Discrete Uniformization Problem for non-compact polyhedral surfaces

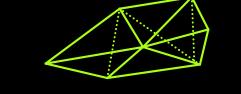
Feng Luo

Rutgers University

Joint work with Yanwen Luo

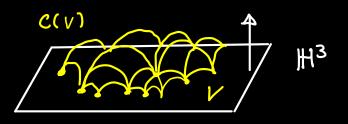
ICERM Feb. 10-14, 2025

§ I. Cauchy Rigidity



Thm. If V, W finite sets in IR³ s.t., $\partial C_{E}(v) \cong_{iso} \partial C_{E}(w) \Rightarrow C_{E}(v) \cong_{iso} C_{E}(w)$.

 $V \subset \mathbb{C}, \mathbb{C}(v)$ convex hull in \mathbb{H}^3



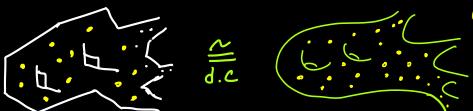
Problem 1. If V, W discrete in C and $\partial C(v) \underset{(5)}{\cong} \partial C(w)$ $\Rightarrow C(v) \underset{(5)}{\cong} C(w) ?$

Problem 2. If V, W discrete in ID with $\partial V = \partial W = S^{1}$ and $\partial C(v) \stackrel{\sim}{\underset{iso}{\leftarrow}} \partial C(w) \Rightarrow C(v) \stackrel{\sim}{\underset{iso}{\leftarrow}} C(w) ?$

Main Thm (Luo-L). Problem 2 is true.

Propient Z is it de.

Corollary. ∀ polyhedral surface of non-abelian fundamental group is discrete conformal to a unique standard model.

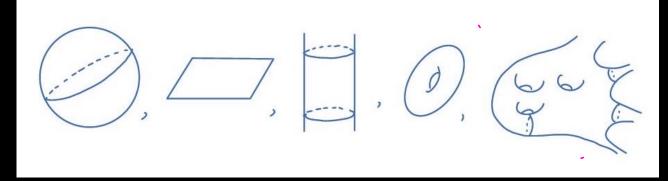


complete hyperbolic surf.

S = connected orientable topological surface S = C - Cantor Set

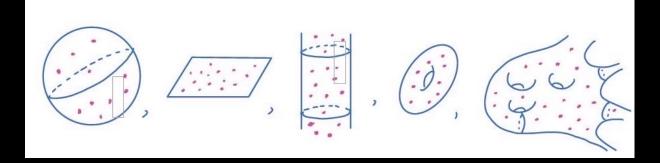
§2 The uniformization thm of Poincaré-Koebe

Thm. $\forall (S, g), \exists \lambda : S \longrightarrow \mathbb{R}_{>0}$ s.t., $(S, \lambda g)$ is a complete Riemannian metric of constant curvature k=0, 1, -1.

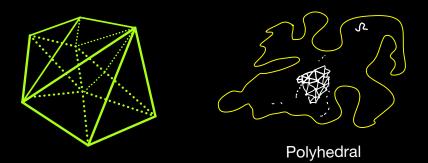


Discrete Uniformization Problem (DUP)

✓ polyhedral surface (S, V, d), ∃ a complete constant curvature O,I,-I metric d' on S s.t., $(S, V, d) \quad \rightleftharpoons \quad (S, V, d'), \text{ which is a polyhedral.}$



§ 3. Polyhedral surfaces and discrete conformality
 V discrete subset of S, d =cone metric on S with cone points in V

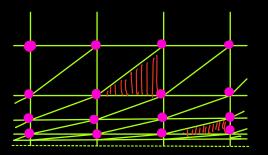


Def. A polyhedral surface is (S, V, d) s.t.,

- (1). (S, V, d) admits a geodesic triangulation with vertex set V,
- (2). the circumdisk of each triangle is cpt and is contained in S,
- (3). the interior of each circumdisk contains no points in V.

