FROM ISING, DIMERS, AND UST IN 2D STATISTICAL PHYSICS TO DISCRETE SURFACES IN MINKOWSKI SPACES

DMITRY CHELKAK, UNIVERSITY OF MICHIGAN, ANN ARBOR [JOINT WORKS W/ M.BASOK, B.LASLIER, R.MAHFOUF, S.C.PARK, S.RAMASSAMY, M.RUSSKIKH]

> CIRCLE PACKINGS, MINIMAL SURFACES, AND DISCRETE DIFFERENTIAL GEOMETRY

> > ICERM, FEBRUARY 14, 2025

FROM ISING, DIMERS, AND UST IN 2D STATISTICAL PHYSICS TO DISCRETE SURFACES IN MINKOWSKI SPACES

DMITRY CHELKAK, UNIVERSITY OF MICHIGAN, ANN ARBOR [JOINT WORKS W/ M.BASOK, B.LASLIER, R.MAHFOUF, S.C.PARK, S.RAMASSAMY, M.RUSSKIKH]

> CIRCLE PACKINGS, MINIMAL SURFACES, AND DISCRETE DIFFERENTIAL GEOMETRY

> > ICERM, FEBRUARY 14, 2025

> Question: given a (large) weighted planar graph (B, c), how can we describe the (limit of) random walks on B?
 [Above, c_e, e ∈ E(G), are positive conductances; the random walk jumps from b to its neighbors with probabilities c_{v'v} / ∑_{v'~v} c_{v'v} proportional to c_{vv'}. The case c_e = 1 is already general enough.]

 [!] We should first decide how to draw/embed B in C.
 [if G is already embedded into the complex plane, we can consider re-embedding it in a 'nicer' way]

 > Modern motivation: 2d lattice models of statistical physics (universality & conformal invariance; random planar maps)

 \triangleright Question: given a (large) weighted planar graph (B, c), how can we describe the (limit of) random walks on B? [Above, c_e , $e \in E(G)$, are positive *conductances*; the random walk jumps from b to its neighbors with probabilities $c_{v'v} / \sum_{v' \sim v} c_{v'v}$ proportional to $c_{vv'}$. The case $c_e = 1$ is already general enough.] [!] We should first decide how to draw/embed B in \mathbb{C} . [if G is already embedded into the complex plane, we can consider *re-embedding* it in a 'nicer' way] \triangleright Tutte's barycentric embeddings \mathcal{H} : each vertex $b \in B$ is positioned at the (weighted) barycenter of its neighbors $\Leftrightarrow \mathcal{H} = \mathcal{H}_1 + i\mathcal{H}_2 : \mathcal{B} \to \mathbb{C}$ is a discrete harmonic function.

 \triangleright Theorem (Tutte, 'How to draw a graph', 1963): Let *B* be a *finite* planar graph with a marked outer face and \mathcal{H} its barycentric embedding. If the (images of) boundary vertices form a convex polygon, then \mathcal{H} is a *proper* embedding.

[\rightsquigarrow one can check the planarity of a given graph in this way]

- ▷ Let \mathcal{H}^{δ} : $B^{\delta} \to \mathbb{C}$ be a sequence of Tutte's barycentric embeddings with 'mesh sizes' $\delta \to 0$.
- ▷ By construction, both coordinates $\operatorname{Re} \mathcal{H}^{\delta}(X_n^{\delta})$, $\operatorname{Im} \mathcal{H}^{\delta}(X_n^{\delta})$ are *martingales* if X_n^{δ} is the random walk on B^{δ} . Should we expect that these RWs converge to the *Brownian motion*?

[How do we understand the convergence? Possible ways:

convergence of discrete harmonic functions:

harmonic measures = hitting probabilities, Green functions etc;

 $\circ \rightsquigarrow$ convergence of trajectories w/o time-parametrization.]

Let H^δ : B^δ → C be a sequence of Tutte's barycentric embeddings with 'mesh sizes' δ → 0.
 By construction, both coordinates Re H^δ(X^δ_n), Im H^δ(X^δ_n)

By construction, both coordinates Re $\mathcal{H}^{\circ}(X_n^{\circ})$, Im $\mathcal{H}^{\circ}(X_n^{\circ})$ are *martingales* if X_n^{δ} is the random walk on B^{δ} . Should we expect that these RWs converge to the *Brownian motion*?

