Gluing Genus 1 and Genus 2 Curves along ℓ -torsion

Pitchayut (Mark) Saengrungkongka

MIT

LuCaNT

July 10, 2025

(based on joint work with Noah Walsh)

Gluing 🗾

Let X and Y be curves over \mathbb{Q} .

A **gluing** of X and Y consists of a curve Z and a surjective map

$$\operatorname{Jac} X \times \operatorname{Jac} Y \twoheadrightarrow \operatorname{Jac} Z$$

with finite kernel G.

(Here, Jac C is a Jacobian of a curve C, which is a g-dimensional group variety parametrizing unordered g-tuple of points, where g is the genus of C.)

Gluing 🗾

Let X and Y be curves over \mathbb{Q} .

A **gluing** of X and Y consists of a curve Z and a surjective map

$$\operatorname{Jac} X \times \operatorname{Jac} Y \twoheadrightarrow \operatorname{Jac} Z$$

with finite kernel G.

(Here, Jac C is a Jacobian of a curve C, which is a g-dimensional group variety parametrizing unordered g-tuple of points, where g is the genus of C.)

If $G \subseteq \operatorname{Jac}(X)[\ell] \times \operatorname{Jac}(Y)[\ell]$, then we say that the gluing is **along** ℓ -**torsion**.

We are interested in the case where

- X is an elliptic curve,
- Y has genus 2, and
- \bullet ℓ is prime,

in which case the resulting gluing will have genus 3 (i.e., 1 + 2 = 3).

Our Results 📈

We will discuss two results.

- **9** Given a genus 2 curve Y, we describe a framework to search for ℓ and X for which we can produce a gluing over \mathbb{Q} .
- \odot We describe a improved algorithm to compute gluing Z.

These allow us to find X and Y and glue them along 13-torsion. \bullet

Gluability Criteria 🤔

▶ **Recall.** Jac(X)[ℓ] $\simeq \mathbb{F}^2_{\ell}$ and Jac(Y)[ℓ] $\simeq \mathbb{F}^4_{\ell}$. Both are equipped with the bilinear alternating **Weil pairing**.

Not all subgroups $G \subset \operatorname{Jac}(X)[\ell] \times \operatorname{Jac}(Y)[\ell]$ lead to a gluing because the quotient must respect the Weil pairing.

Gluability Criteria 🤔

▶ Recall. Jac(X)[ℓ] $\simeq \mathbb{F}^2_{\ell}$ and Jac(Y)[ℓ] $\simeq \mathbb{F}^4_{\ell}$. Both are equipped with the bilinear alternating **Weil pairing**.

Not all subgroups $G \subset \operatorname{Jac}(X)[\ell] \times \operatorname{Jac}(Y)[\ell]$ lead to a gluing because the quotient must respect the Weil pairing.

Hanselman-Schiavone-Sijsling: this means that G must be a **maximal isotropic** subgroup, which is parametrized by

- ullet a one-dimensional subgroup $H\subset\operatorname{Jac}(Y)[\ell]$
- a antisymplectic isomorphism $Jac(X)[\ell] \to H^{\perp}/H$.

There are $\approx \ell^6$ such subgroups, each of them produce a gluing over $\overline{\mathbb{Q}}.$

Gluability Criteria 🤔

It's very rare to get a gluing over \mathbb{Q} .

Hanselman-Schiavone-Sijsling: we need

- a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable one-dimensional subgroup $H\subset\operatorname{Jac}(Y)[\ell]$
- a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -equivariant antisymplectic isomorphism $\operatorname{Jac}(X)[\ell] \to H^{\perp}/H$.

Gluability Criteria 👺

It's very rare to get a gluing over \mathbb{Q} .

Hanselman-Schiavone-Sijsling: we need

- a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable one-dimensional subgroup $H \subset \operatorname{Jac}(Y)[\ell]$
- a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -equivariant antisymplectic isomorphism $\operatorname{Jac}(X)[\ell] \to H^{\perp}/H$.

Our 3-step workflow.

- Find ℓ for which there exists a one-dimensional $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable subgroup $H \subset \operatorname{Jac}(Y)[\ell]$.
- ② Find X such that $\operatorname{Jac}(X)[\ell] \simeq H^{\perp}/H$ (as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -module).
- 3 Check that the isomorphism in (2) is antisymplectic.

Frobenius Polynomial 💡

Running Example

We will demonstrate our workflow with Y being the curve 277.a.277.1 in the LMFDB:

$$y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x,$$

which has conductor $N_Y = 277$.

