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Talk plan

@ Definitions

@ Reformulation of the MLT of a graphical model as a rigidity-theoretic
property of the graph and implications

@ What is the “expected” MLT of a Gaussian graphical model?

o Generalize the rigidity-theoretic picture, determine MLTs of “generic”
linear concentration models
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Linear concentration models

tl;dr:

Linear concentration model = linear space of symmetric matrices that

contains a positive definite matrix

A statistical model is a family of joint probability distributions

The n-variate normal distribution with mean p € R” and
covariance ¥ > 0 is the normal distribution with density function

o) i exp(—3(x — ) T (x — p))
R (2m)" det(%)

An n-variate linear concentration model is the family of
multivariate normal distributions whose inverse covariance matrix lies
in a particular linear subspace of n x n symmetric matrices
Covariance matrices are positive definite, so if L C S" does not have
a positive definite matrix, the statistical model is empty
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Definition

Let G be a graph on vertex set {1,...,n}. Consider the following
subspace Lg C 8" of n X n symmetric matrices

L :={M € 8" : Mj; = 0 whenever jj is not an edge of G}.

2 3 x11 x12 0 xua
x12 x2 x3 0
0 x3 X33 X34

1 4
x4 0 X33 Xxa4

Definition

The Gaussian graphical model M ¢ associated to a graph G is the linear
concentration model associated to L.
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Maximum likelihood thresholds

Suppose we are given:
@ A linear subspace L C 8" of n X n symmetric matrices, and
@ a matrix X € R"™9, columns supposedly iid from a distribution in M

The maximum likelihood estimate (MLE) is the solution to the
following optimization problem, if it exists:

max Tr(XXTK) + log det K
st. K»>=0 and KeL

The maximum likelihood threshold of L is the minimum n such that the
above optimization problem has a solution for any generic X € R"*¢9,

Daniel Irving Bernstein Maximum likelihood thresholds



Rigidity theory basics

Definition

A bar and joint framework in d dimensions consists of a graph G, and
amap p: V(G) = R?. Such a framework is independent if the
edge-lengths can be independently perturbed.

A L7

Theorem (Asimov and Roth 1978)

Given a graph G, if p: V(G) — R is “generic,” then whether the
framework (G, p) is independent in RY does not depend on p.

One says that G is (generically) independent in RY if (G, p) is independent
for all generic p: V(G) — RY.
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Upper bounds via generic independence

Definition (Generic completion rank)

The generic completion rank of G, denoted GCR(G), is the minimum d
such that G is generically independent in RY1.

Theorem (Uhler 2012, Gross and Sullivant 2018)

MLT(G) < GCR(G).

GCR(G) can be computed in RP time, so it would be great if the above
inequality were sharp. However...

Theorem (Blekherman and Sinn 2019)

MLT(Kss) = 4 but GCR(Ks5) = 5.
MLT(Kp.n) = O(y/n) whereas GCR(K, n) = O(n).
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MLT in rigidity-theoretic terms

Definition
Two frameworks (G, p) and (G, q) on the same graph G are equivalent if
the following holds for every edge uv of G

lp(u) = p(V)II = llq(u) = a(V)I-
(G, p) in R¥ has full affine span if {p(v) : v € V(G)} affinely spans RX.

Theorem (BDGNST)

Let G be a graph with n vertices. MLT(G) is the smallest d such that
every generic framework in R~ js equivalent to a framework in R"~1
with full affine span.
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More rigidity

Definition

Two frameworks (G, p) and (G, q) on the same graph G are equivalent if
the following holds for every edge uv of G

lp(u) = p(V)II = lla(u) = a(V)I|-

They are moreover congruent if the above holds for all pairs uv of
vertices of G.

Definition

A framework (G, p) in R? is globally rigid if all equivalent frameworks in
RY are congruent.

iR A S
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Lower bounds via global rigidity

Theorem (Connelly 2005; Gortler, Healy, and Thurston 2010)

Given a graph G, if p: V(G) — R? is “generic,” then whether the
framework (G, p) is globally rigid in RY does not depend on p.

One says that G is (generically) globally rigid in R? if (G, p) is globally
rigid for all generic p : V(G) — RY.

Theorem (BDGNST)

If a subgraph of G on at least d + 1 vertices is generically globally rigid in
RI-1, then MLT(G) > d.

Theorem (BDGNST)

MLT(G) = GCR(G) in all of the following cases:
e GCR(G) < 4
o MLT(G) <3
® G has 9 or fewer vertices.
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The MLT of an Erdés-Renyi random graph

Let ¢ > 0 be fixed and let G(n, n/c) denote the Erdés-Renyi random
graph model with expected edge density c.

Conjecture (BDGNST)

Let ¢ > 0 be fixed. If G ~ G(n,n/c) then MLT(G) = GCR(G) with high
probability. In this case, MLT (G) ~ |c/2| + 2 with high probability.
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MLT of GraphlLasso outputs

max

st. K »=0.