[How do we understand the convergence? Possible ways:

 \circ convergence of discrete harmonic functions:

harmonic measures = hitting probabilities, Green functions etc; $\circ \rightsquigarrow$ convergence of trajectories w/o time-parametrization.]

▷ Certainly, **not to the BM:** the best we can hope for is a subsequential convergence to a *driftless diffusion* $Lh = -\alpha(z)h_{zz} + 2\beta(z)h_{z\overline{z}} - \overline{\alpha(z)}h_{\overline{z}\overline{z}} = 0, \quad |\alpha(z)| < \beta(z).$

▷ Question: what kind of additional information do we need to determine $\alpha(z)/\beta(z)$?

- \triangleright We may be lucky and have the convergence to the BM if \mathcal{H}^{δ} can be extended to *orthodiagonal embeddings*.
- \triangleright Given \mathcal{H} , one can construct a *dual harmonic embedding* $\mathcal{H}^*: B^* \to \mathbb{C}$ (with conductances $c_{e^*} = 1/c_e$) by setting

 $\mathcal{H}^*(b_2^*) - \mathcal{H}^*(b_1^*) := \mathrm{i} c_{b_1 b_2} \cdot (\mathcal{H}(b_2) - \mathcal{H}(b_1)).$

If we are lucky and all quads $\mathcal{H}^{\delta}(b_1)\mathcal{H}^{\delta*}(b_1^*)\mathcal{H}^{\delta}(b_2)\mathcal{H}^{\delta*}(b_2^*)$ are non-self-intersecting and have diam $\leq \delta$, then $(\mathcal{H}^{\delta}, \mathcal{H}^{\delta*})$ is called an *orthodiagonal embedding of mesh size* δ .

- \triangleright We may be lucky and have the convergence to the BM if \mathcal{H}^{δ} can be extended to *orthodiagonal embeddings*.
- \triangleright Given \mathcal{H} , one can construct a *dual harmonic embedding* $\mathcal{H}^*: B^* \to \mathbb{C}$ (with conductances $c_{e^*} = 1/c_e$) by setting

 $\mathcal{H}^*(b_2^*) - \mathcal{H}^*(b_1^*) := \mathrm{i} c_{b_1 b_2} \cdot (\mathcal{H}(b_2) - \mathcal{H}(b_1)).$

If we are lucky and all quads $\mathcal{H}^{\delta}(b_1)\mathcal{H}^{\delta*}(b_1^*)\mathcal{H}^{\delta}(b_2)\mathcal{H}^{\delta*}(b_2^*)$ are non-self-intersecting and have diam $\leq \delta$, then $(\mathcal{H}^{\delta}, \mathcal{H}^{\delta*})$ is called an *orthodiagonal embedding of mesh size* δ .

[......, Gurel-Gurevich–Jerison–Nachmias'19, Binder–Pechersky'24, Bou-Rabee–Gwynne'24]

▷ **Theorem:** Discrete harmonic functions on orthodiagonal embeddings converge to harmonic functions ($L = \Delta$). Trajectories of the random walks converge to the BM.

- No[!] 'technical' assumptions on angles/edge lengths are needed.
- We have natural linear discrete Cauchy-Riemann equations

▷ Informal theorem [C.–Basok–Laslier–Russkikh'25]: Assume that "the mappings Φ^{δ} : $\mathcal{H}^{\delta} \mapsto \mathcal{H}^{*\delta}$ " converge, as $\delta \to 0$, to a Lipshitz mapping $\phi : \Omega \to \mathbb{C}$ such that $|\phi_{\overline{z}}| \leq k \operatorname{Re} \phi_{z}$ a.e. for some k < 1.

