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Simple random walks on a planar graph: Tutte’s barycentric embeddings
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. Question: given a (large) weighted planar graph (B, c),
how can we describe the (limit of) random walks on B?
[ Above, ce , e ∈ E(G), are positive conductances; the random walk jumps from b to its neighbors with

probabilities cv′v/
∑

v′∼v cv′v proportional to cvv′ . The case ce = 1 is already general enough. ]

[!] We should first decide how to draw/embed B in C.
[ if G is already embedded into the complex plane, we can consider re-embedding it in a ‘nicer’ way ]

.Modern motivation: 2d lattice models of statistical physics
(universality & conformal invariance; random planar maps)
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. Question: given a (large) weighted planar graph (B, c),
how can we describe the (limit of) random walks on B?
[ Above, ce , e ∈ E(G), are positive conductances; the random walk jumps from b to its neighbors with

probabilities cv′v/
∑

v′∼v cv′v proportional to cvv′ . The case ce = 1 is already general enough. ]

[!] We should first decide how to draw/embed B in C.
[ if G is already embedded into the complex plane, we can consider re-embedding it in a ‘nicer’ way ]

. Tutte’s barycentric embeddings H: each vertex b ∈ B
is positioned at the (weighted) barycenter of its neighbors
⇔ H = H1+iH2 : B → C is a discrete harmonic function.

. Theorem (Tutte, ‘How to draw a graph’, 1963): Let B be a finite planar graph with
a marked outer face and H its barycentric embedding. If the (images of) boundary
vertices form a convex polygon, then H is a proper embedding.

[  one can check the planarity of a given graph in this way ]
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. Let Hδ : Bδ → C be a sequence of Tutte’s barycentric
embeddings with ‘mesh sizes’ δ → 0.

. By construction, both coordinates ReHδ(X δ
n ), ImHδ(X δ

n )
are martingales if X δ

n is the random walk on Bδ. Should we
expect that these RWs converge to the Brownian motion?

[ How do we understand the convergence? Possible ways:

◦ convergence of discrete harmonic functions:

◦ harmonic measures = hitting probabilities, Green functions etc;

◦  convergence of trajectories w/o time-parametrization. ]
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. Let Hδ : Bδ → C be a sequence of Tutte’s barycentric
embeddings with ‘mesh sizes’ δ → 0.

. By construction, both coordinates ReHδ(X δ
n ), ImHδ(X δ

n )
are martingales if X δ

n is the random walk on Bδ. Should we
expect that these RWs converge to the Brownian motion?

[ How do we understand the convergence? Possible ways:

◦ convergence of discrete harmonic functions:

◦ harmonic measures = hitting probabilities, Green functions etc;

◦  convergence of trajectories w/o time-parametrization. ]

. Certainly, not to the BM: the best we can hope for is a subsequential convergence

. to a driftless diffusion
Lh = −α(z)hzz + 2β(z)hzz̄ − α(z)hz̄ z̄ = 0, |α(z)|<β(z).

. Question: what kind of additional information do we need to determine α(z)/β(z)?
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. We may be lucky and have the convergence to the BM
if Hδ can be extended to orthodiagonal embeddings.

. Given H, one can construct a dual harmonic embedding
H∗ : B∗ → C (with conductances ce∗ = 1/ce) by setting

H∗(b∗2)−H∗(b∗1) := icb1b2 · (H(b2)−H(b1)).

If we are lucky and all quads Hδ(b1)Hδ∗(b∗1)Hδ(b2)Hδ∗(b∗2)
are non-self-intersecting and have diam 6 δ, then (Hδ,Hδ∗)
is called an orthodiagonal embedding of mesh size δ.
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. We may be lucky and have the convergence to the BM
if Hδ can be extended to orthodiagonal embeddings.

. Given H, one can construct a dual harmonic embedding
H∗ : B∗ → C (with conductances ce∗ = 1/ce) by setting

H∗(b∗2)−H∗(b∗1) := icb1b2 · (H(b2)−H(b1)).

