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Stiffness 101

Overview

© Stiffness 101
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Charactizations/Definitions of “Stiffness”

“While the intuitive meaning of stiff is clear to all specialists, much controversy is
going on about it's [sic] correct mathematical definition” [Hairer, Wanner: Solving ODE 1]

Problem-driven Method-driven

At least two time scales, “Stiff equations are equations where certain

and fast variables affect implicit methods [...] perform [...] tremendously
system dynamics but do better, than explicit ones.” [curtiss, Hirschfelder, 1952]
not mar'1ifest (significantly) “Stiff equations are problems for which explicit
in solution. methods don't work.” [Hairer, Wanner: Solving ODE 1]

“Stiffness occurs when stability requirements,
rather than those of accuracy, constrain the step
|ength.” [Lambert: Numerical Methods for ODE]

This talk
@ Stiffness is not just a stability issue; it is also an accuracy issue.
@ Carefully understand manifestations in different ODE and PDE problems.

@ Overcome order reduction uniformly; more than asymptotic preserving. F
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Runge-Kutta (RK) method

C|l A
Butcher tableau

b7’
for ODE y’ = f(y) encodes update rule .

Y[ =y Aty ayf(Y])
j=1

S
y™l =y ALY Bif(Y])
=1

0
Il

>
o

Stability function

R(C)=1+C¢bT(I —CA)"té is growth factor u™1/u" per step of size

At, where ¢ = AAt, when solving linear test problem
y =Xy, MeC.

Region of absolute stability
S={CeC: R <1}

(e8]
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Stiffness 101

Stiffness as stability “Absolutely Stable” [2016]

restriction

y' = Ay with [A\| > 1
Explicit RK

=—> R polynomial

=— S bounded

cannot “work”

Fine, but
there is a lot more
going on . ..
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Order Reduction

Overview

© Order Reduction
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Order Reduction for Initial Boundary Value Problems

Initial-Boundary-Value Problem (IBVP) Example: 1D Heat Equation
PDE

up=Lu+f forxeQ,te(0,T) ur = Uxx + f(x, t)

u=g for x € 9Q,t € [0, T] u=g(xp,t)

U= g forx e Q,t=0 u = up(x)
where L differential operator. where x € [0, 1].

Implicit Time-Stepping of IBVP

Why? Avoid At < O(Ax?) time-step restriction of explicit schemes.
Semi-discretization in time (Rothe; justified if uncond. stable) yields BVP:

ﬁ(u"—H _ u") = Lyt 4 1 0 Q
ymtl = gntt on 99

Local (one time step) truncation error: O(At?)
Global (O(1/At) time steps) truncation error: O(At)

Backward Euler: {

Incur order reduction, which is a temporal error phenomenon.
(~ use super-fine spatial grids in examples)

Ty
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Order Reduction for Initial Boundary Value Problems

Example: 1D Heat Equation Method of Manufactured Solutions
ur = U + f(x,t) PDE Choose u(x,t). Calculate f, g, and wug
u = g(x, t) b.c. s.t. IBVP has the chosen solution.
u = uo(x) c Simplest example: u(x, t) = cos(t);
x €[0,1], t € [0,1].
DIRK1 (backward Euler) Second-Order DIRK2
1o Heat Eqn. DIRK1 102 Heat Eqn. DIRK2
. W e e T
g ) gm: ..............
MSE
g 104 g O e
% % 0
5104 é 10®
U w .
Y 10 =O-u (be0)
N o il
107 “ 10! “ 3 2 ==es ol
10 10 10 @ 10 10
mpl
Expected orders in u. Loss of half an order in vy for DIRK2. I E}%MEVLE
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Order Reduction for Initial Boundary Value Problems

Example: 1D Heat Equation Method of Manufactured Solutions
U = Uy + f(x,t) PDE Choose u(x,t). Calculate f, g, and wug
u=g(x,t) b.c. s.t. IBVP has the chosen solution.
u = uo(x) c Simplest example: u(x, t) = cos(t);
x €[0,1], t € [0,1].
Third-Order DIRK3 Fourth-Order DIRK4
102 Heat Eqn. DIRK3 102 Heat Eqn. DIRK4
10"
10" e b 104 | gt
PSS s 2 IR
E i g Ewsl e
T e £ | o
2 w0} ¥ :
5t
10° O~ (bc0) 10-\5 =O-u (bc0)
10710 ::‘ln:’:)‘?z -7 ::’l:,;(;:j‘g'z
- : ; = =aaslope = 1.5 ’ il : : = =auslope = 1.5 ’
10 10 @ 10 10 10 10 @ 10 10
i TEMPLE

