Rigidty of random graphs in high dimensions

Yuval Peled (Hebrew University)

joint works with Niv Peleg ; Alan Lew, Eran Nevo and Orit Raz

Matroids, Rigidity, and Algebraic Statistics, ICERM, Mar 17 - 21, 2025

Erdős-Rényi Random Graphs

- A G(n, p) random graph:
 - Consists of n vertices.
 - Each edge appears independently with probability p = p(n).
- Study of properties that occur asymptotically almost surely.

Erdős-Rényi Random Graphs

- ► A G(n, p) random graph:
 - Consists of n vertices.
 - Each edge appears independently with probability p = p(n).
- Study of properties that occur asymptotically almost surely.

Theorem (Erdős-Rényi)
Let
$$G \sim G\left(n, \ p = \frac{\log n + \omega(n)}{n}\right)$$
. Then,
 $\mathbb{P}(G \text{ is connected}) \rightarrow \begin{cases} 0 & \text{if } \omega(n) \rightarrow -\infty\\ 1 & \text{if } \omega(n) \rightarrow +\infty. \end{cases}$

 \blacktriangleright G(n,p) is connected if and only if it has no isolated vertices.

Rigidity of G(n, p) for fixed d

Theorem (Lew, Nevo, P., Raz) Fix $d \ge 1$, let $G \sim G\left(n, \ p = \frac{\log n + (d-1)\log\log n + \omega(n)}{n}\right)$. Then, $\mathbb{P}(G \text{ is } d\text{-rigid}) \rightarrow \begin{cases} 0 & \text{if } \omega(n) \rightarrow -\infty\\ 1 & \text{if } \omega(n) \rightarrow +\infty. \end{cases}$

• G(n,p) is d-rigid iff its minimum degree is at least d.

- ▶ d = 1: Erdős-Rényi,
 - d = 2: Jackson-Servatius-Servatius,
 - d > 2: Király-Theran, Jordán-Tanigawa.

Rigidity of G(n,p) for large d

Problem

What is the largest dimension d for which a $G \sim G(n, p)$ random graph is generically d-rigid?

Rigidity of G(n, p) for large d

Problem

What is the largest dimension d for which a $G \sim G(n,p)$ random graph is generically d-rigid?

Minimum-degree bottleneck: $d \le \delta(G)$. Edge-number bottleneck: $p\binom{n}{2} \ge dn - \binom{d+1}{2}$, equivalently

$$d \le (1 + o(1))(1 - \sqrt{1 - p})n.$$

Rigidity of G(n, p) for large d

Problem

What is the largest dimension d for which a $G \sim G(n,p)$ random graph is generically d-rigid?

Minimum-degree bottleneck: $d \le \delta(G)$. Edge-number bottleneck: $p\binom{n}{2} \ge dn - \binom{d+1}{2}$, equivalently

$$d \le (1 + o(1))(1 - \sqrt{1 - p})n.$$

Conjecture (Krivelevich, Lew, Michaeli)

If $p \gg \log n/n$ then G is a.a.s. $(1 - o(1))(1 - \sqrt{1 - p})n$ -rigid.

• Theorem [KLM:] G is a.a.s. $c \cdot np/\log(np)$ -rigid (using strong rigidity partitions.)

Suppose $p = c \log n/n$, where c > 0 is fixed.

• The minimum-degree: $\delta(G) \approx a(c) \cdot \log n$,

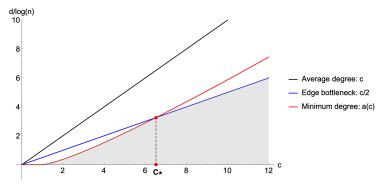
where a(c) is the smallest non-negative root of $1 - c + a - a \log(a/c) = 0$.

Suppose $p = c \log n/n$, where c > 0 is fixed.

- ► The minimum-degree: $\delta(G) \approx a(c) \cdot \log n$, where a(c) is the smallest non-negative root of $1 - c + a - a \log(a/c) = 0$.
- The edge-number bottleneck: $(1 \sqrt{1-p})n \approx c/2 \cdot \log n$.

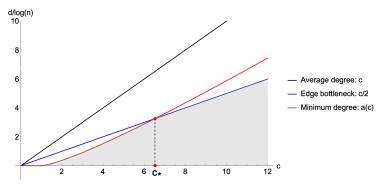
Suppose $p = c \log n/n$, where c > 0 is fixed.

- ► The minimum-degree: $\delta(G) \approx a(c) \cdot \log n$, where a(c) is the smallest non-negative root of $1 - c + a - a \log(a/c) = 0$.
- The edge-number bottleneck: $(1 \sqrt{1-p})n \approx c/2 \cdot \log n$.
- The critical point is $C_* = 2/(1 \log 2) = 6.518...$



Suppose $p = c \log n/n$, where c > 0 is fixed.

- ► The minimum-degree: $\delta(G) \approx a(c) \cdot \log n$, where a(c) is the smallest non-negative root of $1 - c + a - a \log(a/c) = 0$.
- The edge-number bottleneck: $(1 \sqrt{1-p})n \approx c/2 \cdot \log n$.
- ▶ The critical point is $C_* = 2/(1 \log 2) = 6.518...$

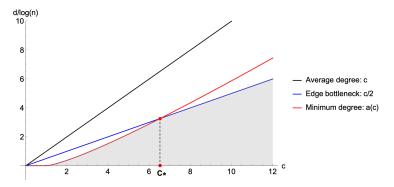


Remark: min-degree and edge-number bottlenceks also appear in [KLM]'s minimum degree conditions for rigidity.