If we are lucky and all quads Hδ(b1)Hδ∗(b∗1)Hδ(b2)Hδ∗(b∗2)
are non-self-intersecting and have diam 6 δ, then (Hδ,Hδ∗)
is called an orthodiagonal embedding of mesh size δ.

[ ......... , Gurel-Gurevich–Jerison–Nachmias’19, Binder–Pechersky’24, Bou-Rabee–Gwynne’24 ]

. Theorem: Discrete harmonic functions on orthodiagonal embeddings converge to
harmonic functions (L = ∆). Trajectories of the random walks converge to the BM.

◦ No[!] ‘technical’ assumptions on angles/edge lengths are needed.

◦ We have natural linear discrete Cauchy–Riemann equations
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. Informal theorem [C.–Basok–Laslier–Russkikh’25]:

Assume that “the mappings Φδ : Hδ 7→ H∗δ” converge,
as δ → 0, to a Lipshitz mapping φ : Ω→ C such that

|φz̄ | 6 k Reφz a.e. for some k < 1 .

Then, discrete harmonic measures and Green functions of
RWs on Hδ converge to those of the elliptic operator

Lh := 2 Reφz · hzz̄ − φz̄ · hzz − φz · hz̄ z̄ .
[ Requires a very weak ‘non-degeneracy’ assumption Exp-Fat. ]
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. Informal theorem [C.–Basok–Laslier–Russkikh’25]:

Assume that “the mappings Φδ : Hδ 7→ H∗δ” converge,
as δ → 0, to a Lipshitz mapping φ : Ω→ C such that

|φz̄ | 6 k Reφz a.e. for some k < 1 .

Then, discrete harmonic measures and Green functions of
RWs on Hδ converge to those of the elliptic operator

Lh := 2 Reφz · hzz̄ − φz̄ · hzz − φz · hz̄ z̄ .
[ Requires a very weak ‘non-degeneracy’ assumption Exp-Fat. ]

. Corollary: If Lφ 6= 0, then the limits of random walks on G and on G ∗ are different:
in a common parametrization ζ the martingale parts are equal but the drifts are not.

If Lφ = 0, then there exists a parametrization ζ such that Lh = 0⇔ hζζ = 0, where

ζ is a conformal parametrization of
a maximal space-like 2-surface

Θ := (z+φ(z); z−φ(z))z∈Ω ⊂ R2,2.



Discrete harmonic functions and square/rectangular tilings.
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. Brooks–Smith–Stone–Tutte(1940): a real harmonic
function H1 : B → R and its harmonic conjugate
H∗1 : B∗ → iR define a square/rectangular tiling R:

◦ vertical segments have x-coordinate H1(b);
◦ horizontal segments have y -coordinate H∗1 (b∗).

◦ harmonic functions are linear on segments of R;
◦ gradients satisfy Cauchy–Riemann on B ∪ B∗.

[ more generally: RWs on T-graphs (Kenyon–Sheffield’03):

arrive at a T-intersection  proceed left/right till the end ]
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. Brooks–Smith–Stone–Tutte(1940): a real harmonic
function H1 : B → R and its harmonic conjugate
H∗1 : B∗ → iR define a square/rectangular tiling R:

◦ vertical segments have x-coordinate H1(b);
◦ horizontal segments have y -coordinate H∗1 (b∗).

◦ harmonic functions are linear on segments of R;
◦ gradients satisfy Cauchy–Riemann on B ∪ B∗.

[ more generally: RWs on T-graphs (Kenyon–Sheffield’03):

arrive at a T-intersection  proceed left/right till the end ]

. Question: which additional input do we need to describe the limit of these RWs?

. [ Or maybe they should always converge to the BM because of Cauchy–Riemann equations? ]

. Answer: another harmonic function H2 : B → iR (and its conjugate H∗2 : B∗ → R),

. which gives a ‘dual’ tiling R∗. [ in fact, fixing H2 ⇔ choosing an invariant measure on R ]



Square/rectangular tilings ← t-embeddings/t-surfaces → Tutte’s embeddings

T +O :
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t-embedding T (v) := 1
2(H(b)+H(b∗)) can be viewed as a crease pattern

origami map O(v) := 1
2(H(b)−H(b∗)) : “fold T -plane over all segments” [KLRR18]

◦ dark faces corresponding to b ∈B are translated keeping orientation;
◦ dark faces corresponding to b∗∈B∗ are rotated by π and translated;
◦ light rectangular faces are folded over by z 7→ η2

wz + translations.