DIRK3/4 only as accurate as DIRK2. Order-loss in u (and uy). 1Y ey
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Order Reduction for Initial Boundary Value Problems

Shape of Temporal Errors

2

%10 1D Heat Eqn. DIRK1, single step error in u

errorinu

errorinu

0 0.2 04 x 06 08 1
8 x10°° 1D Heat Eqn. DIRK1, global error in u

o 0.2 0.4 X 0.6 0.8
1D Heat Eqn. DIRK2, global error in u

o

errorinu
'Y

Why are there Boundary Layers (BL) at all?
DIRK1 one-step error €(x) solves BVP
€ — At ey = —Atsin(At) for x € (0,1)
e=0 for x € {0,1}
Singularly perturbed problem:
e= O(At?) outside BL; BL thickness O(At%).

Spatial boundary layers, caused by the
temporal error.

Why loss of 1/2 order in u,?

Error away from BL: O(AtP);
error on boundary: 0;
BL thickness: O(At’?®).

o
o 0.2 0.4 X 0.6 0.8 -
«10° 1D Heat Eqn. DIRK3, global error in u
Why DIRK 3 and DIRK 4 only second order?
Stages have different BL thickness. No order p
Taylor series cancellation inside BLs. Error as £
accurate as each stage (O(At?)).
v
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Order Reduction for Initial Boundary Value Problems

Shape of Temporal Errors Boundary Layer Error Theory

2

%10 1D Heat Eqn. DIRK1, single step error in u

Spatial Manifestations of Order Reduction in Runge-
Kutta Methods for IBVPs, Commun. Math. Sci. 2024

errorinu

; @ Modal analysis of semi-discretized (in
ol ¢ space) system: "(x) = V(x)e/“Atn.

Q Yields BVP v =M - LV + M - 6.

8 %10° 1D Heat Eqn. DIRK1, global error in u
© Spectrum of M:
At —
— 4
p . M = E”.wAtileb + AtA
: 10° :lz:l Heat Eq::Am nsz, gl?:ial error i: 5 ! ——— ~—— .
O(1) rank 1 matrix ~ O(At) perturbation

One O(1) eigenvalue, others O(At).

Hence: Single-stage methods are devoid
i of OR. RK methods have BLs.

@ Avoiding OR means: BLs are present but
are of the order of the method (or higher).

errorinu
a

errorinu
P

~

o

o 0.2 0.4 X 0.6 0.8
%10 1D Heat Eqn. DIRK3, global error in u

~
e

errorinu

Note that OR does not always manifest, e.g.,
no time dependence in forcing or b.c.
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Order Reduction for Ordinary Differential Equation

Q: What is the simplest model problem 10 A=-10°
that captures order reduction?

10°®
y' = Ay does not (only one time scale).J

10°®

A: Generalize via method of 107°
manufactu red solutions [Prothero—Robinson] 102
Y =My = ¢(t)) + (1) -
with i.c. y(0) = ¢(0) and Re A < 0.

Exact solution: y(t) = ¢(t). ) 10°

+ Can analyze error as bi-variate function of At and \.

+ Different convergence notions explain order reduction behavior in
ODE, in PDE, stiff limits, semi-stiffness in ERK, etc.

+ Explicit expressions for error (instead of just error estimates).
+ Simplest analysis for IRK or ERK, but extension to ImEx also natural.

Ty

— Does not cover conditions specific to nonlinear problems (p > 4).
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Error Analysis

Overview

© Error Analysis
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Error Analysis

Error for Prothero—Robinson model problem y’ = A(y — &(t)) + ¢/(t)
Apply RK scheme. Error at t,+1 (with { = AAt):
el R(C) €™ + CET(/ _ CA)*lS’SnJrl 4 gn+l
Truncation errors at intermediate stages and end of step:
St =Y A P00 (ty) , a1 = A (BTEit - 1) gU)(s,)
jz2 jz1
with stage order residuals 7U) = Agi—1 — jl.E’j , J=12,...

e Order conditions render §™*! always high order.
e Stability |R(¢)| < 1 for (#0 ensures error is governed by 5;”“ term:

e(At,Q) = AT (BT (1 - (A7 D)

j>2

v
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Error Analysis Convergence notions