Fact: If S is closed, every cone metric surface (S, V, d) is polyhedral.

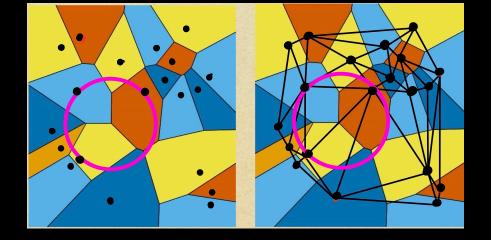
Not polyhedral :



triangulated upper half plane

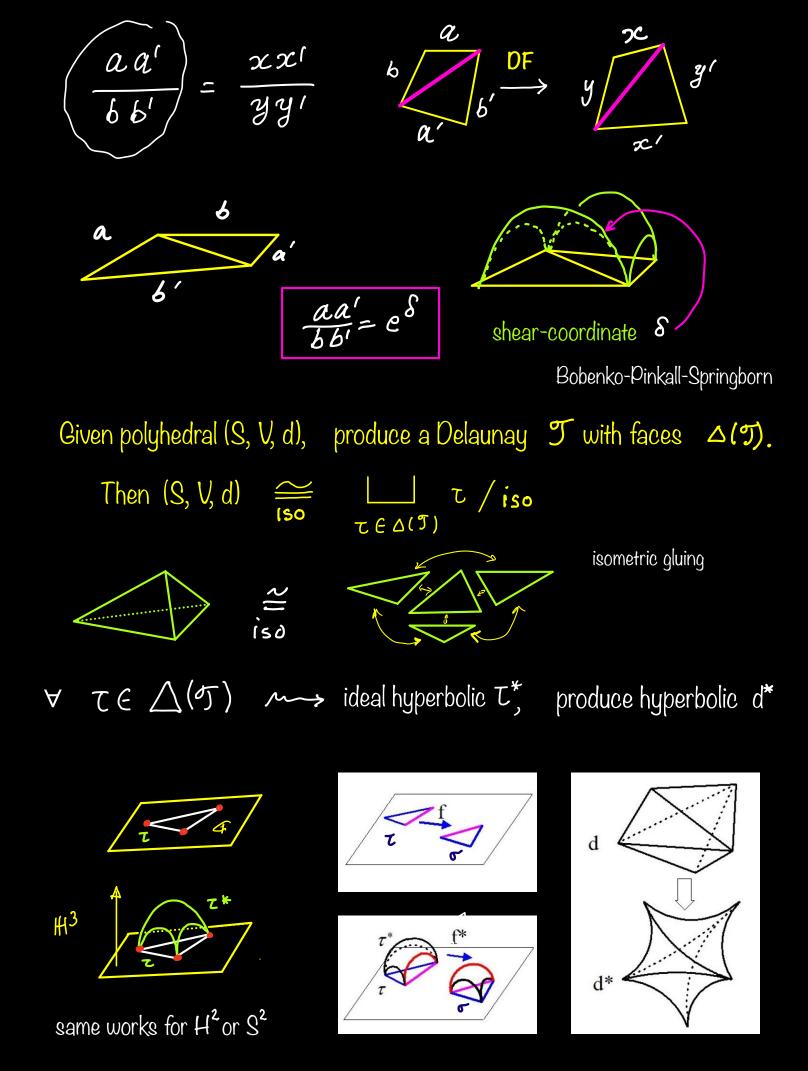
Discrete conformal

F conformal

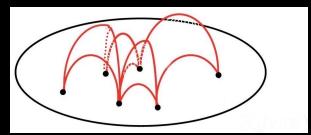


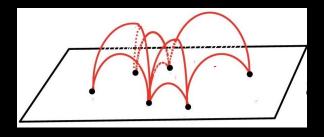
 $(\mathbb{C},\mathbb{Z},\mathsf{d}_{\mathsf{E}}) =$

