Quadratic Chabauty Experiments on Genus 2 Bielliptic Modular Curves in the LMFDB

Kate Finnerty

July 10, 2025

Boston University

Rational Points on Curves

- Let X be a projective, smooth, and absolutely integral curve over \mathbb{Q} of genus 2 or greater. What is $X(\mathbb{Q})$?
- Faltings, 1983: The set of rational points on a curve X/\mathbb{Q} of genus 2 or more is always finite.
- Kim's nonabelian Chabauty: construct a sequence of subsets of p-adic points using Selmer varieties and their iterated p-adic integrals:

$$X(\mathbb{Q}_p) \supseteq X(\mathbb{Q}_p)_1 \supseteq X(\mathbb{Q}_p)_2 \supseteq ... \supseteq X(\mathbb{Q}).$$

Kim's Conjectures

- For sufficiently large n, the set $X(\mathbb{Q}_p)_n$ is finite.
- For sufficiently large n, we have $X(\mathbb{Q}_p)_n = X(\mathbb{Q})$.

Past Work

- Balakrishnan and Dogra established the finiteness of $X(\mathbb{Q}_p)_2$ subject to r < g 1 + rank(NS(J)), where J is the Jacobian of X.
- They define a finite set $X(\mathbb{Q}_p)_Z \subset X(\mathbb{Q}_p)$, dependent on a choice of correspondence $Z \subset X \times X$, that contains $X(\mathbb{Q}_p)_2$.

Past Work

- Balakrishnan and Dogra established the finiteness of $X(\mathbb{Q}_p)_2$ subject to r < g 1 + rank(NS(J)), where J is the Jacobian of X.
- They define a finite set $X(\mathbb{Q}_p)_Z \subset X(\mathbb{Q}_p)$, dependent on a choice of correspondence $Z \subset X \times X$, that contains $X(\mathbb{Q}_p)_2$.
- We will explicitly describe and compute a finite subset of \mathbb{Q}_p , Ω , and a function $\widetilde{\rho}$ with $\widetilde{\rho}: X(\mathbb{Q}_p) \to \mathbb{Q}_p$ such that the set of rational points is contained in this finite set:

$$A = \{z \in X(\mathbb{Q}_p) : \widetilde{\rho}(z) \in \Omega\}.$$

 Bianchi and Padurariu used this method to compute the set of rational points on bielliptic curves of genus and rank 2 in the LMFDB.

Our Goal

- LMFDB (Beta) now has a large database of modular curves, including many of genus
 2 and ranks ≤ 2 that are also amenable to these methods.
- Expand the previous methods to perform quadratic Chabauty over number fields K for modular curves X such that J has rank 1 over \mathbb{Q} but rank 2 over K.

Our Goal

- LMFDB (Beta) now has a large database of modular curves, including many of genus
 2 and ranks ≤ 2 that are also amenable to these methods.
- Expand the previous methods to perform quadratic Chabauty over number fields K for modular curves X such that J has rank 1 over \mathbb{Q} but rank 2 over K.
- Compute the quadratic Chabauty loci for these genus 2 modular curves of rank 1 and 2 and study what they look like.
- Recall: $A := \{z \in X(\mathbb{Q}_p) : \widetilde{\rho}(z) \in \Omega\}.$

Question

Are there algebraic points among the mock rational points, $A \setminus X(\mathbb{Q})$?

The Bielliptic Setup

Let *X* be a non-singular genus 2 bielliptic curve

$$X: y^2 = a_6x^6 + a_4x^4 + a_2x^2 + a_0, a_i \in \mathbb{Z},$$

and consider the two elliptic curves

$$E_1: y^2 = x^3 + a_4x^2 + a_2a_6x + a_0a_6^2,$$

$$E_2: y^2 = x^3 + a_2x^2 + a_4a_0x + a_6a_0^2.$$

We have degree 2 maps $\phi_i: X \to E_i$:

$$\phi_1(x,y) = (a_0x^2, a_0y)$$
 $\phi_2(x,y) = (a_0x^{-2}, a_0yx^{-3})$

Any genus 2 curve with a degree 2 map to an elliptic curve has a model of this form.

Notation

- Let log denote the *p*-adic logarithm extended to \mathbb{Q}_p^{\times} by setting $\log(p) = 0$.
- For $P \in E_i(\mathbb{Q}_p)$, we let $Log(P) = \int_{\infty}^{P} \frac{dx}{2y}$.
- Given a prime q, we let ord_q denote the q-adic valuation on \mathbb{Q}_q , normalized to be surjective onto the integers and let $|\cdot|_q$ denote the standard absolute value on \mathbb{Q}_q .

