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Volume Rigidity of Frameworks

e A d-dimensional framework is a pair (G, p), where
G = (V,E) is a hypergraph and p is a map from V to RY.
We consider the hyperedges of G to be subsets of V.
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Volume Rigidity of Frameworks

e A d-dimensional framework is a pair (G, p), where
G = (V,E) is a hypergraph and p is a map from V to RY.
We consider the hyperedges of G to be subsets of V.

@ The volume of a hyperedge A € E in (G, p), Vol(p(A)), is
equal to the volume of the convex hull of p(A) in the affine
subspace of RY spanned by p(A) when |A| < d +1 and p(A)
is in general position in R?; otherwise Vol(p(A)) = 0.
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e (G, p) is volume rigid if every continuous motion of the
vertices of (G, p) in RY, which preserves the volumes of all
the hyperedges of (G, p), results in a congruent framework.
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Volume Rigidity of Frameworks

e A d-dimensional framework is a pair (G, p), where
G = (V,E) is a hypergraph and p is a map from V to RY.
We consider the hyperedges of G to be subsets of V.

@ The volume of a hyperedge A € E in (G, p), Vol(p(A)), is
equal to the volume of the convex hull of p(A) in the affine
subspace of RY spanned by p(A) when |A| < d +1 and p(A)
is in general position in R?; otherwise Vol(p(A)) = 0.

e (G, p) is volume rigid if every continuous motion of the
vertices of (G, p) in RY, which preserves the volumes of all
the hyperedges of (G, p), results in a congruent framework.

o Note that, if G is a graph, then the volume rigidity of (G, p)
is equivalent to the standard definition of ‘bar-joint’ rigidity.

Bill Jackson Volume Rigidity of Simplicial Manifolds



Consider a generic realisation of the 3-simplex in R?. It is well
known that the framework containing its six edges is (volume)
rigid. On the other hand, the framework containing its four 2-faces
cannot be volume rigid since a simple dimension counting
argument tells us we need 2 x 4 — 3 = 5 constraints to become
rigid. A more careful analysis tells us that the constraints
determined by the four 2-faces are dependent. It is not obvious
which combinations of 5 edges and faces give rigidity. More
generally, it is a difficult open problem to decide when a given
hypergraph is generically rigid in R?.
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Volume Rigidity Matrix

@ The d-dimensional volume rigidity map of a hypergraph
G = (V, E) is the function f¢ : R4Vl — RIEl given by

fo(p) = (fo(A1), p(A2), - - Fp(Am))

where E = {A1, Ao, ..., Ap} and f(AR) = Vol(p(An))?.
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@ The volume rigidity matrix R(G, p) of a realisation p of G
in R? is given by the Jacobean matrix of fg evaluated at p.
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Volume Rigidity Matrix

@ The d-dimensional volume rigidity map of a hypergraph
G = (V, E) is the function f¢ : R4Vl — RIEl given by

fo(p) = (fo(A1), p(A2), - - Fp(Am))

where E = {A1, Ao, ..., Ap} and f(AR) = Vol(p(An))?.

@ The volume rigidity matrix R(G, p) of a realisation p of G
in R? is given by the Jacobean matrix of fg evaluated at p.

@ For v € A € E and p(v;) = p; we have

Vol(p(A))?2 = {52”/"' — PRI Vol(p(A — vi))2 (JA] =k >3)

llpi — pjlI? (A ={vi,v;})

where p,-A is the projection of p; onto the affine subspace of
R? spanned by p(A — v;).
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Volume Rigidity Matrix

e For v € A € E and p(v;) = p; we have

ellpi = pRIP Vol(p(A — vi))? (|A] = k > 2)

o g
v = {18 (&=L

@ Hence, by applying an appropriate rescaling, we can take the
entry in row A and columns v; of R(G, p) to be:

(pi — pP) Vol(p(A — v;))? when v; € A and |A] > 3;
pi — pj when A = {v;, v;};
0 when v; € A.
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Infinitesimal Volume Rigidity

The elements of the left kernel of R(G, p) are the infinitesimal
motions of (G, p). Each infinitesimal isometry of RY will give rise
to an infinitesimal motion of (G, p) and hence, when p(V) affinely
spans RY, rank R(G,p) < d|V|— (dgl). More generally,

rank R(G, p) < d|V]| — (d?) 4 (d;t)

when dim aff(p(V)) = t. We say (G, p) is infinitesimally volume
rigid if equality holds.
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Infinitesimal Volume Rigidity

The elements of the left kernel of R(G, p) are the infinitesimal
motions of (G, p). Each infinitesimal isometry of RY will give rise
to an infinitesimal motion of (G, p) and hence, when p(V) affinely
spans RY, rank R(G,p) < d|V|— (dgl). More generally,

rank R(G, p) < d|V]| — <d§1> 4 (d;t)

when dim aff(p(V)) = t. We say (G, p) is infinitesimally volume
rigid if equality holds.