Error of p-th order RK scheme for Prothero—Robinson model problem
(¢, 1 (i
e(At, () = ZAH ¢ 1)' CbT(I = ¢cA) 170

Convergence notions:
@ Classical limit At — 0 and ¢ = 0: Order conditions
(bTAt gk = m for 0<j+k<p—1) imply full order p
(C(I=CA) ™t = C+CA+CA+. .. and bT7V) =0 for j < p—1) .
Stiff limit At — 0 and (— —oo: Conditions b'A-170) =0
due to expansion (¢(/—CA)™t = —ATI-(TTATZ(T2AT- )
[Stiff accuracy and A invertible imply b"A 17U =0 due to order conditions.]
Semi-stiff limit At — 0 and ( = —p:  (e.g.: ERK for advective PDE)
Middle range b 7 (I—pA)~17U) = 0 for 1 fixed.
B-convergence: Convergence At — 0 of max, [e(At, ()|
(The natural convergence for PDE due to unbounded spectrum)
DAE-limit = AP: Is lim¢_,_ e(At, ) = 0 for At fixed?
Weak uniform: B-convergence of order p (yes/no?)
Strong uniform:  For any A have e(At, A\At) = CAtP (yes/no?)

(e9)
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N L LT ORI Eamvles
Stiffly accurate L-stable 3rd order DIRK3

B-Convergence for Stiffly Accurate 3rd Order Scheme

107°
1072
1074
1076
1078

® A=-10!
e A=-102
e A=-10°
e A=-10°
e A=-10°
® A=-10°
A=-107

—— Slope =1

—== Slope =2

1072 1071 10°
h
X X
1+x 1—x
T 3 274 1 3.2 X5 5
SR Ty  TX X
‘_EX +4x—7 5x°=5x+37 x

where x = 0.4358665215

o

Benjamin Seibold (Temple University) The Many Faces of Stiffness

Convergence notions

@ Classical limit:
For ( < 1:
e= O(At3)

@ Stiff limit:
For ( > 1:
e= O(At!)

@ DAE limit:
bTA- 170 =,
hence e = O(¢™1)
and thus AP.

@ B-convergence:
O(At?)

@ Weak uniform: no

@ Strong uniform:no
v
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3rd order DIRK with b TA-17(2) =0 3rd order DIRK with bTA-17(2) L0
10-0 B-Convergence for Stiffly Accurate 3rd Order Scheme 10-0 B-Convergence for Non-Stiffly Accurate 3rd Order Scheme
102 ::::3% -1 10-2 A
104 o ::::3: 5 107
106] o 3210 5 10-6
ool © 2, P 10
§ 10-10{ =7 Slove=2 Z2% 81010
10712 10-12
107144 1071
10-16 10-16
107182 10718
10201 10-20
10°° 10-° 107* 1073 1072 1071 10° 10-° 1075 1074 1072 1072 107! 10°
h h
X X L
14x 1-x X Crouzeix's 3rd order DIRK method
2 2 1,1 1,1
1 —%x2+4x—% %X2—5X+% X ?+§ 3 §+15\/§ -
‘—%x2+4x—% %x2—5x+% X 575\/5 751 3 §+18\/§
where x = 0.4358665215 ) 2 2 )
o Identical classical (O(At3)) and B-convergence (O(At?)).
o bTA"17(2) =0 generates O(At?) behavior in stiff triangle (¢ > 1),
which is superior to O(At?) behavior incurred with b TA=17(2) =£0
~~ asymptotic preserving (AP).
v
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“Pothole phenomenon” in AP ImEx Runge-Kutta schemes
[Boscarino, Russo, SISC 2009]

. MARS(3,4,3)
I ' I Broadwell model
S Dep+0xm =0
24 I 1 8tm+axz =0
o
%3. dez+0xm = L(p+m*—2pz)
=P
S “lack of accuracy of the schemes for
T 1 intermediate values of the stiffness
para meter” [Boscarino, Russo, SISC 2009]

o I i I ; ‘
10°® 10° 107 107 102 107" 10°
€

Note: ImEx framework, but same story because order reduction is solely due to
%—stiffness (periodic domain and smooth solutions).
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Weak Stage Order

Overview

@ Weak Stage Order
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Weak Stage Order Definitions and Theorems

Recall: error of RK scheme for RP problem dominated by

e(At,() = At ] 2C CBT(1—¢A)170) with 7O = A1 1g)
j>2

goal: make = 0 for many j

Def.: Scheme has stage order q if p> g and 7U) =0 for 1 <j < gq.
Thm.: Irreducible DIRK schemes have g < 2; & if A non-singular: g = 1.

