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Volume Rigidity of Frameworks

A d-dimensional framework is a pair (G , p), where
G = (V ,E ) is a hypergraph and p is a map from V to Rd .
We consider the hyperedges of G to be subsets of V .

The volume of a hyperedge ∆ ∈ E in (G , p), Vol(p(∆)), is
equal to the volume of the convex hull of p(∆) in the affine
subspace of Rd spanned by p(∆) when |∆| ≤ d + 1 and p(∆)
is in general position in Rd ; otherwise Vol(p(∆)) = 0.

(G , p) is volume rigid if every continuous motion of the
vertices of (G , p) in Rd , which preserves the volumes of all
the hyperedges of (G , p), results in a congruent framework.

Note that, if G is a graph, then the volume rigidity of (G , p)
is equivalent to the standard definition of ‘bar-joint’ rigidity.
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Example

Consider a generic realisation of the 3-simplex in R2. It is well
known that the framework containing its six edges is (volume)
rigid. On the other hand, the framework containing its four 2-faces
cannot be volume rigid since a simple dimension counting
argument tells us we need 2× 4− 3 = 5 constraints to become
rigid. A more careful analysis tells us that the constraints
determined by the four 2-faces are dependent. It is not obvious
which combinations of 5 edges and faces give rigidity. More
generally, it is a difficult open problem to decide when a given
hypergraph is generically rigid in R2.
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Volume Rigidity Matrix

The d-dimensional volume rigidity map of a hypergraph
G = (V ,E ) is the function fG : Rd |V | → R|E | given by

fG (p) = (fp(∆1), fp(∆2), . . . , fp(∆m))

where E = {∆1,∆2, . . . ,∆m} and fp(∆h) = Vol(p(∆h))
2.

The volume rigidity matrix R(G , p) of a realisation p of G
in Rd is given by the Jacobean matrix of fG evaluated at p.

For vi ∈ ∆ ∈ E and p(vi ) = pi we have

Vol(p(∆))2 =

{
1
k2 ∥pi − p∆i ∥2 Vol(p(∆− vi ))

2 (|∆| = k ≥ 3)

∥pi − pj∥2 (∆ = {vi , vj})

where p∆i is the projection of pi onto the affine subspace of
Rd spanned by p(∆− vi ).
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Volume Rigidity Matrix

For vi ∈ ∆ ∈ E and p(vi ) = pi we have

Vol(p(∆))2 =

{
1
k2 ∥pi − p∆i ∥2 Vol(p(∆− vi ))

2 (|∆| = k ≥ 2)

∥pi − pj∥2 (∆ = {vi , vj}).

Hence, by applying an appropriate rescaling, we can take the
entry in row ∆ and columns vi of R(G , p) to be:

(pi − p∆i ) Vol(p(∆− vi ))
2 when vi ∈ ∆ and |∆| ≥ 3;

pi − pj when ∆ = {vi , vj};
0 when vi ̸∈ ∆.
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Infinitesimal Volume Rigidity

The elements of the left kernel of R(G , p) are the infinitesimal
motions of (G , p). Each infinitesimal isometry of Rd will give rise
to an infinitesimal motion of (G , p) and hence, when p(V ) affinely
spans Rd , rank R(G , p) ≤ d |V | −

(d+1
2

)
. More generally,

rank R(G , p) ≤ d |V | −
(
d + 1

2

)
+

(
d − t

2

)
when dim aff(p(V )) = t. We say (G , p) is infinitesimally volume
rigid if equality holds.

Lemma

The infinitesimal volume rigidity of (G , p) is a sufficient condition
for its volume rigidity. And the two conditions are equivalent when
p is generic.
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Volume Rigidity Matroid

The d-dimensional volume rigidity matroid Rd(G ) of a
hypergraph G = (V ,E ) is the matroid on E given by the row
matroid of R(G , p) for any generic realisation p in Rd .

The hypergraph G is said to be volume rigid in Rd if

rank Rd(G ) =

{
d |V | −

(d+1
2

)
when |V | ≥ d + 1,(|V |

2

)
when |V | ≤ d .

All generic realisation of such hypergraphs in Rd will be volume
rigid.
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Previous results

Previous work has concentrated on the d-dimensional volume
rigidity matroid of (d + 1)-uniform hypergraphs G = (V ,E ).

Borcea and Streinu observed that rank Rd(G ) can be at most
d |V | − d2 − d + 1 (since the map p(v) 7→ Ap(v) + t will be
an infinitesimal motion of (G , p) for any orthogonal A ∈ Rd×d

and t ∈ Rd).

Southgate obtained new necessary conditions on G for
rank Rd(G ) = d |V | − d2 − d + 1.

Bulavka, Nevo, and Peled showed that rank R2(G ) attains
the Borcea-Streinu bound, 2|V | − 5 whenever G is a
3-uniform hypergraph consisting of the 2-faces of a
triangulated surface of low genus.

