c_{1,2}\rangle \qquad \mathcal{T}(J)=\frac{2}{2}\cdot \{y_{12}=0\}.$$

Theorem (Folklore?)

The Bergman fan can equivalently be characterised as

$$\mathcal{B}_G = \{y \in \mathbb{R}^E \mid \min_{e \in C} (y_e) \text{ attains minimum at least twice for each cycle } C\}$$

Sketch of proof

Theorem (Helminck, Ren '22)

Let $I_1, \ldots, I_k \subseteq \mathbb{C}[X_1^{\pm}, \cdots, X_d^{\pm}]$ be ideals, with $I := I_1 + \cdots + I_k$ zero-dimensional. If [technical conditions], then

$$|V(I)| = |\mathcal{T}(I_1) \wedge \ldots \wedge \mathcal{T}(I_k)|$$

$$4 \cdot c_2(G) = |V(I)|$$

$$= |\mathcal{B}_G \wedge (-\mathcal{B}_G) \wedge \frac{2}{2} \cdot \{y_{12} = 0\}|$$

$$2 \cdot c_2(G) = |\mathcal{B}_G \wedge (-\mathcal{B}_G) \wedge \{y_{12} = 0\}|$$

$$= |\overline{\mathcal{B}}_G \wedge (-\overline{\mathcal{B}}_G)|$$

Theorem (Clarke et al. 25+)

G a minimally 2-rigid graph then

$$c_2(G) = \frac{1}{2} |\overline{\mathcal{B}}_G \wedge (-\overline{\mathcal{B}}_G)|.$$

- Realisation numbers as root counts of polynomials
- 2 The Bergman fan of a graph
- Proof by tropical geometry
- Combinatorial upper bounds

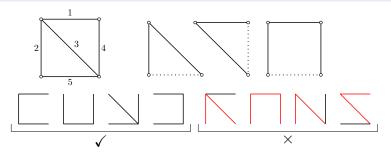
Nbc-bases

Definition

G graph with total order \prec on *E*.

- A broken circuit is $C \min_{i \in C}(i)$ for cycle C of G.
- A *nbc-basis* is a spanning tree *T* containing no broken circuits.

We write nbc(G) := #nbc-bases.



- The number of nbc-bases is invariant under changing the order ≺,
- $nbc(G) = T_G(1,0)$, an evaluation of the Tutte polynomial,
- nbc(G) = linear term of chromatic polynomial of G.

A combinatorial upper bound

Theorem (Clarke et al. 25+)

G a minimally 2-rigid graph,

$$c_2(G) \leq \frac{1}{2}\operatorname{nbc}(G)$$
.

- $\mathsf{nbc}(G) = |\overline{\mathcal{B}}_{U_{n-1,E}} \wedge (-\overline{\mathcal{B}}_G)|$ (Adiprasito, Huh, Katz '18)
- Deform $\overline{\mathcal{B}}_G$ into $\overline{\mathcal{B}}_{U_{n-1,E}}$, can only gain intersection points:

$$2\cdot c_2(G)=|\overline{\mathcal{B}}_G\wedge (-\overline{\mathcal{B}}_G)|\leq |\overline{\mathcal{B}}_{U_{n-1,E}}\wedge (-\overline{\mathcal{B}}_G)|=\mathsf{nbc}(G)$$

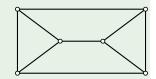
Example

$$c_2(G) = 2$$

$$\frac{1}{2}\operatorname{nbc}(G) = 2$$

$$c_2(G') = 12$$

$$\frac{1}{2}\operatorname{\mathsf{nbc}}(G') = 13$$



Heuristic

Nbc bases are faster to compute than mixed volumes, and generally give better bounds.

Open questions

Question 1

Is there a combinatorial formula for $\overline{\mathcal{B}}_G \wedge (-\overline{\mathcal{B}}_G)$ purely in terms of G (or M_G)?

$$\begin{split} |\overline{\mathcal{B}}_{M} \wedge (-\overline{\mathcal{B}}_{U_{n-r,n}})| &= \mathsf{nbc}(M) \qquad \qquad (\mathsf{Adiprasito, Huh, Katz '18}) \\ |\overline{\mathcal{B}}_{M \setminus e} \wedge (-\overline{\mathcal{B}}_{(M/e)^*})| &= \beta(M) \qquad \qquad (\mathsf{Ardila-Mantilla, Eur, Penaguiao '22}) \end{split}$$

Conjecture (Jackson, Owen '19)

Every minimally 2-rigid graph G with n vertices has $c_2(G) \ge 2^{n-3}$.

Question 2

Can we use this machinery to get lower bounds?

Thank you for listening!