Frobenius Polynomial 💡

Running Example

We will demonstrate our workflow with Y being the curve 277.a.277.1 in the LMFDB:

$$y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x,$$

which has conductor $N_Y = 277$.

▶ Recall. For any prime p at which Y has a good reduction, there exists Frobenius element $\operatorname{Frob}_p \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ that

- acts like $(x:y:z) \mapsto (x^p:y^p:z^p) \pmod{p}$;
- acts on $\operatorname{Jac}(Y)[\ell] \simeq \mathbb{F}_{\ell}^4$ with a degree 4 characteristic polynomial congruent mod ℓ to the **Frobenius Polynomial** $F_{Y,p}(T) \in \mathbb{Z}[T]$, independent of ℓ .

Frobenius polynomials are easy to compute.

Step 1. Finding Primes ℓ 👀

Condition 1

There exists one-dimensional $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable subgroup $H \subset Jac(Y)[\ell]$.

Let p be a prime at which Y has a good reduction.

- If H exists, then Frob_p acts on H by multiplying by some number $\chi(p) \in \mathbb{F}_\ell^\times$, which must be a root of $F_{Y,p}(T)$ modulo ℓ .
- \bullet χ must be a Dirichlet character with conductor dividing 277.
- Thus, $\chi(p)^{276}=1$, so $F_{Y,p}(T)$ and $T^{276}-1$ must have common root modulo ℓ .
- This already restricts possible ℓ 's to a finite set \mathfrak{D} . Repeating this test for several p gives $\ell \in \{3,5\}$.

Let's assume that we are looking for **gluing along 5-torsion** for now **\rightarrow**.

Step 2. Finding Elliptic Curves X 🖈

Condition 2

 $\operatorname{Jac}(X)[\ell] \simeq H^{\perp}/H$ (as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -module).

We first understand H better.

From last slide:

- Frob_p acts on H by multiplying by some number $\chi(p) \in \mathbb{F}_{\ell}^{\times}$, which must be a root of $F_{Y,p}(T)$ modulo ℓ .
- χ must be a Dirichlet character with conductor dividing 277.

Out of all characters with conductor dividing 277, we eliminate ones which $\chi(p)$ is not a root of $F_{Y,p}(T)$ (modulo ℓ). Repeat this for several p's.

Eventually, we are left with $\chi=\chi_{\mathsf{triv}}.$ In particular, Frob_p fixes H for any prime p.

(In general, χ may be nontrivial, but this process will very likely result in only one candidate χ corresponding to each H.)

Step 2. Finding Elliptic Curves X 🖈

Condition 2

 $\operatorname{\mathsf{Jac}}(X)[\ell] \simeq H^\perp/H \text{ (as $\operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q})$-module)}.$

Note that $Frob_p$ acts on

- H by multiplication by $\chi(p)$;
- $\operatorname{Jac}(Y)[\ell]/H^{\perp}$ by multiplication by $p/\chi(p)$.

The remaining two eigenvalues must come from H^{\perp}/H .

Step 2. Finding Elliptic Curves X 📌

Condition 2

 $\operatorname{Jac}(X)[\ell] \simeq H^{\perp}/H$ (as $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -module).

Note that Frob_p acts on

- H by multiplication by $\chi(p)$;
- Jac(Y)[ℓ]/ H^{\perp} by multiplication by $p/\chi(p)$.

The remaining two eigenvalues must come from H^{\perp}/H .

Example

In our curve and p = 19:

$$F_{Y,19}(T) = x^4 + x^3 - 22x^2 + 19x + 361$$

$$\equiv (x - 1)(x - 4)(x^2 - x + 4) \pmod{5}.$$

Thus, we know that the trace of Frob₁₉ in $Jac(X)[\ell]$ is 1 mod 5.

Step 2. Finding Elliptic Curves X 📌

Condition 2

 $\operatorname{\mathsf{Jac}}(X)[\ell] \simeq H^\perp/H \ (\mathsf{as}\ \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q})\text{-module}).$

For all p, we know what the trace of Frob_p in X must be (modulo ℓ).

Out of all elliptic curves in the LMFDB, there are 4 curves that satisfy our trace constraints for all $p \le 100$:

1939.b1 18559.a1 21883.b1 32963.c1

By modularity, there is an (impractical *) algorithm to verify the isomorphism.

Step 3. Symplectic Test

Condition 3

The isomorphism in condition 2 is anti-symplectic.