The infinitesimal volume rigidity of (G, p) is a sufficient condition
for its volume rigidity. And the two conditions are equivalent when
p is generic.
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Volume Rigidity Matroid

The d-dimensional volume rigidity matroid R4(G) of a
hypergraph G = (V/, E) is the matroid on E given by the row
matroid of R(G, p) for any generic realisation p in R¢.
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Volume Rigidity Matroid

The d-dimensional volume rigidity matroid R4(G) of a
hypergraph G = (V/, E) is the matroid on E given by the row
matroid of R(G, p) for any generic realisation p in R¢.

The hypergraph G is said to be volume rigid in RY if

diV|— (‘%)  when |V|>d +1,

k Rg(G) =
rank Rq(G) {(|\2/|) when |V| < d.

All generic realisation of such hypergraphs in R? will be volume
rigid.
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Previous results

Previous work has concentrated on the d-dimensional volume
rigidity matroid of (d + 1)-uniform hypergraphs G = (V, E).

@ Borcea and Streinu observed that rank R4(G) can be at most
d|V|— d? — d +1 (since the map p(v) +— Ap(v) + t will be
an infinitesimal motion of (G, p) for any orthogonal A € R9*¢
and t € RY).
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Previous results

Previous work has concentrated on the d-dimensional volume
rigidity matroid of (d + 1)-uniform hypergraphs G = (V, E).

@ Borcea and Streinu observed that rank R4(G) can be at most
d|V|— d? — d +1 (since the map p(v) +— Ap(v) + t will be
an infinitesimal motion of (G, p) for any orthogonal A € R9*¢
and t € RY).

@ Southgate obtained new necessary conditions on G for
rank Ry(G) = d|V| —d? —d + 1.

@ Bulavka, Nevo, and Peled showed that rank R,(G) attains
the Borcea-Streinu bound, 2| V| — 5 whenever G is a
3-uniform hypergraph consisting of the 2-faces of a
triangulated surface of low genus.
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Previous results

Previous work has concentrated on the d-dimensional volume
rigidity matroid of (d + 1)-uniform hypergraphs G = (V, E).

@ Borcea and Streinu observed that rank R4(G) can be at most
d|V|— d? — d +1 (since the map p(v) +— Ap(v) + t will be
an infinitesimal motion of (G, p) for any orthogonal A € R9*¢
and t € RY).

@ Southgate obtained new necessary conditions on G for
rank Ry(G) = d|V| —d? —d + 1.

@ Bulavka, Nevo, and Peled showed that rank R,(G) attains
the Borcea-Streinu bound, 2| V| — 5 whenever G is a
3-uniform hypergraph consisting of the 2-faces of a
triangulated surface of low genus.

@ Borcea and Streinu, and subsequently Southgate, obtained
bounds on the number of distinct realisations of G in RY
which are volume equivalent to a given generic realisation
when rank Ry4(G) = d|V|—d? — d + 1.
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Complete Uniform Hypergraphs

Let KX denote the complete k-uniform hypergraph on n vertices.

Theorem: Cruickshank, Jackson and Tanigawa; Lew, Nevo, Peled,

and Raz; 2025+
K,’,‘ is volume rigid in Reforall2<k<d-—1landalln>d+1.

Theorem: Lew, Nevo, Peled, and Raz; 2025+

K¢ is volume rigid in RY for all n > d + 2.
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Complete Uniform Hypergraphs

Let KX denote the complete k-uniform hypergraph on n vertices.

Theorem: Cruickshank, Jackson and Tanigawa; Lew, Nevo, Peled,

and Raz; 2025+
K,’,‘ is volume rigid in Reforall2<k<d-—1landalln>d+1.

Theorem: Lew, Nevo, Peled, and Raz; 2025+

K¢ is volume rigid in RY for all n > d + 2.

These results tell us there exist k-uniform hypergraphs which are
volume rigid in RY whenever 2 < k < d and encourage us to find
larger families of such hypergraphs.
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Simplicial manifolds

A simplicial d-manifold S is an abstract simplicial d-complex
whose underlying topological space is a connected d-dimensional
manifold. In particular, a simplicial 2-manifold is a simplicial
2-complex whose facets are the triangles of a triangulated surface.
We will see that the k-skeleton hypergraph of a simplicial

(d — 1)-manifold is volume rigid in RY whenever 1 < k < d — 2.
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Simplicial manifolds

A simplicial d-manifold S is an abstract simplicial d-complex
whose underlying topological space is a connected d-dimensional
manifold. In particular, a simplicial 2-manifold is a simplicial
2-complex whose facets are the triangles of a triangulated surface.
We will see that the k-skeleton hypergraph of a simplicial

(d — 1)-manifold is volume rigid in RY whenever 1 < k < d — 2.