Main results

Theorem (P., Peleg)
Let
$$G \sim G(n, p)$$
. Then, for every $\varepsilon > 0$,
1. If $p < (1 - \varepsilon)C_* \log n/n$, then G is a.a.s. $\delta(G)$ -rigid.

2. If $C_* \log n/n \le p \ll n^{-1/2}$, then G is a.a.s. $(1 - \varepsilon)\frac{np}{2}$ -rigid.



Main results

Theorem (P., Peleg) Let $G \sim G(n, p)$. Then, for every $\varepsilon > 0$, 1. If $p < (1 - \varepsilon)C_* \log n/n$, then G is a.a.s. $\delta(G)$ -rigid. 2. If $C_* \log n/n \le p \ll n^{-1/2}$, then G is a.a.s. $(1 - \varepsilon)\frac{np}{2}$ -rigid.

• Proves KLM's conjecture in the regime $p \ll n^{-1/2}$.

Main results

Theorem (P., Peleg) Let $G \sim G(n, p)$. Then, for every $\varepsilon > 0$, 1. If $p < (1 - \varepsilon)C_* \log n/n$, then G is a.a.s. $\delta(G)$ -rigid.

2. If
$$C_* \log n/n \le p \ll n^{-1/2}$$
, then G is a.a.s. $(1 - \varepsilon)\frac{np}{2}$ -rigid.

- Proves KLM's conjecture in the regime $p \ll n^{-1/2}$.
- Both items are sharp: 1 ε cannot be replaced by 1 + ε due to the Edge-number bottleneck.

Proof ideas: (I) large closure

Suppose \mathcal{M} is an *m*-element matroid of rank *r*. Let M_p be a random subset of \mathcal{M} where each element appears independently with probability *p*.

Lemma

If $r \leq (1-\varepsilon)pm$ then $\mathbb{P}\left(|cl(M_p)| \geq \frac{\varepsilon}{2}m\right) \geq 1 - e^{-K \cdot \varepsilon^2 \cdot pm}$

Proof ideas: (I) large closure

Suppose \mathcal{M} is an *m*-element matroid of rank *r*. Let M_p be a random subset of \mathcal{M} where each element appears independently with probability *p*.

Lemma

If $r \leq (1-\varepsilon)pm$ then $\mathbb{P}\left(|cl(M_p)| \geq \frac{\varepsilon}{2}m\right) \geq 1 - e^{-K \cdot \varepsilon^2 \cdot pm}$

Corollary

Let $G \sim G(n,p)$. If $d \leq (1-\varepsilon)\frac{np}{2}$ then a.a.s. $|C_d(G)| \geq \frac{\varepsilon}{4}n^2$,

Proof ideas: (I) large closure

Suppose \mathcal{M} is an *m*-element matroid of rank *r*. Let M_p be a random subset of \mathcal{M} where each element appears independently with probability *p*.

Lemma

If $r \leq (1-\varepsilon)pm$ then $\mathbb{P}\left(|cl(M_p)| \geq \frac{\varepsilon}{2}m\right) \geq 1 - e^{-K \cdot \varepsilon^2 \cdot pm}$

Corollary

Let $G \sim G(n, p)$. If $d \leq (1 - \varepsilon)\frac{np}{2}$ then a.a.s. $|C_d(G)| \geq \frac{\varepsilon}{4}n^2$, hence, \exists induced $C \subseteq C_d(G)$ with $\delta(C) \geq \frac{\varepsilon}{4}n$.

Proof ideas: (II) large clique in closure

►
$$\exists$$
 induced $C \subseteq C_d(G)$ with $\delta(C) \ge \frac{\varepsilon}{4}n \ge d(d+1)$.

Lemma (Villányi)

Suppose that a graph C is closed in \mathcal{M}_d and $\delta(C) \ge d(d+1)$, then there exists a vertex $v \in C$ whose neighbors induce a clique.

Proof ideas: (II) large clique in closure

► \exists induced $C \subseteq C_d(G)$ with $\delta(C) \ge \frac{\varepsilon}{4}n \ge d(d+1)$.

Lemma (Villányi)

Suppose that a graph C is closed in \mathcal{M}_d and $\delta(C) \ge d(d+1)$, then there exists a vertex $v \in C$ whose neighbors induce a clique.

- Challenge: rule out the possibility that C_d(G) = G ∪ K_A for some |A| = εn/4.
- ► Idea: apply the "matroid closure lemma" for the matroid contraction M_d/(^A₂), (Rigidity-wise: "pin" the vertices of A.).

• ... $\implies C_d(G)$ contains a clique with 0.99n vertices.

Open Problems

• KLM's conjecture remains open for $p \gg n^{-1/2}$. An interesting special case:

$$G(n,1/2)$$
 is a.a.s. $(1-\sqrt{1/2}-arepsilon)n$ -rigid.

We do not even know that G(n, 0.999) is $(0.001 \cdot n)$ -rigid. Computer simulations suggest that if $p > C_* \log n/n$ then G(n, p) is a.a.s d_E -rigid where

$$d_E := \max\left\{d : |E(G(n,p)| \ge dn - \binom{d+1}{2}\right\},\$$

while our theorem only gives $(1 - \varepsilon)d_E$ -rigidity.