[!!!] t-surface
(T ;O) : G∗→R2,2



Planar Ising model (no magnetic field) and s-embeddings [ arXiv:2006.14559v5 ]

Given a (large) weighted graph (G ◦, x), one assigns
random spins σ ∈ {±1}V (G◦) to its vertices (or faces)
so that the probability to get (σu)u∈V (G◦) equals

Z−1 exp
[
β
∑
〈uv〉 Juvσuσv

]
= Z−1

∏
〈uv〉:σu 6=σv xuv ,

where Juv >0 are called interaction constants, β=1/kT is
the inverse temperature, and xuv :=exp[−2βJuv ]∈(0, 1).

[ The normalizing factor Z is called the partition function. ]

 



Planar Ising model (no magnetic field) and s-embeddings [ arXiv:2006.14559v5 ]

Given a (large) weighted graph (G ◦, x), one assigns
random spins σ ∈ {±1}V (G◦) to its vertices (or faces)
so that the probability to get (σu)u∈V (G◦) equals

Z−1 exp
[
β
∑
〈uv〉 Juvσuσv

]
= Z−1

∏
〈uv〉:σu 6=σv xuv ,

Phase transition in the homogeneous
model on regular grids (e.g., Z2):

x < xcrit x = xcrit x > xcrit

 

Conformal invariance at xcrit:
◦ correlations of lattice fields

◦ (e.g., spins) → CFT predictions

◦ interfaces/loop ensembles

◦ → SLE(3) curves/CLE(3)

◦ Near-critical: x = xcrit +mδ



Planar Ising model (no magnetic field) and s-embeddings [ arXiv:2006.14559v5 ]

Given a (large) weighted graph (G ◦, x), one assigns
random spins σ ∈ {±1}V (G◦) to its vertices (or faces)
so that the probability to get (σu)u∈V (G◦) equals

Z−1 exp
[
β
∑
〈uv〉 Juvσuσv

]
= Z−1

∏
〈uv〉:σu 6=σv xuv ,

. This is a free fermion model: Z = Pf[A(G ,x)]

. fermions = entries of A−1
(G ,x) [ cf. Green function]

. On isoradial/rhombic grids

. the matrix A(G ,x) can be thought

. of as a discrete Dirac operator

[
im ∂z
−∂z −im

]
. Question: what if G is not a ‘regular grid’?

 

Conformal invariance at xcrit:
◦ correlations of lattice fields

◦ (e.g., spins) → CFT predictions

◦ interfaces/loop ensembles

◦ → SLE(3) curves/CLE(3)

◦ Near-critical: x = xcrit +mδ



Planar Ising model (no magnetic field) and s-embeddings [ arXiv:2006.14559v5 ]

. s-embeddings = tilings by tangential quads

. should be viewed as surfaces in R2,1: define

. Q(v•)−Q(v◦) := |S(v•)−S(v◦)| for v• ∼ v◦

. [ this is nothing but the corresponding t-surface ]

. xe = tan 1
2θe if tan θe = the ratio of the R2,1-lengths of

. the diagonals of the non-planar quad (S;Q)(v◦1 v
•
1 v
◦
2 v
•
2 )

. greatly generalize ‘regular grids’ = tilings by rhombi

. [ Baxter’s Z-invariant weights on isoradial graphs ]

1
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. Q(v•)−Q(v◦) := |S(v•)−S(v◦)| for v• ∼ v◦

. [ this is nothing but the corresponding t-surface ]

. xe = tan 1
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◦
2 v
•
2 )

. greatly generalize ‘regular grids’ = tilings by rhombi

. [ Baxter’s Z-invariant weights on isoradial graphs ]
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. Theorem (C.’20, conformal invariance on ‘flat’ s-embeddings):

. Ising interfaces on s-embeddings Sδ converge to SLE provided that Qδ = O(δ)

. and Sδ satisfy Unif(δ) : all edges are comparable to δ, all angles are bounded.