Then, discrete harmonic measures and Green functions of RWs on \mathcal{H}^δ converge to those of the elliptic operator

 $Lh := 2 \operatorname{Re} \phi_{z} \cdot h_{z\overline{z}} - \phi_{\overline{z}} \cdot h_{zz} - \overline{\phi}_{z} \cdot h_{\overline{z}\overline{z}} \,.$

[Requires a very weak 'non-degeneracy' assumption Exp -FAT.]

$$\begin{split} & \triangleright \text{ Informal theorem [C.-Basok-Laslier-Russkikh'25]:} \\ & \text{Assume that "the mappings } \Phi^{\delta} : \mathcal{H}^{\delta} \mapsto \mathcal{H}^{*\delta} \text{" converge,} \\ & \text{as } \delta \to 0, \text{ to a Lipshitz mapping } \phi : \Omega \to \mathbb{C} \text{ such that} \\ & |\phi_{\overline{z}}| \leqslant k \operatorname{Re} \phi_z \text{ a.e. for some } k < 1 \,. \end{split}$$

Then, discrete harmonic measures and Green functions of RWs on \mathcal{H}^{δ} converge to those of the elliptic operator

 $Lh := 2\operatorname{Re} \phi_{z} \cdot h_{z\overline{z}} - \phi_{\overline{z}} \cdot h_{zz} - \overline{\phi}_{z} \cdot h_{\overline{z}\overline{z}} \,.$

[Requires a very weak 'non-degeneracy' assumption Exp -FAT.]

Corollary: If Lφ ≠ 0, then the limits of random walks on G and on G* are different: in a common parametrization ζ the martingale parts are equal but the drifts are not.
 If Lφ = 0, then there exists a parametrization ζ such that Lh = 0 ⇔ h_{ζζ̄} = 0, where ζ is a conformal parametrization of a maximal space-like 2-surface Θ := (z+φ(z); z-φ(z))_{z∈Ω} ⊂ ℝ^{2,2}.

Discrete harmonic functions and square/rectangular tilings.

▷ Brooks–Smith–Stone–Tutte(1940): a *real* harmonic function H_1 : $B \to \mathbb{R}$ and its harmonic conjugate $H_1^*: B^* \to i\mathbb{R}$ define a square/rectangular tiling \mathcal{R} : • vertical segments have x-coordinate $H_1(b)$: • horizontal segments have y-coordinate $H_1^*(b^*)$. \circ harmonic functions are linear on segments of \mathcal{R} ; • gradients satisfy Cauchy–Riemann on $B \cup B^*$. more generally: RWs on T-graphs (Kenyon–Sheffield'03): arrive at a T-intersection \rightsquigarrow proceed left/right till the end]

Discrete harmonic functions and square/rectangular tilings.

▷ Brooks–Smith–Stone–Tutte(1940): a *real* harmonic function H_1 : $B \to \mathbb{R}$ and its harmonic conjugate $H_1^*: B^* \to i\mathbb{R}$ define a square/rectangular tiling \mathcal{R} : • vertical segments have x-coordinate $H_1(b)$: • horizontal segments have y-coordinate $H_1^*(b^*)$. \circ harmonic functions are linear on segments of \mathcal{R} ; • gradients satisfy Cauchy–Riemann on $B \cup B^*$. more generally: RWs on T-graphs (Kenvon–Sheffield'03): arrive at a T-intersection \rightsquigarrow proceed left/right till the end]

Question: which additional input do we need to describe the limit of these RWs?
[Or maybe they should always converge to the BM because of Cauchy–Riemann equations?]

▷ Answer: another harmonic function $H_2 : B \to i\mathbb{R}$ (and its conjugate $H_2^* : B^* \to \mathbb{R}$), which gives a 'dual' tiling \mathcal{R}^* . [in fact, fixing $H_2 \Leftrightarrow$ choosing an invariant measure on \mathcal{R}]

Square/rectangular tilings \leftarrow t-embeddings/t-surfaces \rightarrow Tutte's embeddings

t-embedding $\mathcal{T}(\mathbf{v}) := \frac{1}{2}(\mathcal{H}(b) + \mathcal{H}(b^*))$ can be viewed as a crease pattern **origami map** $\overline{\mathcal{O}}(\mathbf{v}) := \frac{1}{2}(\mathcal{H}(b) - \mathcal{H}(b^*))$: **"fold** \mathcal{T} -**plane over all segments"** [KLRR18] • dark faces corresponding to $b \in B$ are translated keeping orientation; • dark faces corresponding to $b^* \in B^*$ are rotated by π and translated; • light rectangular faces are folded over by $z \mapsto \overline{\eta}^2_w \overline{z} + \text{translations}$. **[!!!] t-surface** $(\mathcal{T}; \mathcal{O}): \mathcal{G}^* \to \mathbb{R}^{2,2}$

