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Erdős-Rényi Random Graphs

▶ A G(n, p) random graph:
▶ Consists of n vertices.
▶ Each edge appears independently with probability p = p(n).

▶ Study of properties that occur asymptotically almost surely.

Theorem (Erdős-Rényi)
Let G ∼ G

(
n, p = logn+ω(n)

n

)
. Then,

P(G is connected) →
{
0 if ω(n) → −∞
1 if ω(n) → +∞.

▶ G(n, p) is connected if and only if it has no isolated vertices.
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Rigidity of G(n, p) for fixed d

Theorem (Lew, Nevo, P., Raz)
Fix d ≥ 1, let G ∼ G

(
n, p = logn+(d−1) log logn+ω(n)

n

)
. Then,

P(G is d-rigid) →
{
0 if ω(n) → −∞
1 if ω(n) → +∞.

▶ G(n, p) is d-rigid iff its minimum degree is at least d.
▶ d = 1: Erdős-Rényi,

d = 2: Jackson-Servatius-Servatius,
d > 2: Király-Theran, Jordán-Tanigawa.



Rigidity of G(n, p) for large d

Problem
What is the largest dimension d for which a G ∼ G(n, p) random
graph is generically d-rigid?

Minimum-degree bottleneck: d ≤ δ(G).
Edge-number bottleneck: p

(
n
2

)
≥ dn−

(
d+1
2

)
, equivalently

d ≤ (1 + o(1))(1−
√
1− p)n.

Conjecture (Krivelevich, Lew, Michaeli)
If p ≫ logn/n then G is a.a.s. (1− o(1))(1−

√
1− p)n-rigid.

▶ Theorem [KLM:] G is a.a.s. c · np/ log(np)-rigid (using
strong rigidity partitions.)
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Two rigidity regimes
Suppose p = c logn/n, where c > 0 is fixed.
▶ The minimum-degree: δ(G) ≈ a(c)· logn,

where a(c) is the smallest non-negative root of 1− c+ a− a log(a/c) = 0.

▶ The edge-number bottleneck: (1−
√
1− p)n ≈ c/2· logn.

▶ The critical point is C∗ = 2/(1− log 2) = 6.518...

Remark: min-degree and edge-number bottlenceks also appear in
[KLM]’s minimum degree conditions for rigidity.
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Main results
Theorem (P., Peleg)
Let G ∼ G(n, p). Then, for every ε > 0,

1. If p < (1− ε)C∗ logn/n, then G is a.a.s. δ(G)-rigid.

2. If C∗ logn/n ≤ p ≪ n−1/2, then G is a.a.s. (1− ε)np2 -rigid.

▶ Proves KLM’s conjecture in the regime p ≪ n−1/2.
▶ Both items are sharp: 1− ε cannot be replaced by 1 + ε due

to the Edge-number bottleneck.
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Proof ideas: (I) large closure

Suppose M is an m-element matroid of rank r. Let Mp be a
random subset of M where each element appears independently
with probability p.
Lemma
If r ≤ (1− ε)pm then P

(
|cl(Mp)| ≥ ε

2m
)
≥ 1− e−K·ε2·pm

▶ Md - d-rigidity matroid
▶ Cd(G) - closure of G in Md.

Corollary
Let G ∼ G(n, p). If d ≤ (1− ε)np2 then a.a.s. |Cd(G)| ≥ ε

4n
2,

hence, ∃ induced C ⊆ Cd(G) with δ(C) ≥ ε
4n.
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Proof ideas: (II) large clique in closure

▶ ∃ induced C ⊆ Cd(G) with δ(C) ≥ ε
4n ≥ d(d+ 1).

Lemma (Villányi)
Suppose that a graph C is closed in Md and δ(C) ≥ d(d+ 1),
then there exists a vertex v ∈ C whose neighbors induce a clique.

▶ Challenge: rule out the possibility that Cd(G) = G ∪KA for
some |A| = εn/4.

▶ Idea: apply the “matroid closure lemma” for the matroid
contraction Md/

(
A
2

)
, (Rigidity-wise: ”pin” the vertices of A.).

▶ ... =⇒ Cd(G) contains a clique with 0.99n vertices.
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Open Problems

▶ KLM’s conjecture remains open for p ≫ n−1/2.
An interesting special case:

G(n, 1/2) is a.a.s. (1−
√

1/2− ε)n-rigid.

We do not even know that G(n, 0.999) is (0.001 · n)-rigid.
▶ Computer simulations suggest that if p > C∗ logn/n then

G(n, p) is a.a.s dE-rigid where

dE := max
{
d : |E(G(n, p)| ≥ dn−

(
d+ 1

2

)}
,

while our theorem only gives (1− ε)dE-rigidity.