The case k =1 and S is the boundary complex of a convex
simplicial d-polytope P i.e. the convex hull of a finite number
number of points in RY in which each (d — 1)-dimensional face is a
simplex, follows from classical results of Dehn and Whiteley, which
tell us that the 1-skeleton of P is an infinitesimally rigid framework
in RY (without any assumption of genericity).
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Rigidity of 1-skeletons of simplicial manifolds

Theorem (Dehn, 1916)

The 1-skeleton of every convex simplicial polyhedron is an
infinitesimally rigid framework in R3.

\

Theorem (Whiteley, 1984)

The 1-skeleton of every convex simplicial d-polytope is an
infinitesimally rigid framework in R? for all d > 3.

.
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Rigidity of 1-skeletons of simplicial manifolds

Theorem (Dehn, 1916)

The 1-skeleton of every convex simplicial polyhedron is an
infinitesimally rigid framework in R3.

.

Theorem (Whiteley, 1984)

The 1-skeleton of every convex simplicial d-polytope is an
infinitesimally rigid framework in R? for all d > 3.

.

Theorem (Kalai, 1987)
The graph of every simplicial (d — 1)-manifold is (generically) rigid
in RY for all d > 4.

v

Theorem (Fogelsanger, 1988)

The graph of every simplicial (d — 1)-manifold is (generically) rigid
in RY for all d > 3.
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Volume Rigidity of Simplicial Manifolds

Let G be the k-uniform hypergraph consisting of the (k — 1)-faces
of a connected simplicial (d — 1)-manifold. Then G is volume rigid
inRY forall1 < k<d—2when d>4, and also for k =d — 1

when d = 3,4,5,6.
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Volume Rigidity of Simplicial Manifolds

Let G be the k-uniform hypergraph consisting of the (k — 1)-faces
of a connected simplicial (d — 1)-manifold. Then G is volume rigid
inRY forall1 < k<d—2when d>4, and also for k =d — 1

when d = 3,4,5,6.

The (d — 1)-uniform hypergraph consisting of the (d — 2)-faces of
a connected simplicial (d — 1)-manifold is volume rigid in R9 for
all d > 3.

.
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Volume Rigidity of Simplicial Manifolds

Let G be the k-uniform hypergraph consisting of the (k — 1)-faces
of a connected simplicial (d — 1)-manifold. Then G is volume rigid
inRY forall1 < k<d—2when d>4, and also for k =d — 1

when d = 3,4,5,6.

The (d — 1)-uniform hypergraph consisting of the (d — 2)-faces of
a connected simplicial (d — 1)-manifold is volume rigid in R9 for
all d > 3.

.

Is the framework defined by the k-faces of a convex d-polytope
infinitesimally volume rigid in R when1< k<d—2andd>3? )
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Three Combinatorial Lemmas

Gluing Lemma

If G1, Gy are volume rigid in RY and |V/(G1) N V(Gy)| > d, then
G = Gy U Gy is volume rigid in RY.
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Three Combinatorial Lemmas

Gluing Lemma

If G1, Gy are volume rigid in RY and |V/(G1) N V(Gy)| > d, then
G = Gy U Gy is volume rigid in RY.

Given a hypergraph G = (V,E) and w € V let:
G—w=(V-—w,{AcE:w¢gA});
Gw=(V-w,{A—w:weAcE}).

Coning Lemma

Let d be an integer, G = (V, E) be a k-uniform hypergraph with

3< k<dandwe V. Suppose that G — w is volume rigid in RY
and each of the strongly connected components of G,, contains a

copy of K,f_l. Then G is volume rigid in R9+1.
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Three Combinatorial Lemmas

Given a hypergraph G = (V,E) and u,v € V, let:
Ew={AcE:{uv}CA}
E)={AcE:veAugA A—v+uckE}

G/luv=(G—u)U{A—u+v:uel vgA}).

For p: V-u—RI deR? and A € E,, let da denote the

projection of d onto the orthogonal complement of the linear
subspace of R? spanned by {p(x) — p(v) : x € A — u} and put

Auw(G,p,d) ={da : A € E,,} U{p(v) — p(v)2 : A € E'}.

Vertex Splitting Lemma

Let G = (V, E) be a hypergraph, u, v be distinct vertices of G, p
be an infinitesimally volume rigid realisation of G/uv in R? and
d € RY. Suppose A, (G, p,d) spans RY. Then G is volume rigid
in RY.
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