Freitas and Kraus: if Frob_p acts on $X[\ell]$ by a matrix conjugate to

$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$$
,

then we can use this Frob_p to check whether the isomorphism is anti-symplectic.

We adapt this test and run it on our four candidates.

1939.b1 18559.a1 21883.b1 32963.c1

Step 3. Symplectic Test

Condition 3

The isomorphism in condition 2 is anti-symplectic.

Freitas and Kraus: if Frob_p acts on $X[\ell]$ by a matrix conjugate to

$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix},$$

then we can use this Frob_p to check whether the isomorphism is anti-symplectic.

We adapt this test and run it on our four candidates.

Computing Gluing

Right now we have 3 candidates that can be glued along 5-torsion to 277.a.277.1.

1939.b1 21883.b1 32963.c1

Computing Gluing

Right now we have 3 candidates that can be glued along 5-torsion to 277.a.277.1.

All of them produce a gluing **☑**.

-	
Elliptic Curve	Resulting Gluing
1939.b1	$88189x^4 - 398531x^3y + 7700x^3z - 678120x^2y^2 + 1444780x^2yz + 231034x^2z^2 + 238603xy^3 - 1620885xy^2z = 0$
21883.b1	$y^{2} = 448x^{8} + 3584x^{7} + 2016x^{6} - 476x^{5} - 13020x^{4} - 16408x^{3} - 18340x^{2} - 8988x - 4025$
32963.c1	$\begin{array}{l} 19351616x^4 \ + \ 136748535x^3y + 106394158x^3z \\ - \ 235515177x^2y^2 - 46043175x^2yz + 67674485x^2z^2 \\ - \ 549641282xy^3 + 36999650xy^2z - 160500711xyz^2 \\ - \ 36439076xz^3 + 272167382y^4 + 488584945y^3z \\ - \ 488728851y^2z^2 + 152950443yz^3 - 115190535z^4 = 0 \end{array}$

Fast Gluing 🕨

Original algorithm (by Hanselman, Schiavone, Sijsling):

- Enumerate all $\approx \ell^6$ subgroups G.
- For each subgroup, compute the quotient $(\operatorname{Jac}(X) \times \operatorname{Jac}(Y))/G$ as a lattice in \mathbb{C}^6 .
- Reconstruct the curve and check if it is defined over Q.

Problem. ℓ^6 is too slow. •

Fast Gluing 🕨

Original algorithm (by Hanselman, Schiavone, Sijsling):

- Enumerate all $\approx \ell^6$ subgroups G.
- For each subgroup, compute the quotient $(\operatorname{Jac}(X) \times \operatorname{Jac}(Y))/G$ as a lattice in \mathbb{C}^6 .
- Reconstruct the curve and check if it is defined over Q.

Problem. ℓ^6 is too slow. \odot

But we can improve! •

- For each one-dimensional subgroup $H \subseteq \operatorname{Jac}(Y)[\ell]$, check if it is $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable
 - \bullet by computing coordinates in $\mathbb C$ and rational-recognize its minimal polynomial.
- Enumerate all antisymplectic isomorphisms $\phi: \operatorname{Jac}(X)[\ell] \xrightarrow{\sim} H^{\perp}/H$. Then, use it to construct G.

 $pprox \ell^3$ check in each step, so profit! were

(Not including curve reconstruction)

13-Gluing 😯

The current list of genus 2 curves in the LMFDB is not enough to produce (interesting) gluing along 13-torsion.

We use Sutherland's database and found the following .:

X:
$$y^2 + y = x^3 + x^2 - 208x - 1256$$
 75.a1
Y: $y^2 + x^3y = -5x^4 + 45x^2 + 9x$.

(Y has conductor 151 875.)

A gluing along 13-torsion of X and Y is

$$Z: y^2 = 1008x^8 - 4032x^7 + 336x^6 + 8064x^5 + 9660x^4$$
$$-4914x^3 - 7434x^2 - 2478x + 2058.$$

13-Gluing 😯

The current list of genus 2 curves in the LMFDB is not enough to produce (interesting) gluing along 13-torsion.

We use Sutherland's database and found the following .:

X:
$$y^2 + y = x^3 + x^2 - 208x - 1256$$
 75.a1
Y: $y^2 + x^3y = -5x^4 + 45x^2 + 9x$.

(Y has conductor 151 875.)

A gluing along 13-torsion of X and Y is

$$Z: y^2 = 1008x^8 - 4032x^7 + 336x^6 + 8064x^5 + 9660x^4$$
$$-4914x^3 - 7434x^2 - 2478x + 2058.$$

Questions ?