 $\begin{array}{ll} \Leftrightarrow & \text{DF: } \mathbb{R}^2 \rightarrow \mathbb{R}^2 & \text{circle preserving.} \\ \Leftrightarrow & \text{DF preserves length cross ratios:} \end{array}$



Eq. d* for the standard models : $(D, V, d_H) + (C, V, d_E)$





 $d^* \cong \partial \mathcal{L}(v)$, boundary of convex hull of V in $\mathbb{H}^3 = \mathbb{C} \times \mathbb{R}_{>0}$

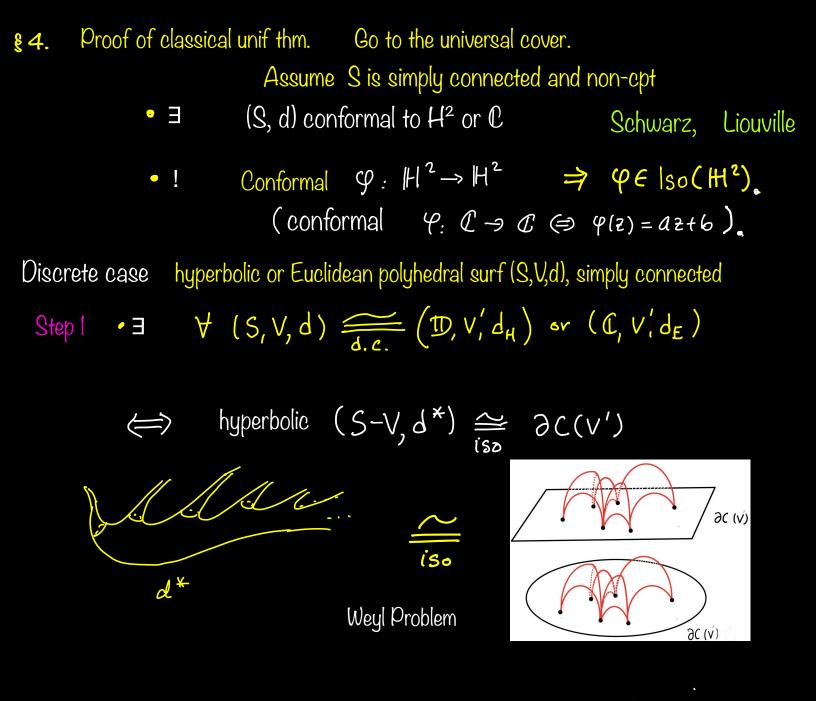
Def. Two polyhedral surfaces (S, V, d I) and (S, V, d2) are discrete conformal (d. c.) if \exists isometry F: (S-V, di*) \rightarrow (S-V, d2*) s.t., F \cong id.

Prop. If (S, V, d) is a Euclidean or hyperbolic polyhedral surface \Rightarrow (1). d* is independent of the choice of Delaunay triangulations, (2). d* is complete hyperbolic.

RM. If d is complete hyperbolic on S, V subset of S, then d* is defined S-V.

DUP. \forall polyhedral surface (S, V, d) \exists a complete constant curvature k=0,1,-1 metric d' on S s.t., (S, V, d) \cong (S, V, d'). Furthermore (S,V,d') is polyhedral.

RM. DUP holds for closed surfaces (Rivin, Fillastre, Gu-L-Sun-Wu, Gu-Guo-L-Sun-Wu)



Step 2 ·! If $\varphi : (\mathbb{D}, \vee, d_H) \rightarrow (\mathbb{D}, \vee, d_H)$ dis. conf. $\Rightarrow \varphi \in Iso(\mathbb{H})$ (If $\varphi : (\mathbb{C}, \vee, d_E) \rightarrow (\mathbb{C}, \vee, d_E)$ dis. conf. $\Rightarrow \varphi(z) = az + b$.)

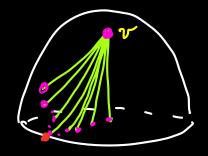
These are problems 1 & 2.

