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Generic rigidity

(G , p) framework where G = (V ,E) graph, p : V → Fd realisation (F ∈ {R,C}).
• (G , p) is rigid if all length preserving continuous motions are trivial.

• G is d-rigid if there exists generic (G , p) in Fd that is rigid.

• G is minimally d-rigid if d-rigid and G − e is not d-rigid ∀e ∈ E .

Question

How many frameworks with the same edge lengths are there?



Counting realisations of d-rigid graphs

Definition

Given G = ([n],E) with n ≥ d + 1, its rigidity map is

fG ,d : Fn·d → FE , p 7→

(
d∑

k=1

(pi,k − pj,k)
2

)
ij∈E

.

The realisation space of (G , p)

Cd(G , p) := f −1
G ,d(fG ,d(p))/ ∼ p ∼ q ⇔ pi = Aqi + r , A ∈ Od(F) , r ∈ Fd

• F = R: |Cd(G , p)| is not constant over generic p ∈ Rn·d

• F = C: |Cd(G , p)| is constant over generic p ∈ Cn·d .



Counting realisations of minimally d-rigid graphs

fG ,d : Cn·d → CE ,
(
pi,k
)
i∈[n],k∈[d ]

7→

(
d∑

k=1

(pi,k − pj,k)
2

)
ij∈E

.

Theorem (Folklore?)

For a graph G with n ≥ d + 1, the following are equivalent:

1 G is d-rigid;

2 Cd(G , p) = f −1
G ,d(fG ,d(p))/ ∼ is finite for generic p ∈ Cn·d ;

3 f −1
G ,d(λ)/ ∼ is finite for generic λ ∈ fG ,d(Cn·d).

Moreover, G is minimally d-rigid iff it is d-rigid and fG ,d(Cn·d) = CE .

Definition

The d-realisation number cd(G) of a minimally d-rigid graph G is

cd(G) := |Cd(G , p)| for generic p ∈ Cd·n

= |f −1
G ,d(λ)/ ∼ | for generic λ ∈ CE



d-Realisation numbers as a root count

Proposition (Capco et al. ’18, Clarke et al. ’25+)

Let G a minimally d-rigid graph, and I ⊆ C[y±
ij,k | ij ∈ E(G), k ∈ [d ] ] ideal generated by

(edge lengths) fij :=
d∑

k=1

y 2
ij,k − aij for ij ∈ E(G)

(vertex pinning) gi,ℓ :=
d∑

k=1

cℓ,ky1i,k for i ∈ [d ] \ {1} and ℓ ∈ [d + 1− i ]

(cycle sum) hC ,k :=
∑

(s,t)∈C

yst,k for each directed cycle C of G and k ∈ [d ],

where aij , cℓ,k ∈ C generic. Then 2d · cd(G) = |V (I )|, where V (I ) solution set of I .

Idea: Write yij,k := pi,k − pj,k , gives ‘isomorphism’ between V (I ) and C(G , p).

yij

ykℓ yjk

yℓi



2-Realisation numbers as a root count

When d = 2, do change of variables:

yij,1 7→ yij,1 + i · yij,2
yij,2 7→ yij,1 − i · yij,2

, fij := y 2
ij,1 + y 2

ij,2 − aij ⇝ f ′ij := yij,1 · yij,2 − aij .

We can kill these equations and half the variables by setting yij,2 = aijy
−1
ij,1 .

Corollary

Let G a minimally 2-rigid graph, and I ′ ⊆ C[y±
ij | ij ∈ E(G)] be the ideal generated by

h′
C ,1 :=

∑
(i,j)∈C

yij for each directed cycle C of G ,

h′
C ,2 :=

∑
(i,j)∈C

aijy
−1
ij for each directed cycle C of G ,

g ′
12 := c1,1y

2
12 + c1,2.

where aij , c1,k ∈ C generic. Then 4 · c2(G) = |V (I ′)|.

Key Point

Realisation numbers are generic root counts of a polynomial system with special shape.
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Flats of a graph

If you like matroids...

We specialise constructions to graphic matroids, all work for arbitrary matroids!

Given G = (V ,E) graph, define

rk : 2E → Z≥0 , rk(A) = max{|T | : T ⊆ A forest}

• F ⊆ E a flat if rk(F + e) = rk(F ) + 1 for all e ∈ E \ F .
• The flats are G are disjoint unions of induced subgraphs.
• They form a graded lattice LG with minimum ∅ and maximum E .
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The Bergman fan of a graph

For e ∈ E , write χe ∈ RE for corresponding unit vector,

For A ⊆ E , write χA =
∑

e∈A χe ∈ RE .

Definition

Given a chain of flats F : ∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E , define

σF = cone(χFi : Fi ∈ F) + R · χE .

The Bergman fan of G is the (n − 1)-dimensional fan in RE

BG =
⋃

F⊆LG

σF ⊆ RE , BG := BG/(R · χE ) ⊆ RE/(R · χE ) ∼= R|E |−1
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Realisation numbers from Bergman fans

When G a minimally 2-rigid graph, |E | = 2n − 3

⇒ BG ⊆ R2n−3 , BG ⊆ R2n−4 of codimension n − 2.