Def.: Scheme has weak stage order (WSO) q if an A-invariant subspace V
exists that is orthogonal to band 7)€V for 1 <j<aq.

Thm.: WSO achieves the goal as well:

70y VA (a0 ey Y BT etz =0 O
Thm.: WSO q < bTAHJ) =0forl1<j<qgand0</¢<s—1.
Def.: Scheme satisfies WSO eigenvector criterion if A7U) = uﬁ’(j) and
bT70) =0 for1<j<q.
Thm.: WSO EC limited to g < 3 for DIRK schemes with non-singular A.

No limitation on WSO ¢ (other than needing more stages).
WSO yields polynomial conditions for Butcher coefficients aj;, b;.

(e8]
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Weak Stage Order Example Methods

Two simple stiffly accurate and L-stable DIRK schemes

Order p =3 and WSO q = 2:

c1 | 0.019000729223994

o | 0.404346056373926  0.384357175127182

c3 | 0.064879089771843 —0.163896403659870 0.51545231222

1 | 0.023435499759592 —0.412078784899592 0.96661161281 0.42203167233
0.023435499759592 —0.412078784899592 0.96661161281 0.42203167233

Order p =3 and WSO g = 3:

c1 0.137565435510819

o 0.566951227943062  0.234838887815719

c3 | —1.083540728288038  2.966182238854014  0.44915521951

1 0.597612915006364 —0.434209975846364 —0.05305815322 0.88965521406
0.597612915006364 —0.434209975846364 —0.05305815322 0.88965521406

L TEMPLE

——8 UNIVERSITY
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Weak Stage Order

B-Convergence for Stiffly Accurate 3rd Order Scheme

Convergence Behavior

B-Convergence for Non-Stiffly Accurate 3rd Order Scheme

107° 107°
1072 1072
1074 1074
10°° 10°°
1078 1078
§ 10710 E 10710
®10-2 H o2
10714 10714
10—!6 10—]5
10718 10716
10-20 10-20
10-° 107° 1074 10-2 1072 1071 10° 10°° 10-° 1074 1073 1072 107! 10°
h h
10-0 B-Convergence for 3rd Order WSO2 Scheme 10-0 B-Convergence for 3rd Order WSO3 Scheme
. -10!
102 -10? 10-2
_10°
1074 1074
107 10-°
108 1078
E 1071047 E 10710
10712 ¢ 10712
10-14 10-14
10716 10716
10-18 10-18
10720 ’ - 10720 )
107 107° 1074 1073 1072 107! 10° 10~ 107° 1074 1073 1072 107! 10°
h h

Both WSO 2 and 3 achieves B-convergence 3 and thus weak uniform
convergence. But only WSO 3 exhibits strong uniform convergence.

Benjamin Seibold (Temple University)

The Many Faces of Stiffness

UNIVERSITY

07/25/2025, ICERM
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Weak Stage Order Example

Application example: existing ImEx method [goscarino, Russo, SiSC 2009]

0 0 0 0 0O 0 0 0 0 0 0
(o) fe)) 0 0 0 O - 0% 0 0 0
c3 c3 — a3 s 0 0 O c3—axp —v as v 0 0
C4 | 4 —as —a43 d42 443 0 O | cp—asgp—as3—7y aw—~y a3 v O
1 by 0 bs by v by 0 bs by
1 ‘ by 0 bs by v ‘ by 0 bs by

with coefficients to satisfy (non-stiff) order conditions and moreover:

Tl(m2) =0 and Téi) = Ac—%c2 = fer , AT&) =pue bTez —-0.

