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Talk plan

Definitions
Reformulation of the MLT of a graphical model as a rigidity-theoretic
property of the graph and implications
What is the “expected” MLT of a Gaussian graphical model?
Generalize the rigidity-theoretic picture, determine MLTs of “generic”
linear concentration models
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Linear concentration models

tl;dr:
Linear concentration model = linear space of symmetric matrices that

contains a positive definite matrix

A statistical model is a family of joint probability distributions
The n-variate normal distribution with mean µ ∈ Rn and
covariance Σ ≻ 0 is the normal distribution with density function

fµ,Σ(x) :=
exp(−1

2(x − µ)T Σ−1(x − µ))√
(2π)v det(Σ)

An n-variate linear concentration model is the family of
multivariate normal distributions whose inverse covariance matrix lies
in a particular linear subspace of n × n symmetric matrices
Covariance matrices are positive definite, so if L ⊆ Sn does not have
a positive definite matrix, the statistical model is empty
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Example

Definition
Let G be a graph on vertex set {1, . . . , n}. Consider the following
subspace LG ⊆ Sn of n × n symmetric matrices

LG := {M ∈ Sn : Mij = 0 whenever ij is not an edge of G}.

G =
1

2 3

4


x11 x12 0 x14
x12 x22 x23 0
0 x23 x33 x34

x14 0 x34 x44



Definition
The Gaussian graphical model MG associated to a graph G is the linear
concentration model associated to LG .
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Maximum likelihood thresholds

Suppose we are given:
A linear subspace L ⊆ Sn of n × n symmetric matrices, and
a matrix X ∈ Rn×d , columns supposedly iid from a distribution in ML

The maximum likelihood estimate (MLE) is the solution to the
following optimization problem, if it exists:

max
K

Tr(XXT K ) + log det K

s.t. K ≻ 0 and K ∈ L.

The maximum likelihood threshold of L is the minimum n such that the
above optimization problem has a solution for any generic X ∈ Rn×d .
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Rigidity theory basics

Definition
A bar and joint framework in d dimensions consists of a graph G , and
a map p : V (G) → Rd . Such a framework is independent if the
edge-lengths can be independently perturbed.

Theorem (Asimov and Roth 1978)
Given a graph G, if p : V (G) → Rd is “generic,” then whether the
framework (G , p) is independent in Rd does not depend on p.

One says that G is (generically) independent in Rd if (G , p) is independent
for all generic p : V (G) → Rd .
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Upper bounds via generic independence

Definition (Generic completion rank)
The generic completion rank of G , denoted GCR(G), is the minimum d
such that G is generically independent in Rd−1.

Theorem (Uhler 2012, Gross and Sullivant 2018)
MLT(G) ≤ GCR(G).

GCR(G) can be computed in RP time, so it would be great if the above
inequality were sharp. However...

Theorem (Blekherman and Sinn 2019)
MLT(K5,5) = 4 but GCR(K5,5) = 5.
MLT(Kn,n) = O(

√
n) whereas GCR(Kn,n) = O(n).
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MLT in rigidity-theoretic terms

Definition
Two frameworks (G , p) and (G , q) on the same graph G are equivalent if
the following holds for every edge uv of G

∥p(u) − p(v)∥ = ∥q(u) − q(v)∥.

(G , p) in Rk has full affine span if {p(v) : v ∈ V (G)} affinely spans Rk .

Theorem (BDGNST)
Let G be a graph with n vertices. MLT(G) is the smallest d such that
every generic framework in Rd−1 is equivalent to a framework in Rn−1

with full affine span.
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More rigidity

Definition
Two frameworks (G , p) and (G , q) on the same graph G are equivalent if
the following holds for every edge uv of G

∥p(u) − p(v)∥ = ∥q(u) − q(v)∥.

They are moreover congruent if the above holds for all pairs uv of
vertices of G .

Definition
A framework (G , p) in Rd is globally rigid if all equivalent frameworks in
Rd are congruent.

→ →
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Lower bounds via global rigidity

Theorem (Connelly 2005; Gortler, Healy, and Thurston 2010)
Given a graph G, if p : V (G) → Rd is “generic,” then whether the
framework (G , p) is globally rigid in Rd does not depend on p.

One says that G is (generically) globally rigid in Rd if (G , p) is globally
rigid for all generic p : V (G) → Rd .

Theorem (BDGNST)
If a subgraph of G on at least d + 1 vertices is generically globally rigid in
Rd−1, then MLT(G) > d.

Theorem (BDGNST)
MLT(G) = GCR(G) in all of the following cases:

GCR(G) ≤ 4
MLT(G) ≤ 3
G has 9 or fewer vertices.
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The MLT of an Erdös-Renyi random graph
Let c > 0 be fixed and let G(n, n/c) denote the Erdös-Renyi random
graph model with expected edge density c.

Conjecture (BDGNST)
Let c > 0 be fixed. If G ∼ G(n, n/c) then MLT (G) = GCR(G) with high
probability. In this case, MLT (G) ≈ ⌊c/2⌋ + 2 with high probability.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

G
C
R
/M

LT

c

Daniel Irving Bernstein Maximum likelihood thresholds 11 / 22



MLT of GraphLasso outputs

max
K

Tr(XXT K ) + log det K + α∥K∥1

s.t. K ≻ 0.

Given n datapoints, i.i.d. from a
“reasonable” distribution, with what
probability does GraphLasso pick a
graphical model with MLT ≤ n?
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More rigidity: stress matrices
Given a graph G = (V , E ) and p ∈ (Rd)n, a stress of the framework
(G , p) is a vector ω ∈ RE such that∑

j:ij∈E
ωij(p(j) − p(i)) = 0 for all i ∈ V .