Given a (large) weighted graph (G°, x) , one assigns random spins $\sigma \in \{\pm 1\}^{V(G^{\circ})}$ to its vertices (or faces) so that the probability to get $(\sigma_u)_{u \in V(G^{\circ})}$ equals

$$\mathcal{Z}^{-1}\exp\left[\beta\sum_{\langle uv\rangle}J_{uv}\sigma_{u}\sigma_{v}\right]=\mathcal{Z}^{-1}\prod_{\langle uv\rangle:\sigma_{u}\neq\sigma_{v}}\mathsf{x}_{uv},$$

where $J_{uv} > 0$ are called *interaction constants*, $\beta = 1/kT$ is the *inverse temperature*, and $x_{uv} := \exp[-2\beta J_{uv}] \in (0, 1)$.

[The normalizing factor Z is called the *partition function*.]

Given a (large) weighted graph (G°, x) , one assigns random spins $\sigma \in \{\pm 1\}^{V(G^{\circ})}$ to its vertices (or faces) so that the probability to get $(\sigma_u)_{u \in V(G^{\circ})}$ equals

$$\mathcal{Z}^{-1}\exp\left[\beta\sum_{\langle uv\rangle}J_{uv}\sigma_{u}\sigma_{v}\right]=\mathcal{Z}^{-1}\prod_{\langle uv\rangle:\sigma_{u}\neq\sigma_{v}}\mathsf{x}_{uv},$$

Phase transition in the homogeneous model on regular grids (e.g., \mathbb{Z}^2):

 $x < x_{\rm crit}$

 $x = x_{\rm crit}$

Conformal invariance at x_{crit} :

- o correlations of lattice fields
 - (e.g., spins) \rightarrow CFT predictions
- interfaces/loop ensembles
 - ightarrow SLE(3) curves/CLE(3)
- Near-critical: $x = x_{crit} + \boldsymbol{m}\delta$

Given a (large) weighted graph (G°, x) , one assigns random spins $\sigma \in \{\pm 1\}^{V(G^{\circ})}$ to its vertices (or faces) so that the probability to get $(\sigma_u)_{u \in V(G^{\circ})}$ equals

$$\mathcal{Z}^{-1} \exp \left[\beta \sum_{\langle uv \rangle} J_{uv} \sigma_u \sigma_v \right] = \mathcal{Z}^{-1} \prod_{\langle uv \rangle: \sigma_u \neq \sigma_v} x_{uv},$$

- ▷ This is a *free fermion* model: $\mathcal{Z} = Pf[\mathcal{A}_{(G,x)}]$ *fermions* = entries of $\mathcal{A}_{(G,x)}^{-1}$ [cf. Green function]
- ▶ **Question:** what if *G* is not a 'regular grid'?

Conformal invariance at x_{crit} :

- o correlations of lattice fields
 - (e.g., spins) \rightarrow CFT predictions
- interfaces/loop ensembles
 - \rightarrow SLE(3) curves/CLE(3)
- Near-critical: $x = x_{crit} + m\delta$

▷ *s*-*embeddings* = tilings by *tangential quads*

- ▷ should be viewed as surfaces in $\mathbb{R}^{2,1}$: define $\mathcal{Q}(v^{\bullet}) - \mathcal{Q}(v^{\circ}) := |\mathcal{S}(v^{\bullet}) - \mathcal{S}(v^{\circ})|$ for $v^{\bullet} \sim v^{\circ}$ [this is nothing but the corresponding t-surface]
- ▷ $x_e = \tan \frac{1}{2}\theta_e$ if $\tan \theta_e =$ the ratio of the $\mathbb{R}^{2,1}$ -lengths of the diagonals of the non-planar quad $(S; Q)(v_1^{\circ}v_1^{\bullet}v_2^{\circ}v_2^{\bullet})$
- ▷ greatly generalize 'regular grids' = tilings by rhombi [~→ Baxter's Z-invariant weights on isoradial graphs]