§5. Our progress

Step I. Existence

Thm (L-Wu) \forall complete hyperbolic metric d* on a genus zero surface with at most one non-cusp end is iso $\partial C(V)$, $V \subset \Phi/C$

But (D, V, d_H) or (C, V, d_E) may not be polyhedral.

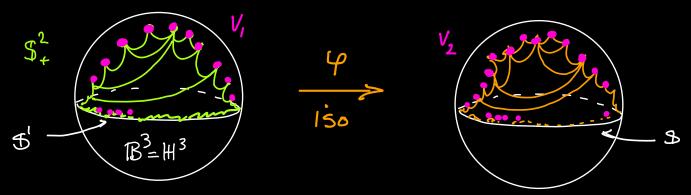


 $\exists v \text{ in } V w/ \text{ infinitely many edges from } v \text{ in } \partial C(v).$

We don't know how to prove that if d^* is associated to a polyhedral surface (S, V', d) $\Rightarrow \exists C(v)$ is polyhedral.

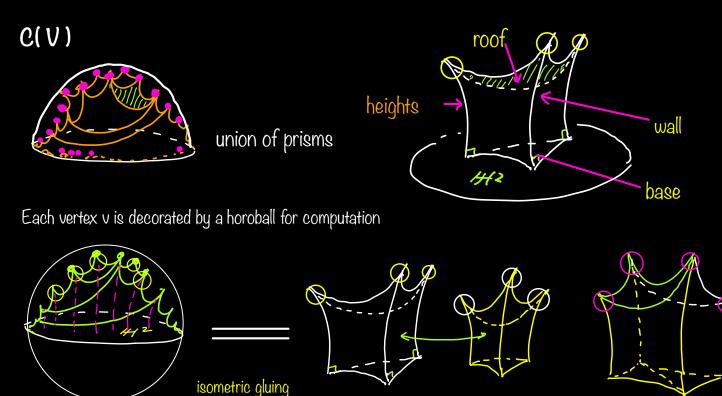
Step 2. Uniqueness (discrete Schwarz lemma, related to work of Beardon-Stephenson)

Thm(Luo-L). If V₁, V₂ are discrete in D with limit points with $\exists V_1 = \exists D$ $\exists C(V_1) \underset{(52)}{\cong} \exists C(V_2) \Rightarrow C(V_1) \underset{(53)}{\cong} C(V_2).$ (Cauchy-Alexandrov w/ infinite vertices). Shifting from D to S^2_+ S^2



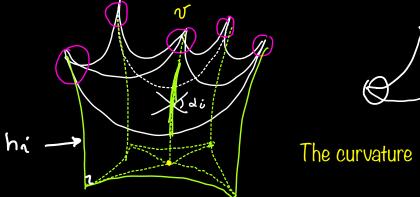
Assume now that C(V) is a polyhedral convex cap

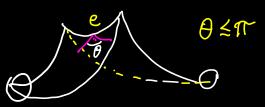
related to the work of Alexandrov, Volkov, Izmestiev, ...



Def (Convex Cap = CC)

Isometric gluing of of prisms along walls s.t. dihedral angles at all interior roof edges are at most π .





🔰 di

21-

K(v)

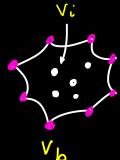
Notation:

(D, V, d) = roof surface (D, V, d, h) = a CC with roof (D,V,d) and height h: $V \rightarrow R$.

Schwarz - Pick- Ahlfors lemma

Discrete Schwarz lemma (DSL) for finite convex caps

Let (D, V, d, H) and (D, V, d, h) be two finite CC with isometric roof, $V = V_b \sqcup V_{n'}$.



$$f H|_{V_{b}} \ge h|_{V_{b}} \text{ and } K_{H}|_{V_{i}} \le K_{h}|_{V_{i}}$$

$$\Rightarrow H \ge h.$$

$$H_{i}$$

$$H_{i}$$

DSL \Rightarrow rigidity thm using Z. He's scaling method (polyhedral case) Two CC's with isometric roof and heights h1, h2.