. All critical doubly periodic (G◦, x) admit a unique ‘flat’ s-embedding [ see also KLRR18 ]



Planar Ising model (no magnetic field) and s-embeddings [ arXiv:2006.14559v5 ]

Υ• ∪Υ◦

 

b00 

b01 
b11 

z 
v0 

u0 

v1 

u1 

w01 

KerA : functions on Υ•

satisfying the equation

X(b01) =
±X(b00) cos θz

±X(b11) sin θz

for b00, b01, b11∼w01

Υ×

 

z 
v0 

c00 

u0 

v1 c01 c11 

u1 ⇐⇒ spinors on Υ×

satisfying the equation

X(c01) =
X(c00) cos θz

+ X(c11) sin θz

for c00∼c01∼c11

. Υ× branches over all z ∈ ♦, v ∈ G • and u ∈ G ◦

. bosonization:

. Ising ↔ dimers on Υ• ∪Υ◦

. [ Wu–Lin’75, Dubédat’11 ]

. C-solution of the propagation

. equation X ! s-embedding:

SX (v•p )− SX (u◦q) := (X (cpq))2

QX (v•p )−QX (u◦q) := |X (cpq)|2

1



Planar Ising model (no magnetic field) and s-embeddings [ arXiv:2006.14559v5 ]

Mass as the mean curvature of a surface in R2,1

. Let Θδ = (Sδ;Qδ) → smooth Θ = (z , ϑ(z))z∈Ω.

. Let ζ be a conformal parametrization of Θ.

. Fermionic observables  closed F δdSδ + F δdQδ

. If F δ →δ→0 f and φ := z
1/2
ζ · f + z

1/2
ζ · f , then

. ∂ζφ+ im(ζ)φ = 0,

. where m(ζ) is the mean curvature of Θ multiplied

. by its metric element in the parametrization ζ.

1
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. Let Θδ = (Sδ;Qδ) → smooth Θ = (z , ϑ(z))z∈Ω.
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. Fermionic observables  closed F δdSδ + F δdQδ

. If F δ →δ→0 f and φ := z
1/2
ζ · f + z

1/2
ζ · f , then

. ∂ζφ+ im(ζ)φ = 0,

. where m(ζ) is the mean curvature of Θ multiplied

. by its metric element in the parametrization ζ.
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. Theorem (w/ R. Mahfouf and S.C. Park ’25): Let Sδ satisfy Unif(δ) and discrete
surfaces Θδ are O(δ)-close to a C 2-smooth surface Θ ⊂ R2,1. Then, as δ → 0:
. Fermionic observables in arbitrarily rough domains → massive holomorphic spinors.
. If Θ is maximal, then Ising interfaces converge to SLE [ in conformal ζ ] curves on Θ.

. [ UNIF(δ) is used near rough boundaries: analysis of b.c. is much heavier than for RW’s... ]



Bipartite dimer model: basics

. (G, νbw ) – finite weighted bipartite
planar graph (w/ marked outer face);

. Dimer configuration = perfect match-
ing D ⊂ E (G): subset of edges such
that each vertex is covered exactly once;

. Probability P(D) ∝ ν(D) =
∏

e∈D νe ;

. Partition function Zν(G)=
∑
D ν(D).

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]
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ing D ⊂ E (G): subset of edges such
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. Probability P(D) ∝ ν(D) =
∏

e∈D νe ;

. Partition function Zν(G)=
∑
D ν(D).

(Very) particular example:
[ Temperleyan domains GT ⊂ Z2 ]

 

. Bipartite dimer model includes both . the UST (via Temperley bijection)
. the planar Ising model (via bosonization)

. Theorem (Kasteleyn, 1961): given a planar graph (G, ν), one can orient its edges so that

. Zν(G ) = |Pf Kν | = |detKν |1/2, where Kν = −K>ν is the signed adjacency matrix of G .

. If G is bipartite, then Kν is anti-block-diagonal and |Pf Kν | = |detKν |1/2 = det |K◦→•ν |.