▷ *s*-*embeddings* = tilings by *tangential quads*

- ▷ should be viewed as surfaces in $\mathbb{R}^{2,1}$: define $\mathcal{Q}(v^{\bullet}) - \mathcal{Q}(v^{\circ}) := |\mathcal{S}(v^{\bullet}) - \mathcal{S}(v^{\circ})|$ for $v^{\bullet} \sim v^{\circ}$ [this is nothing but the corresponding t-surface]
- ▷ $x_e = \tan \frac{1}{2}\theta_e$ if $\tan \theta_e =$ the ratio of the $\mathbb{R}^{2,1}$ -lengths of the diagonals of the non-planar quad $(\mathcal{S}; \mathcal{Q})(v_1^{\circ}v_1^{\bullet}v_2^{\circ}v_2^{\bullet})$
- ▷ greatly generalize 'regular grids' = tilings by rhombi [→ Baxter's Z-invariant weights on isoradial graphs]

Theorem (C.'20, conformal invariance on 'flat' s-embeddings):

Ising interfaces on s-embeddings S^{δ} converge to SLE provided that $Q^{\delta} = O(\delta)$ and S^{δ} satisfy $\text{UNIF}(\delta)$: all edges are comparable to δ , all angles are bounded.

▷ All critical doubly periodic (G°, x) admit a unique 'flat' s-embedding [see also KLRR18]

Ker \mathcal{A} : functions on Υ^{\bullet} satisfying the equation $X(\mathbf{b}_{01}) =$ $\pm X(\mathbf{b}_{00}) \cos \theta_z$ $\pm X(\mathbf{b}_{11}) \sin \theta_z$ for $b_{00}, b_{01}, b_{11} \sim w_{01}$

 $\triangleright \Upsilon^{\times}$ branches over all $z \in \diamondsuit$, $v \in G^{\bullet}$ and $u \in G^{\circ}$

▷ bosonization:

Ising \leftrightarrow dimers on $\Upsilon^{\bullet} \cup \Upsilon^{\circ}$ [Wu–Lin'75, Dubédat'11]

 $\triangleright \mathbb{C}\text{-solution of the propagation}$ equation $\mathcal{X} \iff$ s-embedding:

$$egin{aligned} \mathcal{S}_\mathcal{X}(v_p^ullet) &- \mathcal{S}_\mathcal{X}(u_q^\circ) := (\mathcal{X}(c_{pq}))^2 \ \mathcal{Q}_\mathcal{X}(v_p^ullet) &- \mathcal{Q}_\mathcal{X}(u_q^\circ) := |\mathcal{X}(c_{pq})|^2 \end{aligned}$$

Mass as the mean curvature of a surface in $\mathbb{R}^{2,1}$ \triangleright Let $\Theta^{\delta} = (S^{\delta}; Q^{\delta}) \rightarrow \text{smooth } \Theta = (z, \vartheta(z))_{z \in \Omega}$. Let ζ be a conformal parametrization of Θ . \triangleright Fermionic observables \rightsquigarrow closed $F^{\delta}dS^{\delta} + \overline{F}^{\delta}dQ^{\delta}$ \triangleright If $F^{\delta} \rightarrow_{\delta \rightarrow 0} f$ and $\phi := z_{\zeta}^{1/2} \cdot f + \overline{z}_{\zeta}^{1/2} \cdot \overline{f}$, then $\partial_{\overline{\zeta}}\phi + im(\zeta)\overline{\phi} = 0$, where $m(\zeta)$ is the mean curvature of Θ multiplied

by its metric element in the parametrization ζ .

