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Outline of talk

@ Realisation numbers as root counts of polynomials



Generic rigidity

(G, p) framework where G = (V, E) graph, p: V — F realisation (F € {R,C}).
® (G, p) is rigid if all length preserving continuous motions are trivial.
® G is d-rigid if there exists generic (G, p) in F? that is rigid.
® G is minimally d-rigid if d-rigid and G — e is not d-rigid Ve € E.

Question

How many frameworks with the same edge lengths are there?



Counting realisations of d-rigid graphs

Definition

Given G = ([n], E) with n > d + 1, its rigidity map is

d
fe.a: F" - F5, pe (Z(pf,k = Pj,k)2> .
k=1 j€E
The realisation space of (G, p)

Ca(G,p) := fy y(fo.a(p))/ ~ p~q < pi=Ag+r, A€ OuF), r e F’

® F=R: |C4(G, p)| is not constant over generic p € R™?
® F =C: |Cy(G, p)| is constant over generic p € C™“.

O K>



Counting realisations of minimally d-rigid graphs

. -d E
fo,a: C"* = C% (Pik) icpmhei) (Z(p, —Pik) ) :
iicE

Theorem (Folklore?)
For a graph G with n > d + 1, the following are equivalent:
Q G is d-rigid;
Q@ Cy(G,p) = G_j(fgyd(p))/ ~ is finite for generic p € C™%;
(s fa;()\)/ ~ is finite for generic \ € fg 4(C9).
Moreover, G is minimally d-rigid iff it is d-rigid and fg 4(C™9) = CE

Definition
The d-realisation number c;(G) of a minimally d-rigid graph G is

ci(G) :=|C4(G,p)| for generic p € C*"
= |fc_;()\)/ ~ | for generic A € CF



d-Realisation numbers as a root count

Proposition (Capco et al. '18, Clarke et al. '25+)
Let G a minimally d-rigid graph, and | C (C[yjik | ij € E(G), k € [d]] ideal generated by

d
(edge lengths) ff o= Zy,-ik —a; forij € E(G)

(vertex pinning)  gi¢ = Z cexyiik  fori€[d]\{1} andl e [d+1—1]

(cycle sum) hek := Z Vst k for each directed cycle C of G and k € [d],
(s,t)eC

where ajj, cox € C generic. Then 29 - c4(G) = |V/(I)

, where V(1) solution set of I.

Idea: Write yjj «x := pi,x — pj.k, gives ‘isomorphism’ between V(I) and C(G, p).




2-Realisation numbers as a root count

When d = 2, do change of variables:

Vi1 & Vi1 1 yi2

2 2

; J fi = Yja+Yijo—aj ~ fj = yij1 yij2 — aj.
Yij2 7 Yit = b Vi,

We can kill these equations and half the variables by setting y;j» = a,-,-y,;ll.

Corollary

Let G a minimally 2-rigid graph, and I' C (C[y;.: | ij € E(G)] be the ideal generated by

h/C,l = Z Yii for each directed cycle C of G,
(ij)ec
4 e it H
hep == Z ajjy;; for each directed cycle C of G,
(ij)ec

/ 2
812 1= CL1Yi2 + C12.

where ajj, c1,x € C generic. Then 4-c(G) = |V(I')].

Key Point

Realisation numbers are generic root counts of a polynomial system with special shape.
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Flats of a graph

If you like matroids...

We specialise constructions to graphic matroids, all work for arbitrary matroids!
Given G = (V, E) graph, define
rk: 25 = Zso , rk(A) =max{|T| : T C A forest}

® FCEaflatifrk(F+e)=rk(F)+1forallee E\F.
® The flats are G are disjoint unions of induced subgraphs.
® They form a graded lattice L with minimum @ and maximum E.
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The Bergman fan of a graph

For e € E, write x. € R for corresponding unit vector,
For A C E, write xa = ZseAXe € RE.

Definition
Given a chain of flats F: 0 C F1 C F> C --- C Fx C E, define
or =cone(xr, : Fi€e F)+R-xe.