This is in fact a special case of the WSO eigenvector criterion. Thus the
implicit part is WSO2. But while this specific approach cannot be (easily)
extended to higher orders, general WSO can.

v

100, Allen-Cabn Eqn. : a = 0.1, 3 =3, =10,
New scheme with WSO3, yielding 4th order DSt IS e Sore 2
102+ =+ WSO 3: ImEx(7,4,3) Slope 4

7-stage ImEx scheme

— talk to A. Biswas

-
o
PR

-10
1o 10° 102 At

($9]
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WWEETSSIZV-CNOISTal  Pushing WSO to Higher Order

Construct error-optimal L-stable schemes with high order and WSO

0.01900072890

0.78870323114

0.41643499339
1

0.13756543551
0.80179011576

2.33179673002

1

0.0796724

0.4643647

1.3485592

1.3126642

0.9894693
1

0.01900072890
0.40434605601
0.06487908412
0.02343549374
0.02343549374

0.13756543551

-0.16389640295
-0.41207877888
-0.41207877888

0.38435717512

0.56695122794  0.23483888782

0.51545231222
0.96661161281
0.96661161281

0.42203167233
0.42203167233

(s,p,q) =

(4,3,2)

(s,p,q) =(4,3,3)
-1.08354072813 2.96618223864
0.59761291500 -0.43420997584

0.59761291500 -0.43420997584

0.44915521951
-0.05305815322
-0.05305815322

0.88965521406
0.88965521406

0.0796724
0.3283554
-0.6507728
-0.7145806
-1.1200928
0.2148237

(57 p? q) (6’ 47 3)

0.1360093
1.7428591
1.7937458
1.9834523
0.5363674

0.2564730

-0.0782548 0.3117538
3.1173939 -3.7619302
0.1544881 -0.2177486

0.7706460
0.0722264  0.2398430

1

‘0.2148237 0.5363674 0.1544881 -0.2177486 0.0722264 0.2398430

4.4928331

1)1 01

9

L1 AP ; (sapa q) (77474)

1.230475807454758e+00 | -1 0
2.978701803613543e-+00

-8 -2 65e-03 9 2
151 7e+00 1 0
3.618481772236499e-01  -5. 1

2
2

1.475353790517696e-01 5.742190161395324e-01
9971 01 K 0

1

7.120237463672882¢-01  -2.01: -1.91 3.707277349712966e-01

1 a4 11 151213300e-02 6.01 6. 5

2usmAITIO0!

-1.270730910442124-01 _3.395048796261326e-01
05 L. 24601 3. Ge-01

2
2 o 4 T 1 00e-02 6.01 6.

2330023001

7

s (5;P7 q) = (12,574)

3

Lo0000na0Diconte 00

s nmmsT 0

B h h h
7 ASTETONT6001 1 ASHTORI5001 2 0426B0SGTATIGI 02 565T204SR0GTMS 0| ISTI01S09631oke 100 _ 2 OGTSIROITTIGETER.03 0 IGSONDGSTEOA0002 1L STOBGITASOTZIze.02 -5 AGOSPITADDG00-02 3 GOVIO0SG203005e.02 -0 1SUSISEIG05019e13_ 2 TITSSIGSIGONS 101

T AT AT Toe 01 1 ST 6050 2 OFZGERSGTRTIRSe 07 565 290 ROGTRA G 0y TIOTSO0O63 6k 1002 UGTST202TTToR on 03 3GRANZGaTo0N70e 07 | STOBRATRAITZZze 075 STRZITAIOI000 07 3 ROV 12T TsUS S50 19w 132 TS G0N I 0

nmmsT 0

1 (57 p? q) = (127 57 5)

3

Lnoon0on0oaneane 00

LATINIBASEI0E (25 6TORO0TAGATRGLE D11 121I0NDAAGATIIOR D14 SESGDGIATEDSD6R.03 L WSOBLIOHGSLassa 00 3 I00R2BTONTGORDTE D) 8 IS2SISITIONE0L 2 AL0S2604 05040 03 1 430060TGIS0e02__6SSGSGTIOGTAOONTE 13 G SBLISAGGATHTE 08 ASKTIZIONSELSGE DL
T GNCEAS T 025 TEOBD07SB4TES1e 01T TZTI08RG4T2305 013 SS06THT808364 07 S SSESGTTORTATINTE 0T 6 SIS GHHITE0F 5 S4TSR T 01

T2 IO T2 5 TR0 1 T L T2 284720 D] SRS ST 3 1 ST TS 4900 3 S8R2A7T3760807& 01— VoS STIGTIOTTe 01T GAOIORaSGHING0Re 131 A0GDS0LTG3Ea0e 12 5 SaaaTTOBTAvaNTe 0T 6 ST ToGBHTIoTOF 5 S 20I06R0Toe 01
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Weak Stage Order Explicit Runge-Kutta Methods