Mass as the mean curvature of a surface in $\mathbb{R}^{2,1}$ \triangleright Let $\Theta^{\delta} = (S^{\delta}; Q^{\delta}) \rightarrow \text{smooth } \Theta = (z, \vartheta(z))_{z \in \Omega}.$ Let ζ be a conformal parametrization of Θ . \triangleright Fermionic observables \rightsquigarrow closed $F^{\delta}dS^{\delta} + \overline{F}^{\delta}dQ^{\delta}$ \triangleright If $F^{\delta} \rightarrow_{\delta \rightarrow 0} f$ and $\phi := z_{\zeta}^{1/2} \cdot f + \overline{z}_{\zeta}^{1/2} \cdot \overline{f}$, then $\partial_{\overline{\zeta}}\phi + im(\zeta)\overline{\phi} = 0$,

where $m(\zeta)$ is the mean curvature of Θ multiplied by its metric element in the parametrization ζ .

▷ Theorem (w/ R. Mahfouf and S.C. Park '25): Let S^{δ} satisfy UNIF(δ) and discrete surfaces Θ^{δ} are $O(\delta)$ -close to a C^2 -smooth surface $\Theta \subset \mathbb{R}^{2,1}$. Then, as $\delta \to 0$: ▷ Fermionic observables in arbitrarily rough domains \to massive holomorphic spinors. ▷ If Θ is maximal, then Ising interfaces converge to SLE [in conformal ζ] curves on Θ . ▷ [UNIF(δ) is used near *rough boundaries:* analysis of b.c. is much heavier than for RW's...]

Bipartite dimer model: basics

 \triangleright (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

 \triangleright *Dimer configuration* = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

 $\triangleright \text{ Probability } \mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D}) = \prod_{e \in \mathcal{D}} \nu_e;$ $\triangleright \text{ Partition function } \mathcal{Z}_{\nu}(\mathcal{G}) = \sum_{\mathcal{D}} \nu(\mathcal{D}).$

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

Bipartite dimer model: basics

 \triangleright (\mathcal{G}, ν_{bw}) – finite weighted bipartite planar graph (w/ marked outer face);

 \triangleright *Dimer configuration* = perfect matching $\mathcal{D} \subset E(\mathcal{G})$: subset of edges such that each vertex is covered exactly once;

 $\triangleright \text{ Probability } \mathbb{P}(\mathcal{D}) \propto \nu(\mathcal{D}) = \prod_{e \in \mathcal{D}} \nu_e;$ $\triangleright \text{ Partition function } \mathcal{Z}_{\nu}(\mathcal{G}) = \sum_{\mathcal{D}} \nu(\mathcal{D}).$

(Very) particular example: [Temperleyan domains $\mathcal{G}_{\mathrm{T}} \subset \mathbb{Z}^2$]

Bipartite dimer model includes both > the UST (via Temperley bijection)
 the planar Ising model (via bosonization)

▷ Theorem (Kasteleyn, 1961): given a planar graph (\mathcal{G}, ν) , one can orient its edges so that $\mathcal{Z}_{\nu}(\mathcal{G}) = |\operatorname{Pf} \mathcal{K}_{\nu}| = |\det \mathcal{K}_{\nu}|^{1/2}$, where $\mathcal{K}_{\nu} = -\mathcal{K}_{\nu}^{\top}$ is the signed adjacency matrix of \mathcal{G} . If \mathcal{G} is bipartite, then \mathcal{K}_{ν} is anti-block-diagonal and $|\operatorname{Pf} \mathcal{K}_{\nu}| = |\det \mathcal{K}_{\nu}|^{1/2} = \det |\mathcal{K}_{\nu}^{\circ \to \bullet}|$.

[Kenyon-Lam-Ramassamy-Russkikh'18]
[C.-Laslier-Russkikh'20+'21], [C.-Ramassamy'20]
p given (G, ν), find T : G* → C [G* - augmented dual] s.t.
o weights ν_{bw} are gauge equivalent to χ_{bw} := |T(v')-T(v)|
(i.e., ν_{bw} = g_bχ_{bw}g_w for some g : B ∪ W → ℝ₊);

- $\circ \ {\cal T}$ is proper: tiles do not overlap;
- at each inner vertex $\mathcal{T}(v)$, the sum of black angles $= \pi$.