Given n datapoints, i.i.d. from a
“reasonable” distribution, with what
probability does GraphlLasso pick a
graphical model with MLT < n?
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More rigidity: stress matrices

Given a graph G = (V,E) and p € (R?)", a stress of the framework
(G, p) is a vector w € RE such that

> wi(p(i) — p(i)) =0  forallie V.
JijeE

The associated stress matrix ) is defined by
wij ifijjeE
Q; =<0 ifi£jand ij¢ E
— D kikeE Wik if 1= .

By construction, if w is a stress of (G, p) with stress matrix €, then

1 —p(1)-
1 —p(2)—|
1 —p(n)—
So rank(Q2) < n—d —1if p is generic. This inequality can be strict.
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Stress matrix example

o 1 0 1 =2 1 00 0
1 0 1 0 =2 1 20 0
o 1 0 1 =2 1 2 2(=1]0
1 0 1 0 -2 1 0 2 0
-2 -2 -2 -2 8 111 0
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Stress matrices in rigidity

Theorem (Connelly 2005; Gortlear-Healy-Thurston 2010)

A graph G on n vertices is generically globally rigid in R? iff there exists
p € (RY)" such that (G, p) has a stress matrix of rank n —d — 1.

Theorem (Alfakih 2011)

If G is a graph on n vertices and p € (R?)", and (G, p) has a PSD stress
matrix of rank n— (d + k) — 1, then any framework equivalent to (G, p) in
R"1 has an affine span of dimension at most d + k.

Theorem (BDGNST)

Let G be a graph with n vertices. MLT(G) is the smallest d such that
every generic framework in R9~1 is equivalent to a framework in R"~*
with full affine span.

The upshot: the MLT of G is the minimum d such that no generic
d-dimensional framework (G, p) has a nonzero PSD stress.
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Generalizing to linear concentration models

Let L C 8" be a linear subspace of symmetric matrices and let d < n.
Does there exist an open neighborhood U C R"*9 such that for each
X € U, there exists a nonzero PSD () € L such that QX = 07

Theorem (BGT)

The minimum d for which the above answer is “no” is the MLT of L.

Rigidity-theoretic interpretation:
@ L is like a graph, X is a point configuration
e projecting XX T onto L is recording edge-lengths of a framework

@ each Q € L satisfying QX = 0 is a stress of X

When L = Lg, we are literally asking if there exists an open neighborhood
of (d — 1)-dimensional frameworks on G that all have a PSD stress.
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A sufficient condition for “no”

Does there exist an open neighborhood U C R"*9 such that for each
X € U, there exists a nonzero PSD ) € [ such that QX = 07

Let S"(d) denote the variety of n X n symmetric matrices of rank d.

Proposition (BGT)

If the projection of S"(d) onto L is dim(L)-dimensional, the answer is “no.”

e dim(L) < dn— (‘2’) = dim(S8"(d)) is neccessary for this projection to
be full-dimensional.

@ When L = Lg, this projection is full-dimensional iff G is independent
in the (d — 1)-rigidity matroid.

@ Answer for L = L¢ can still be “no” even when G is not independent
(Blekherman and Sinn).
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Theorem (BGT)

Let L C 8" be a generic linear subspace. The following are equivalent:
Q@ dim(L) < nd — (9).
@ The projection of S"(d) onto L is dim(L)-dimensional,

© There does not exist an open neighborhood U C R"*9  and such that
for every X € U, there exists a nonzero PSD ) € L such that
QX =0.

Corollary

Let L C 8" be a generic linear subspace. The MLT of L is the minimum d
such that dim(L) < dn — (9).

@ This is the behavior one would expect from a dimension count. Not
obvious since we're working over the reals!

@ Proof uses tools from convexity theory and differential topology.
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Some remarks on the proof: hard direction

Let L C S be a generic linear subspace. Assume dim(L) > nd — (5).
Then there exists an open neighborhood U C R"*? such that for every
X € U, there exists a nonzero PSD Q € L such that QX = 0.

L being “generic” excludes the following two possibilities, neither of which
is robust to perturbation
@ [ does not contain a PSD matrix of rank n — d, where d satisfies

mZdn—(Z)—n+d+1

@ L contains a PSD matrix of the above rank, but for every such matrix
Q, L non-transversely intersects the space of matrices sharing a kernel
with €.
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Remarks on the proof: easy direction

Let L C 8" be a generic linear subspace. Assume dim(L) < nd — (d).

2
Then the projection of S"(d) onto L is full-dimensional in L.

This also holds when L = L¢ for a graph G that is independent in the
(d — 1)-dimensional rigidity matroid.

Proof idea:
@ generic normal spaces of §"(d) have dimension ("_gH)
o dimension count says intersection with L expected to be trivial

@ if L and normal space have larger than expected dimension, a
perturbation of L does not.
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Weak maximum likelihood thresholds

The weak maximum likelihood threshold of a linear concentration model

L C 8" is the minimum d such that some open set U C R"*d satisfies
the property that for every X € U, the following has a solution

max Tr(XXTK) + log det K

st. K>=0 and K e L.

Conjecture

The weak maximum likelihood threshold of a graph G is 2 if and only if it
has at least one edge, and an acyclic orientation with no “stretched cycles”

« o o e
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Thank you for your attention!
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