Theorem (Clarke et al. 25+)

G a minimally 2-rigid graph and α ∈ R|E |−1 generic,

c2(G) =
1

2

∣∣BG ∩ (α− BG )
∣∣ .

G

BG∩ (α− BG)

α

α̃

BG∩ (α̃− BG)
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Tropical geometry

Motto

Tropical varieties are the combinatorial/polyhedral shadow of algebraic varieties.

Given f =
∑
a∈S

caX
a ∈ C[X±

1 , . . . ,X±
n ] with support S ⊆ Zn,

trop(f ) : Rn → R
p 7→ min

a∈S
(a · p)

The tropical hypersurface defined by f is

T (f ) = {p ∈ Rn | trop(f )(p) attains minimum at least twice }

Example

f = Y 2 + XY + 1 ∈ C[X±,Y±]

trop(f ) = min(2Y ,X + Y , 0)

0

2Y

X + Y



Tropical geometry

Given I ⊆ C[X±
1 , . . . ,X±

n ] ideal, its tropical variety is

T (I ) =
⋂
f∈I

T (f ) .

Structure Theorem (abridged)

T (I ) is a balanced polyhedral complex with multiplicities, of the same dimension as V (I ).

(−1, 0)

(0,−1)

(1, 1)

(−1,−1)

(−1, 1)

(1, 0)

1

1

2

1 · (−1, 1) + 1 · (−1,−1) + 2 · (1, 0) = 0



Stable intersection

Non-generic intersections of tropical varieties may not be tropical varieties.

Definition

Let Σ1,Σ2 be polyhedral complexes in Rn. Their stable intersection is

Σ1 ∧ Σ2 := lim
ϵ→0

(Σ1 ∩ (Σ2 + ϵv)) , ϵ > 0 , v ∈ Rn generic .



Tropical root counts

Recall |V (I )| = 4 · c2(G) where I = H1 + H2 + J:

H1 := ⟨
∑

(i,j)∈C

yij | C cycle of G⟩ T (H1) = BG ,

H2 := ⟨
∑

(i,j)∈C

aijy
−1
ij | C cycle of G⟩ T (H2) = −BG ,

J := ⟨c1,1y 2
12 + c1,2⟩ T (J) = 2 · {y12 = 0}.

Theorem (Folklore?)

The Bergman fan can equivalently be characterised as

BG = {y ∈ RE | min
e∈C

(ye) attains minimum at least twice for each cycle C}



Sketch of proof

Theorem (Helminck, Ren ’22)

Let I1, . . . , Ik ⊆ C[X±
1 , · · · ,X±

d ] be ideals, with I := I1 + · · ·+ Ik zero-dimensional. If
[technical conditions], then

|V (I )| = |T (I1) ∧ . . . ∧ T (Ik)|

4 · c2(G) = |V (I )|
= |BG ∧ (−BG ) ∧ 2 · {y12 = 0}|

2 · c2(G) = |BG ∧ (−BG ) ∧ {y12 = 0}|
= |BG ∧ (−BG )|

Theorem (Clarke et al. 25+)

G a minimally 2-rigid graph then

c2(G) =
1

2

∣∣BG ∧ (−BG )
∣∣ .
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Nbc-bases

Definition

G graph with total order ≺ on E .

• A broken circuit is C −min
i∈C

(i) for cycle C of G .

• A nbc-basis is a spanning tree T containing no broken circuits.

We write nbc(G) := #nbc-bases.

1

2
3

4

5

� ×

• The number of nbc-bases is invariant under changing the order ≺,

• nbc(G) = TG (1, 0), an evaluation of the Tutte polynomial,

• nbc(G) = linear term of chromatic polynomial of G .



A combinatorial upper bound

Theorem (Clarke et al. 25+)

G a minimally 2-rigid graph,

c2(G) ≤ 1

2
nbc(G) .

• nbc(G) = |BUn−1,E ∧ (−BG )| (Adiprasito, Huh, Katz ’18)

• Deform BG into BUn−1,E , can only gain intersection points:

2 · c2(G) = |BG ∧ (−BG )| ≤ |BUn−1,E ∧ (−BG )| = nbc(G)

Example

c2(G) = 2

1

2
nbc(G) = 2

c2(G
′) = 12

1

2
nbc(G ′) = 13

Heuristic

Nbc bases are faster to compute than mixed volumes, and generally give better bounds.



Open questions

Question 1

Is there a combinatorial formula for BG ∧ (−BG ) purely in terms of G (or MG )?

|BM ∧ (−BUn−r,n )| = nbc(M) (Adiprasito, Huh, Katz ’18)

|BM\e ∧ (−B(M/e)∗)| = β(M) (Ardila-Mantilla, Eur, Penaguiao ’22)

Conjecture (Jackson, Owen ’19)

Every minimally 2-rigid graph G with n vertices has c2(G) ≥ 2n−3.

Question 2

Can we use this machinery to get lower bounds?

Thank you for listening!
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