T-embeddings of weighted bipartite planar graphs carrying the dimer model

[ Kenyon–Lam–Ramassamy–Russkikh’18 ]

[ C.–Laslier–Russkikh’20+’21 ] , [ C.–Ramassamy’20 ]

. given (G, ν), find T : G∗ → C [G∗ – augmented dual ] s.t.

. ◦ weights νbw are gauge equivalent to χbw := |T (v ′)−T (v)|

. ◦ (i.e., νbw = gbχbwgw for some g : B ∪W → R+);

. ◦ T is proper: tiles do not overlap;

. ◦ at each inner vertex T (v), the sum of black angles = π.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (0,0) (-1,0) (-2,0)  (1,0)  (2,0) 

 (0,-1) (-1, -1)  (1, -1) 

 (0,1)  (-1,1)  (1,1) 

 (0,2) 

 (0,-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



T-embeddings of weighted bipartite planar graphs carrying the dimer model

[ Kenyon–Lam–Ramassamy–Russkikh’18 ]

[ C.–Laslier–Russkikh’20+’21 ] , [ C.–Ramassamy’20 ]

. given (G, ν), find T : G∗ → C [G∗ – augmented dual ] s.t.

. ◦ weights νbw are gauge equivalent to χbw := |T (v ′)−T (v)|

. ◦ (i.e., νbw = gbχbwgw for some g : B ∪W → R+);

. ◦ T is proper: tiles do not overlap;

. ◦ at each inner vertex T (v), the sum of black angles = π.

. origami O : G∗→C “ fold T along all segments ”

. t-surface (T ,O) : G∗ → R2,2 can be thought of

. as a piece-wise linear surface with light-like faces

. isometries of R2,2  gauge equivalent weights
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T-embeddings of weighted bipartite planar graphs carrying the dimer model

. t-surface (T ,O)  family of T-graphs T +α2O, |α| = 1

1

 

1

. t-holomorphic functions F ◦ : W → C are
α · (gradients of harmonic on T +α2O)

 closed forms F ◦dT + F ◦dO [ and similarly F •dT + F •dO ]

. this (a) does not[!] depend on α; (b) respects isometries of R2,2
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 (0,2) 
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T-embeddings of weighted bipartite planar graphs carrying the dimer model

. A priori regularity theory under two assumptions [CLR20]:

. ◦ Lip(κ, δ), κ < 1 (quantitatively space-like above scale δ):

. ◦ |T δ(v ′)− T δ(v)| < δ ⇒ |Oδ(v ′)−Oδ(v)| 6 κ · |T δ(v ′)− T δ(v)|

. ⇒ Hölder-type regularity of t-holomorphic functions

. ◦ Exp-Fat(δ, δ′), δ 6 δ′→0 (exponential non-degeneracy):

if one removes all δ exp(−δ′δ−1)-fat triangles from T δ, then
the diameter of remaining vertex-connected components 6 δ′

.⇒ Lipschitz-type regularity of harm. functions on T +α2O

. t-holomorphic functions F ◦ : W → C are
α · (gradients of harmonic on T +α2O)

 closed forms F ◦dT + F ◦dO [ and similarly F •dT + F •dO ]

. this (a) does not[!] depend on α; (b) respects isometries of R2,2
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T-embeddings of weighted bipartite planar graphs carrying the dimer model

Perfect t-embeddings [CLR21]: outer vertices belong to the
intersection of a light-cone in R2,2 and a (2,1)-hyperplane.

Q: Why should we care? A: They give a correct gauge!
Theorem: under Lip and Exp-Fat on compacts,

one has (Kδ)−1 = O(1) in the bulk as δ → 0.

. one can move R2,2 such that this (2,1)-space is {Im θ = 1}:

wout,k

bk

wk

bout,k

b+out,k

b−out,k

b1

w1

T (v1) = eiφ1/ cos ξ1
T (v2)

T (v3)

T (v2k−1)

T (v2k) = eiφ2k/ cos ξ2k

T (v2k+1)

π
2 + ξ2k+1

π
2 − ξ2k
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T-embeddings of weighted bipartite planar graphs carrying the dimer model

Perfect t-embeddings [CLR21]: outer vertices belong to the
intersection of a light-cone in R2,2 and a (2,1)-hyperplane.