[Kenyon–Lam–Ramassamy–Russkikh'18] [C.–Laslier–Russkikh'20+'21], [C.–Ramassamy'20]

- ▷ given (\mathcal{G}, ν) , find $\mathcal{T} : \mathcal{G}^* \to \mathbb{C} [\mathcal{G}^* augmented dual]$ s.t.
 - weights ν_{bw} are gauge equivalent to $\chi_{bw} := |\mathcal{T}(v) \mathcal{T}(v)|$
 - (i.e., $\nu_{bw} = g_b \chi_{bw} g_w$ for some $g : B \cup W \to \mathbb{R}_+$);
 - $\circ~\mathcal{T}$ is proper: tiles do not overlap;
 - at each *inner* vertex $\mathcal{T}(v)$, the sum of black angles $= \pi$.

▷ origami O : G* → C "fold T along all segments"
 ▷ t-surface (T, O) : G* → ℝ^{2,2} can be thought of as a piece-wise linear surface with light-like faces
 ▷ isometries of ℝ^{2,2} ~→ gauge equivalent weights

 \triangleright t-surface $(\mathcal{T}, \mathcal{O}) \rightsquigarrow$ family of T-graphs $\mathcal{T} + lpha^2 \mathcal{O}$, |lpha| = 1

▷ *t-holomorphic functions* F° : $W \to \mathbb{C}$ are $\overline{\alpha} \cdot (\text{gradients of harmonic on } \mathcal{T} + \alpha^2 \mathcal{O})$ \rightsquigarrow closed forms $F^{\circ} d\mathcal{T} + \overline{F}^{\circ} d\overline{\mathcal{O}}$ [and similarly $F^{\bullet} d\mathcal{T} + \overline{F}^{\bullet} d\mathcal{O}$] \triangleright this (a) does not[!] depend on α ; (b) respects isometries of $\mathbb{R}^{2,2}$

▷ A priori regularity theory under two assumptions [CLR20]:

- LIP (κ, δ) , $\kappa < 1$ (quantitatively space-like above scale δ): $|\mathcal{T}^{\delta}(\mathbf{y}') - \mathcal{T}^{\delta}(\mathbf{y})| < \delta \Rightarrow |\mathcal{O}^{\delta}(\mathbf{y}') - \mathcal{O}^{\delta}(\mathbf{y})| \le \kappa \cdot |\mathcal{T}^{\delta}(\mathbf{y}') - \mathcal{T}^{\delta}(\mathbf{y})|$
- \Rightarrow Hölder-type regularity of t-holomorphic functions
- EXP-FAT $(\delta, \delta'), \delta \leq \delta' \rightarrow 0$ (exponential non-degeneracy): if one removes all $\delta \exp(-\delta' \delta^{-1})$ -fat triangles from \mathcal{T}^{δ} , then the diameter of remaining vertex-connected components $\leq \delta'$
- \Rightarrow Lipschitz-type regularity of harm. functions on $\mathcal{T}+\alpha^2\mathcal{O}$

▷ *t-holomorphic functions* F° : $W \to \mathbb{C}$ are $\overline{\alpha} \cdot (\text{gradients of harmonic on } \mathcal{T} + \alpha^2 \mathcal{O})$ \rightsquigarrow closed forms $F^{\circ} d\mathcal{T} + \overline{F}^{\circ} d\overline{\mathcal{O}}$ [and similarly $F^{\bullet} d\mathcal{T} + \overline{F}^{\bullet} d\mathcal{O}$] \triangleright this (a) does not[!] depend on α ; (b) respects isometries of $\mathbb{R}^{2,2}$

Perfect t-embeddings [CLR21]: outer vertices belong to the intersection of a light-cone in $\mathbb{R}^{2,2}$ and a (2,1)-hyperplane.

Q: Why should we care? **A**: They give a correct gauge! **Theorem:** under LIP and EXP-FAT on compacts, one has $(\mathcal{K}^{\delta})^{-1} = O(1)$ in the bulk as $\delta \to 0$.

 \triangleright one can move $\mathbb{R}^{2,2}$ such that this (2,1)-space is $\{\operatorname{Im} \theta = 1\}$:

Perfect t-embeddings [CLR21]: outer vertices belong to the intersection of a light-cone in $\mathbb{R}^{2,2}$ and a (2,1)-hyperplane.