Explicit RK schemes (3,2,2) method
Order reduction can also happen in the stability 0

regime of ERK schemes. 1] 1
Semi-stiff limit, e.g., for advective PDE. 2| 2

@ Pleasing algebraic structure. 1 11 T
© Must choose: high WSO or nonlinear SSP. ‘ -3 2 =3

_ 2
Structure & construction — talk by D. Shirokoff R(z)=1+2z+2°/2
Linear SSP coeff. 1

A

(4,3,2) method

Ty

(5,3,3) method
0 0
3 3 3 3
10 10 i i
2 2 15 | 285645 103950
3 3 19 493487 493487
3 | 21 45 729 5 | 3075805 1353275
2 320 44 3520 6 | 5314806 531489
7 500 7 80 1 | 196687 _ 120383023 48013 _ 2268
m @ T 44 ﬁ 177710 426077496 42120 2405
5626 25280 560207 324 13
4725 13608 340200 175 7
R(z)=1+z+2%/2+2%/6 , X
Linear SSP coeff. 1 ) R(z)=1+z+2°/2+2°/6, LSSP=1 )
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WWEEIQSIETCNOI Il Towards Nonlinearity

Towards Nonlinearity

Weak stage order, as presented thus far, is a linear concept.

To reliably overcome order reduction beyond order 3, extension to
nonlinear stiff order conditions is needed.

Key step: semilinear problems
y'(t) = Jy(t) + g(¥(t)),

where g(y(t)) is non-stiff but can be nonlinear, while Jy is linear but can
be arbitrarily stiff.

arxiv.org/abs/2505.15099 provides up to ESDIRK-(10,5,4) with embedding.

— talk by S. Roberts
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Numerical Results

Overview

© Numerical Results
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Numerical Results DIRK Methods for Schrodinger Equation

Schrodinger Equation Manufactured Solution
_ W u(x, t) = exp(—(x — t)?) cos(10x) sin(t)
Uy = 5 Uxx +f
§ with w = 27, £ =20, and T = 1.2.
DIRK Methods
Schrodinger Eqn: DIRK-(7,4,4) Schrodinger Eqn: DIRK-(12,5,4) Schrodinger Eqn: DIRK-(12,5,5)
i—=DIRK-(5.4.1):u —F—DIRK-(5.5,1): u —F—DIRK-(5.5.1): u
=©~DIRK-(74, 103 =©= DIRK-(12,5,4): u 103 == DIRK-(12,5,5):u
== DIRK-(7.4, = DIRK-(12,5.4): u, == DIRK-(12,5,5): u,
10° b 5:°Pe=g - slope=5 slope=5
f== = slope=3. 5= = 4. . a 4
e e siopocs 105 slope=4.5 105 ..... slope=4.5
8,o7 5 5
&0 107 @7
-9
10 107 10
107" 5 107" 107"
104 103 102 101 4 3 2 -1 -4
0 0 At 0 0 10 10 At 10 10 10

WSO g =1 clearly incurs order reduction (order 2).
WSO g = p—1 recovers full order in u, but loses half order in wuy.
WSO g = p yields full order in u and uy. I TEMPLE

=8 UNIVERSITY
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Numerical Results ERK Methods for Linear Advection Equation

Linear Advection Equation Manufactured Solution
up = —ux+f, ulx,0)=up(x), u(0,t)=go(t) | ulx,t)= %}( )

ERK Methods

—— (3,3,1)-u -m= (5,3,3)-ux —— (4,4,1)-u -m- (7,4,4)-ux —e— (7,5,1)-u -®- (9,5,5)-ux
—e— (4,3,2)-u oo Slope 1 —e— (6,4,3)-u oo Slope 2 —e— (8,54)-u  --eeee Slope 2
—e— (5,3,3)-u ~-- Slope 2 —— (7,4,4)-u ~-- Slope 3 —e— (9,5,5)-u ~=- Slope 4
-m- (3,3,1)-ux —— Slope 3 -u- (4,4,1)-ux —— Slope 4 -m= (7,5,1)-ux —— Slope 5
-u- (4,3,2)-ux -u- (6,4,3)-ux -m- (8,54)-uy
10-°
1077
- - -
£ g g 107
w w w
1011
10713

Order reduction for WSO 1 reference schemes.
WSO recovers full order (linear PDE). g TEMPLE
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Numerical Results ERK Methods for Shallow Water Equation