The associated stress matrix Ω is defined by

Ωij =


ωij if ij ∈ E
0 if i ̸= j and ij /∈ E
−
∑

k:ik∈E ωik if i = j .

By construction, if ω is a stress of (G , p) with stress matrix Ω, then

Ω


1 −p(1)−
1 −p(2)−
...

...
1 −p(n)−

 = 0

So rank(Ω) ≤ n − d − 1 if p is generic. This inequality can be strict.
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Stress matrix example

(0, 0) (2, 0)

(2, 2)(0, 2)

(1, 1)1 1

1

1

-2

-2

-2

-2


0 1 0 1 −2
1 0 1 0 −2
0 1 0 1 −2
1 0 1 0 −2

−2 −2 −2 −2 8




1 0 0
1 2 0
1 2 2
1 0 2
1 1 1

 =


0
0
0
0
0


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Stress matrices in rigidity

Theorem (Connelly 2005; Gortlear-Healy-Thurston 2010)
A graph G on n vertices is generically globally rigid in Rd iff there exists
p ∈ (Rd)n such that (G , p) has a stress matrix of rank n − d − 1.

Theorem (Alfakih 2011)
If G is a graph on n vertices and p ∈ (Rd)n, and (G , p) has a PSD stress
matrix of rank n − (d + k) − 1, then any framework equivalent to (G , p) in
Rn−1 has an affine span of dimension at most d + k.

Theorem (BDGNST)
Let G be a graph with n vertices. MLT(G) is the smallest d such that
every generic framework in Rd−1 is equivalent to a framework in Rn−1

with full affine span.

The upshot: the MLT of G is the minimum d such that no generic
d-dimensional framework (G , p) has a nonzero PSD stress.
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Generalizing to linear concentration models

Let L ⊆ Sn be a linear subspace of symmetric matrices and let d ≤ n.
Does there exist an open neighborhood U ⊆ Rn×d such that for each
X ∈ U, there exists a nonzero PSD Ω ∈ L such that ΩX = 0?

Theorem (BGT)
The minimum d for which the above answer is “no” is the MLT of L.

Rigidity-theoretic interpretation:
L is like a graph, X is a point configuration
projecting XXT onto L is recording edge-lengths of a framework
each Ω ∈ L satisfying ΩX = 0 is a stress of X

When L = LG , we are literally asking if there exists an open neighborhood
of (d − 1)-dimensional frameworks on G that all have a PSD stress.
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A sufficient condition for “no”

Does there exist an open neighborhood U ⊆ Rn×d such that for each
X ∈ U, there exists a nonzero PSD Ω ∈ L such that ΩX = 0?

Let Sn(d) denote the variety of n × n symmetric matrices of rank d .

Proposition (BGT)
If the projection of Sn(d) onto L is dim(L)-dimensional, the answer is “no.”

dim(L) ≤ dn −
(d

2
)

= dim(Sn(d)) is neccessary for this projection to
be full-dimensional.
When L = LG , this projection is full-dimensional iff G is independent
in the (d − 1)-rigidity matroid.
Answer for L = LG can still be “no” even when G is not independent
(Blekherman and Sinn).
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Generic linear spaces

Theorem (BGT)
Let L ⊆ Sn be a generic linear subspace. The following are equivalent:

1 dim(L) ≤ nd −
(d

2
)
.

2 The projection of Sn(d) onto L is dim(L)-dimensional,
3 There does not exist an open neighborhood U ⊆ Rn×d , and such that

for every X ∈ U, there exists a nonzero PSD Ω ∈ L such that
ΩX = 0.

Corollary
Let L ⊆ Sn be a generic linear subspace. The MLT of L is the minimum d
such that dim(L) ≤ dn −

(d
2
)
.

This is the behavior one would expect from a dimension count. Not
obvious since we’re working over the reals!
Proof uses tools from convexity theory and differential topology.
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Some remarks on the proof: hard direction

Lemma
Let L ⊆ Sn be a generic linear subspace. Assume dim(L) > nd −

(d
2
)
.

Then there exists an open neighborhood U ⊆ Rn×d such that for every
X ∈ U, there exists a nonzero PSD Ω ∈ L such that ΩX = 0.

L being “generic” excludes the following two possibilities, neither of which
is robust to perturbation

L does not contain a PSD matrix of rank n − d , where d satisfies

m ≥ dn −
(

d
2

)
− n + d + 1

L contains a PSD matrix of the above rank, but for every such matrix
Ω, L non-transversely intersects the space of matrices sharing a kernel
with Ω.
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Remarks on the proof: easy direction

Lemma
Let L ⊆ Sn be a generic linear subspace. Assume dim(L) ≤ nd −

(d
2
)
.

Then the projection of Sn(d) onto L is full-dimensional in L.

This also holds when L = LG for a graph G that is independent in the
(d − 1)-dimensional rigidity matroid.

Proof idea:
generic normal spaces of Sn(d) have dimension

(n−d+1
2
)

dimension count says intersection with L expected to be trivial
if L and normal space have larger than expected dimension, a
perturbation of L does not.
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Weak maximum likelihood thresholds

Definition
The weak maximum likelihood threshold of a linear concentration model
L ⊆ Sn is the minimum d such that some open set U ⊆ Rn×d satisfies
the property that for every X ∈ U, the following has a solution

max
K

Tr(XXT K ) + log det K

s.t. K ≻ 0 and K ∈ L.

Conjecture
The weak maximum likelihood threshold of a graph G is 2 if and only if it
has at least one edge, and an acyclic orientation with no “stretched cycles”
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The end

Thank you for your attention!
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