Q: Why should we care? **A**: They give a correct gauge! **Theorem:** under LIP and EXP-FAT on compacts, one has $(\mathcal{K}^{\delta})^{-1} = O(1)$ in the bulk as $\delta \to 0$.

 \triangleright one can move $\mathbb{R}^{2,2}$ such that this (2,1)-space is $\{\operatorname{Im} \theta = 1\}$:

Is there an intrinsic argument that guarantees the convergence of $\text{UNIF}(\delta)$ t-embeddings with periodic dimer weights to maximal 2-surfaces $\Theta \subset \mathbb{R}^{2,2}$?

Simplest version: Let T^δ be tilings of a fixed region Ω ⊂ C such that
T^δ have combinatorics of Z², all tiles are of size ≍ δ, angles are uniformly bounded;
angle condition holds → Θ^δ = (T^δ; O^δ);
at each vertex (n, m) one has

$$egin{aligned} \| \Theta^\delta(n+1,m) - \Theta^\delta(n-1,m) \|_{2,2} \ &= \| \Theta^\delta(n,m+1) - \Theta^\delta(n,m-1) \|_{2,2}. \end{aligned}$$

Assume that $\Theta^{\delta} = (\mathcal{T}^{\delta}; \mathcal{O}^{\delta}) \rightarrow \Theta \subset \mathbb{R}^{2,2}$ Prove[?!] that Θ is a maximal 2-surface.

[Aztec N = 1600 near (0.4; 0.25)]

Is there an intrinsic argument that guarantees the convergence of $\text{UNIF}(\delta)$ t-embeddings with periodic dimer weights to maximal 2-surfaces $\Theta \subset \mathbb{R}^{2,2}$?

Open question #2:

Prove/disprove the existence of perfect t-embeddings for generic finite bipartite weighted graphs (\mathcal{G} ; ν_{bw}).

Particular case (Ising): perfect s-embeddings

Given a collection of quads in $\mathbb{R}^{2,1}$ with light-like sides and fixed ratios of diagonals, can one always scale them and assemble together in a prescribed way so that *the boundary belongs to the hyperboloid?*

Is there an intrinsic argument that guarantees the convergence of $\text{UNIF}(\delta)$ t-embeddings with periodic dimer weights to maximal 2-surfaces $\Theta \subset \mathbb{R}^{2,2}$?

Open question #2:

Prove/disprove the existence of perfect t-embeddings for generic finite bipartite weighted graphs (G; ν_{bw}).

Particular case (Ising): perfect s-embeddings

Open question #3:

Zeroes of $\mathcal{Z}_{\text{lsing}}[x] = 0 \iff \text{discrete surfaces in [??]}$

$$\triangleright \mathcal{Z}_{\mathsf{lsing}}[(x_e)_{e \in E}] = \sum_{\text{even subgraphs } G' \subset G} \prod_{e \in G'} x_e$$

 \triangleright s-embeddings(immersions) into $\mathbb{R}^{2,1} \iff x \in \mathbb{R}$

▷ Livine–Bonzom [triangulations]: dim_ℝ = #E-1half-dim set of solutions $x \in \mathbb{C}$ via polyhedra in \mathbb{R}^3

Motivation for #3:

Recent work of Livine-Bonzom [2405.01253; Phys. Rev. D'25] on 3d quantum gravity: $\triangleright x_e = e^{\frac{i}{2}\theta} \cdot (\tan \frac{1}{2}\phi_1 \tan \frac{1}{2}\phi_2)^{\frac{1}{2}}$ half-dim set of Ising zeroes from triangulations in \mathbb{R}^3 ▶ Proved by Lis [2409.19639] Marcin Lis 2400 10630

Is there an intrinsic argument that guarantees the convergence of $\text{UNIF}(\delta)$ t-embeddings with periodic dimer weights to maximal 2-surfaces $\Theta \subset \mathbb{R}^{2,2}$?

Open question #2:

Prove/disprove the existence of perfect t-embeddings for generic finite bipartite weighted graphs (\mathcal{G} ; ν_{bw}).

Particular case (Ising): perfect s-embeddings

Open question #3:

Zeroes of $\mathcal{Z}_{\text{lsing}}[x] = 0 \iff \text{discrete surfaces in [??]}$

THANK YOU!