Q: Why should we care? A: They give a correct gauge!
Theorem: under Lip and Exp-Fat on compacts,

one has (Kδ)−1 = O(1) in the bulk as δ → 0.

. one can move R2,2 such that this (2,1)-space is {Im θ = 1}:

wout,k

bk

wk

bout,k

b+out,k

b−out,k

b1

w1

T (v1) = eiφ1/ cos ξ1
T (v2)

T (v3)

T (v2k−1)

T (v2k) = eiφ2k/ cos ξ2k

T (v2k+1)

π
2 + ξ2k+1

π
2 − ξ2k

 

see next talk
by Marianna
Russkikh [!]

Aztec: [ deg vout =4
⇒ all t-emb are perfect ]

1

↓ (as N →∞)

 



Open question #1:

Is there an intrinsic argument that guarantees the convergence of Unif(δ)
t-embeddings with periodic dimer weights to maximal 2-surfaces Θ ⊂ R2,2?

Simplest version: Let T δ be tilings of
a fixed region Ω ⊂ C such that

. T δ have combinatorics of Z2, all tiles are

. of size � δ, angles are uniformly bounded;

. angle condition holds  Θδ = (T δ;Oδ);

. at each vertex (n,m) one has

. ‖Θδ(n + 1,m)−Θδ(n − 1,m)‖2,2

. = ‖Θδ(n,m + 1)−Θδ(n,m − 1)‖2,2.

Assume that Θδ = (T δ;Oδ)→ Θ ⊂ R2,2

Prove[?!] that Θ is a maximal 2-surface.

1

[ Aztec N = 1600 near (0.4; 0.25) ]



Open question #1:

Is there an intrinsic argument that guarantees the convergence of Unif(δ)
t-embeddings with periodic dimer weights to maximal 2-surfaces Θ ⊂ R2,2?

Open question #2:

Prove/disprove the existence of perfect t-embeddings
for generic finite bipartite weighted graphs (G; νbw ).

Particular case (Ising): perfect s-embeddings

Given a collection of quads in R2,1 with light-like sides
and fixed ratios of diagonals, can one always scale
them and assemble together in a prescribed way so
that the boundary belongs to the hyperboloid?

 



Open question #1:

Is there an intrinsic argument that guarantees the convergence of Unif(δ)
t-embeddings with periodic dimer weights to maximal 2-surfaces Θ ⊂ R2,2?

Open question #2:

Prove/disprove the existence of perfect t-embeddings
for generic finite bipartite weighted graphs (G; νbw ).

Particular case (Ising): perfect s-embeddings

Open question #3:

Zeroes of ZIsing[x ] = 0 ! discrete surfaces in [??]

. ZIsing[(xe)e∈E ] =
∑

even subgraphs G ′⊂G
∏

e∈G ′ xe

. s-embeddings(immersions) into R2,1 ! x ∈ R

. Livine–Bonzom [triangulations]: dimR = #E−1

. half-dim set of solutions x ∈ C via polyhedra in R3

Motivation for #3:

Recent work of Livine–Bonzom
[ 2405.01253; Phys. Rev. D’25 ]

on 3d quantum gravity:

. xe = e
i
2
θ · (tan 1

2φ1 tan 1
2φ2)

1
2

. half-dim set of Ising zeroes

. from triangulations in R3

. Proved by Lis [ 2409.19639 ]

. c© Marcin Lis

. [2409.19639]



Open question #1:

Is there an intrinsic argument that guarantees the convergence of Unif(δ)
t-embeddings with periodic dimer weights to maximal 2-surfaces Θ ⊂ R2,2?

Open question #2:

Prove/disprove the existence of perfect t-embeddings
for generic finite bipartite weighted graphs (G; νbw ).

Particular case (Ising): perfect s-embeddings

Open question #3:

Zeroes of ZIsing[x ] = 0 ! discrete surfaces in [??]

Thank you!

1
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