The Bergman fan of G is the (n — 1)-dimensional fan in RE

Be= ) or CR®,  Bei=Bo/(R-xe) SR*/(R-xe) 2R

FCLg
€2
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Realisation numbers from Bergman fans
When G a minimally 2-rigid graph, |[E| =2n—3
= Bc CR?>3 Be C R** of codimension n — 2.

Theorem (Clarke et al. 25+)

|E|-1

G a minimally 2-rigid graph and o € R generic,

(G) = %\EG A (a - Be)|.

NS

BanN (a — Bg) BaN (& — Bg)
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Tropical geometry

Motto

Tropical varieties are the combinatorial/polyhedral shadow of algebraic varieties.

Given f = 3 X € C[X5, ..., X;] with support S C Z",
acs

trop(f): R" - R
p = min(a- p)
The tropical hypersurface defined by f is
T(f)={p e R"| trop(f)(p) attains minimum at least twice }

Example

f=Y>+ XY +1eC[XF, YE]
X+Y
trop(f) = min(2Y, X + Y, 0)



Tropical geometry

Given | C C[Xli, ..., X;] ideal, its tropical variety is
T =()T(F).
fel

Structure Theorem (abridged)

T (1) is a balanced polyhedral complex with multiplicities, of the same dimension as V/(/).

"‘1.(_1,1) F1(=1,-1)+2-(1,0)=0



Stable intersection

Non-generic intersections of tropical varieties may not be tropical varieties.
Definition
Let X1, be polyhedral complexes in R". Their stable intersection is

YiAY, = Iimo(Zl N(X2+ev)), €>0,veR"generic .
e—



Tropical root counts

Recall |V(1)] =4 ©(G) where | = Hy + H, + J:

H, ZZ(Z yii | C cycle of G) T(H) = Bg,
(iJ)ec
Ha = ( Z a,-jy,-fl | C cycle of G) T(H.) = B,
(ij)ec
Ji=(ayh + ap) T(J)=2-{y =0}

Theorem (Folklore?)

The Bergman fan can equivalently be characterised as

Be = {y e RF | rrg?(ye) attains minimum at least twice for each cycle C}
e



Sketch of proof

Theorem (Helminck, Ren '22)

Let I,..., Ik C C[X{E, -, XF] be ideals, with | := I + --- + Iy zero-dimensional. If
[technical conditions], then

(VD] = |T(h) A ... AT ()

4-a(G)=|v()

= [Be A (=Bs) A2+ {y12 = 0}|
2 @(G) = |Bs A (—Bg) A {y12 = 0}

= |Bs A (=Bo)|

Theorem (Clarke et al. 25+)
G a minimally 2-rigid graph then

o(G) = %‘EG A (—EG)‘ :
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Definition
G graph with total order < on E.
® A broken circuit is C — ngg(/) for cycle C of G.

® A nbc-basis is a spanning tree T containing no broken circuits.
We write nbc(G) := #nbc-bases.

® The number of nbc-bases is invariant under changing the order <,
® nbc(G) = T¢(1,0), an evaluation of the Tutte polynomial,
® nbc(G) = linear term of chromatic polynomial of G.



A combinatorial upper bound

Theorem (Clarke et al. 25+)
G a minimally 2-rigid graph,
&(G) < %nbc(G).

® nbc(G) = [Bu,_, ¢ A (—Bg)|  (Adiprasito, Huh, Katz '18)
® Deform Bg into Bu,_, .,
2. x(6) = [Be A (Be)| < [Bu, ¢ A (~Be)| = nbe(G)

can only gain intersection points:

Example
o(G) =2 o(G) =12
1 _ 1 no_
Enbc(G)fZ 2nbc(G)f13
Heuristic

Nbc bases are faster to compute than mixed volumes, and generally give better bounds.



Open questions

Question 1

Is there a combinatorial formula for B A (—Bg) purely in terms of G (or Mg)?

|Bum A (fEUn ,.»)| = nbc(M) (Adiprasito, Huh, Katz '18)
IBue A (—Bmyey< )| = B(M) (Ardila-Mantilla, Eur, Penaguiao '22)

Conjecture (Jackson, Owen '19)

Every minimally 2-rigid graph G with n vertices has c(G) > 2" 3.

Question 2

Can we use this machinery to get lower bounds?

Thank you for listening!
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