1D Shallow Water Equation Manufactured Solution
— fh 14x 14x2
2ht 4; (h;’)x fh h(x,t) = ¥t u(x,t) = 0.5+¢
_ u
(hU)t + (hU + Egh )X = f
ERK Methods
—e— (3,3,1)-h -®- (5,3,3)-hu —e— (4,4,1)-h -=- (7,4,4)-hu —e— (7,5,1)-h -®- (9,5,5)-hu
-e- (3,3,1)-hu -~ slope 2 -e- (4,4,1)-hu -~ slope 2 -e- (7,51)-hu =~ slope 2
—a— (5,3,3)-h —— slope 3 —a— (7,4,4)-h —— slope 3 —a— (9,5,5)-h —— slope 3

Error
Error
=
o
i
s

1071

10—12

For this nonlinear problem, high WSO does not recover the full order; but
yields clear improvement over WSO 1 (observed order 3 vs. 2). g TEMPLE
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Numerical Results DIRK Methods for Viscous Burgers' Equation

Viscous Burgers' Equation

U+ Uty = Vi + 1,

V= 0.1J

u(x, t) = cos(t)

Manufactured Solution

v

DIRK Methods with linear WSO

Viscous Burgers Eqn
DIRK-(12,5,4): u(x,t)=cos(t)

Viscous Burgers Eqn
DIRK-(12,5,5): u(x,t)=cos(t)

== DIRK-(5,5,1): U
=©=DIRK-(12,5,4): u
= DIRK-(12,5,4): u_

= DIRK-(5,5,1): U
=©=DIRK-(12,5,5): u
== DIRK-(12,5,5): u

Semilinear conditions

e SlOpe=5
== = slope=4.5
slope=4

e SlOpe=5
== = slope=4.5

slope=4

- (8,4,3) — -Slope 2

-0-(5.4,1) —Slope 4

107"

107"
104

10

h 102
At <

107" 10°

10° At 102

WSO 1 schemes converge at order 2.
Linear WSO does not recover full order, but raises observed order to 3.

Semilinear order conditions yield observed order 4.
g TEMPLE

UNIVERSITY
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Numerical Results DIRK Methods for Van der Pol Oscillator

Van der Pol Oscillator ver 1
xX'=y and y' =pu(l—x?)y —x
(x(0), ¥(0)) = (2,0) pu =500

Van der Pol Oscillator ver 2

DIRK with linear WSO

Van der Pol, x = 500

WP e e e e et
cool S A T
8 b g et
a [ S S

121 —
10 -O-DIRK3 WSO1
=P~ DIRK3 WSO2
-0~ DIRK3 WSO3
——slope 3
“ +=sslope 1
10° - -
10° 102 dt 107 10°

Fully nonlinear problem.

Linear WSO has clear order reduction.
Semilinear order yields convergence order 4-5,

depending on stiffness.

Benjamin Seibold (Temple University)

The Many Faces of Stiffness

xX'=y and ey =(1—-x?)y —x
2,10 292 1814
(X(O)yy(o)) = (27 7§+ﬁ67W6271968363)'J
Semilinear order conditions
10°F 0
©0-c=10":
=10
0-e=10"9:
----- Slope 2
oot e
5] .27~ s .
S D’ //
w /0,/ //
102 /’/
105
107 h 102 10 )
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Conclusions

Overview

@ Conclusions
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Take-home messages

@ Stiffness is not only a stability challenge, but also an accuracy issue.

@ Order reduction is generic for ODE and PDE, even if it often goes
unnoticed.

@ A simple scalar model problem incurs a huge richness of insight and
prediction power of the error behavior for more complicated problems.

@ Many desirable convergence concepts, including uniform convergence,
are generated by weak stage order, respectively stiff order conditions.

e Novel ERK, DIRK (done), and ImEx (in progress) schemes
constructed with high WSO.

@ Excellent accuracy in a variety of relevant test problems.

WSO concept: arxiv.org/abs/1811.01285

Constructing DIRK schemes: arxiv.org/abs/2204.11264

Algebraic structure: arxiv.org/abs/2204.03603

Spatial manifestations: arxiv.org/abs/1712.00897

ERK_ _schemes: a'rxiv.org/abs/2310.02817 TE TEMPLE
Semilinear: arxiv.org/abs/2505.15099 Sl UNiveRsITY
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