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Erdés-Rényi Random Graphs

» A G(n,p) random graph:
» Consists of n vertices.
» Each edge appears independently with probability p = p(n).

» Study of properties that occur asymptotically almost surely.
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Theorem (Erdés-Rényi)
LetGwG(n, p = lgnte(n) ) Then,

0 ifw(n)— —oo

P(G is connected) — _
1 ifw(n) — +oo.

» G(n,p) is connected if and only if it has no isolated vertices.



Rigidity of G(n,p) for fixed d

Theorem (Lew, Nevo, P., Raz)
Fixd>1, let G ~ G (n p = lant(d-)loglogntw(n) ) Then,

n

(G is dorigid) — {0 @) = =0
1 ifw(n) = +oo.

» G(n,p) is d-rigid iff its minimum degree is at least d.
» d = 1: Erd6s-Rényi,

d = 2: Jackson-Servatius-Servatius,

d > 2: Kirdly-Theran, Jordan-Tanigawa.
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Conjecture (Krivelevich, Lew, Michaeli)
If p>>logn/n then G is a.a.s. (1 —o0(1))(1 — /1 — p)n-rigid.

» Theorem [KLM:] G is a.a.s. ¢ - np/log(np)-rigid (using
strong rigidity partitions.)
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» The minimum-degree: §(G) = a(c)-logn,
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Remark: min-degree and edge-number bottlenceks also appear in
[KLM]'s minimum degree conditions for rigidity.



Main results

Theorem (P., Peleg)
Let G ~ G(n,p). Then, for every e > 0,
1. Ifp< (1 —¢)Cilogn/n, then G is a.a.s. 6(G)-rigid.

2. If Cilogn/n < p < n~Y2, then G is a.a.s. (1 — e)"L-rigid.
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Main results

Theorem (P., Peleg)
Let G ~ G(n,p). Then, for every ¢ > 0,
1. Ifp< (1 —¢)Cilogn/n, then G is a.a.s. 6(G)-rigid.

2. IfC.logn/n <p < n~Y2, then G is a.a.s. (1 — £)=L-rigid.

» Proves KLM's conjecture in the regime p < n~1/2.

» Both items are sharp: 1 — ¢ cannot be replaced by 1 + ¢ due
to the Edge-number bottleneck.
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Proof ideas: (I) large closure

Suppose M is an m-element matroid of rank r. Let M), be a
random subset of M where each element appears independently
with probability p.

Lemma
Ifr < (1—e)pm then P (|cl(My)| > §m) > 1 — e~ K<"pm

> My - d-rigidity matroid
» C4(G) - closure of G in M.
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Let G ~ G(n,p). Ifd < (1 —¢e)=P then a.a.s. |Cy(G)| > §n”,
hence, 3 induced C C Cy(G) with 6(C) > $n.
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Suppose that a graph C'is closed in My and §(C) > d(d + 1),
then there exists a vertex v € C' whose neighbors induce a clique.



Proof ideas: (Il) large clique in closure

» Jinduced C C Cy(G) with §(C) > §n > d(d + 1).

Lemma (Villanyi)
Suppose that a graph C is closed in Mg and 6(C) > d(d + 1),
then there exists a vertex v € C' whose neighbors induce a clique.
» Challenge: rule out the possibility that Cy(G) = G U K4 for
some |A| =en/4.
P Idea: apply the “matroid closure lemma" for the matroid
contraction M,/ (g) (Rigidity-wise: "pin” the vertices of A.).
» ...=— (4(G) contains a clique with 0.99n vertices.



Open Problems

» KLM'’s conjecture remains open for p > n~1/2.
An interesting special case:

G(n,1/2)is a.as. (1 —/1/2 — e)n-rigid.

We do not even know that G(n,0.999) is (0.001 - n)-rigid.

» Computer simulations suggest that if p > C,logn/n then
G(n,p) is a.a.s dg-rigid where

dps = max {d . |E(G(n,p)| > dn — (d; 1)}

while our theorem only gives (1 — ¢)dg-rigidity.