Borcea and Streinu, and subsequently Southgate, obtained
bounds on the number of distinct realisations of G in Rd

which are volume equivalent to a given generic realisation
when rank Rd(G ) = d |V | − d2 − d + 1.
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Complete Uniform Hypergraphs

Let K k
n denote the complete k-uniform hypergraph on n vertices.

Theorem: Cruickshank, Jackson and Tanigawa; Lew, Nevo, Peled,
and Raz; 2025+

K k
n is volume rigid in Rd for all 2 ≤ k ≤ d − 1 and all n ≥ d + 1.

Theorem: Lew, Nevo, Peled, and Raz; 2025+

Kd
n is volume rigid in Rd for all n ≥ d + 2.

These results tell us there exist k-uniform hypergraphs which are
volume rigid in Rd whenever 2 ≤ k ≤ d and encourage us to find
larger families of such hypergraphs.
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Simplicial manifolds

A simplicial d-manifold S is an abstract simplicial d-complex
whose underlying topological space is a connected d-dimensional
manifold. In particular, a simplicial 2-manifold is a simplicial
2-complex whose facets are the triangles of a triangulated surface.
We will see that the k-skeleton hypergraph of a simplicial
(d − 1)-manifold is volume rigid in Rd whenever 1 ≤ k ≤ d − 2.

The case k = 1 and S is the boundary complex of a convex
simplicial d-polytope P i.e. the convex hull of a finite number
number of points in Rd in which each (d − 1)-dimensional face is a
simplex, follows from classical results of Dehn and Whiteley, which
tell us that the 1-skeleton of P is an infinitesimally rigid framework
in Rd (without any assumption of genericity).
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Rigidity of 1-skeletons of simplicial manifolds

Theorem (Dehn, 1916)

The 1-skeleton of every convex simplicial polyhedron is an
infinitesimally rigid framework in R3.

Theorem (Whiteley, 1984)

The 1-skeleton of every convex simplicial d-polytope is an
infinitesimally rigid framework in Rd for all d ≥ 3.

Theorem (Kalai, 1987)

The graph of every simplicial (d − 1)-manifold is (generically) rigid
in Rd for all d ≥ 4.

Theorem (Fogelsanger, 1988)

The graph of every simplicial (d − 1)-manifold is (generically) rigid
in Rd for all d ≥ 3.
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Volume Rigidity of Simplicial Manifolds

Theorem

Let G be the k-uniform hypergraph consisting of the (k − 1)-faces
of a connected simplicial (d − 1)-manifold. Then G is volume rigid
in Rd for all 1 ≤ k ≤ d − 2 when d ≥ 4, and also for k = d − 1
when d = 3, 4, 5, 6.

Conjecture

The (d − 1)-uniform hypergraph consisting of the (d − 2)-faces of
a connected simplicial (d − 1)-manifold is volume rigid in Rd for
all d ≥ 3.

Question

Is the framework defined by the k-faces of a convex d-polytope
infinitesimally volume rigid in Rd when 1 ≤ k ≤ d − 2 and d ≥ 3?
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Three Combinatorial Lemmas

Gluing Lemma

If G1,G2 are volume rigid in Rd and |V (G1) ∩ V (G2)| ≥ d , then
G = G1 ∪ G2 is volume rigid in Rd .

Given a hypergraph G = (V ,E ) and w ∈ V let:

G − w = (V − w , {∆ ∈ E : w ̸∈ ∆});
Gw = (V − w , {∆− w : w ∈ ∆ ∈ E}).

Coning Lemma

Let d be an integer, G = (V ,E ) be a k-uniform hypergraph with
3 ≤ k ≤ d and w ∈ V . Suppose that G − w is volume rigid in Rd

and each of the strongly connected components of Gw contains a
copy of K k−1

k . Then G is volume rigid in Rd+1.
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Three Combinatorial Lemmas

Given a hypergraph G = (V ,E ) and u, v ∈ V , let:

Euv = {∆ ∈ E : {u, v} ⊆ ∆};
Eu
v = {∆ ∈ E : v ∈ ∆, u ̸∈ ∆, ∆− v + u ∈ E};

G/uv = (G − u) ∪ {∆− u + v : u ∈ ∆, v ̸∈ ∆}).

For p : V − u → Rd , d ∈ Rd , and ∆ ∈ Euv let d∆ denote the
projection of d onto the orthogonal complement of the linear
subspace of Rd spanned by {p(x)− p(v) : x ∈ ∆− u} and put

Auv (G , p,d) = {d∆ : ∆ ∈ Euv} ∪ {p(v)− p(v)∆ : ∆ ∈ Eu
v }.

Vertex Splitting Lemma

Let G = (V ,E ) be a hypergraph, u, v be distinct vertices of G , p
be an infinitesimally volume rigid realisation of G/uv in Rd and
d ∈ Rd . Suppose Auv (G , p,d) spans Rd . Then G is volume rigid
in Rd .
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