Notation

- Let log denote the *p*-adic logarithm extended to \mathbb{Q}_p^{\times} by setting $\log(p) = 0$.
- For $P \in E_i(\mathbb{Q}_p)$, we let $Log(P) = \int_{\infty}^{P} \frac{dx}{2y}$.
- Given a prime q, we let ord_q denote the q-adic valuation on \mathbb{Q}_q , normalized to be surjective onto the integers and let $|\cdot|_q$ denote the standard absolute value on \mathbb{Q}_q .

Proposition (Bianchi-Padurariu, 2022)

Let $q \neq p$ and let E be a minimal model of an elliptic curve. If $P \in E(\mathbb{Q}_q)$ reduces to a nonsingular point modulo q, then the local height $\lambda_q(P) = \log(\max\{1, |x(P)|_q\})$.

Let W_q^E be the set of values attained by λ_q on points in $(x, y) \in E(\mathbb{Q}_q)$ with $x, y \in \mathbb{Z}_q$. Then W_q^E is finite, explicitly computable, and equal to $\{0\}$ for all but finitely many q.

In particular, $W_q^E \subseteq \{0\}$ at all primes of good reduction for the given model of E.

Defining $\widetilde{\rho}$ and Ω

Theorem (Bianchi-Padurariu, 2022)

Suppose that each of E_1 and E_2 are minimal of rank 1 over \mathbb{Q} . Let $P_i \in E_i(\mathbb{Q})$ be a point of infinite order. Define $\alpha_i = \frac{h_p(P_i)}{Log^2(P_i)}$. Then α_i is independent of choice of P_i and the function $\rho: X(\mathbb{Q}_p) \setminus \{P: x(P) \in \{0, \infty\}\} \to \mathbb{Q}_p$ given by

$$\rho(z) = \lambda_p(\phi_1(z)) - \lambda_p(\phi_2(z)) - 2\log(x(z)) - \alpha_1 Log^2(\phi_1(z)) + \alpha_2 Log^2(\phi_2(z))$$

can be continued to a locally analytic function $\widetilde{\rho}: X(\mathbb{Q}_p) \to \mathbb{Q}_p$.

Also, for a prime $q \neq p$, let

$$\Omega_{q} = (-W_{q}^{E_{1}} + W_{q}^{E_{2}} + \{-n\log q : -ord_{q}(a_{6}) \le n \le ord_{q}(a_{0}), n \equiv 0 \mod 2\})$$

$$\cup (\log|a_{0}|_{q} - W_{q}^{E_{1}}) \cup (-\log|a_{6}|_{q} + W_{q}^{E_{2}})$$

and set $\Omega = \{\sum_{q \text{ bad}} w_q : w_q \in \Omega_q \}$. Then Ω is finite and contains $\widetilde{\rho}(X(\mathbb{Q}))$.

The data

The LMFDB (Beta) contains modular curves X_H with $\det(H) = \widehat{\mathbb{Z}}^{\times}$ such that at least one of the following hold:

- 1. *H* has level \leq 70 or prime-power level \leq 335.
- 2. H contains -I and has genus \leq 24 and level \leq 335.
- 3. *H* does not contain -I and has genus ≤ 8 and level ≤ 335 .

Total: 209 rank 2 genus 2 curves and 1237 rank 1 genus 2 curves of non-simple Jacobian with an available model to work with.

On Choice of Model

A given curve does not have a unique model $y^2 = a_6x^6 + a_4x^4 + a_2x^2 + a_0$. A model with a larger discriminant will produce a larger set of *p*-adic points during quadratic Chabauty.

On Choice of Model

A given curve does not have a unique model $y^2 = a_6x^6 + a_4x^4 + a_2x^2 + a_0$. A model with a larger discriminant will produce a larger set of *p*-adic points during quadratic Chabauty.

We can represent transformations that change the discriminant by a factor of $e^{20}(ad-bc)^{-30}$ with matrices of the form

$$\mathcal{M}(a,b,c,d,e) := egin{pmatrix} a & 0 & b \ 0 & e & 0 \ c & 0 & d \end{pmatrix}.$$

Proposition (F., 2025)

Let $X: y^2 = a_6x^6 + a_4x^4 + a_2x^2 + a_0$ with a_i all integers. For M(a, b, c, d, e) to yield an isomorphic curve of the same form with integer coefficients, there are seven explicit conditions involving $a, b, c, d, e, a_0, a_2, a_4$, and a_6 that are necessary and sufficient.

Analysis - Rank 2

- Consider the 30 unique bielliptic curves up to isomorphism with a known rational point.
- For each rank 2 bielliptic curve X with $J(X) \sim E_1 \times E_2$ and at least one known point in $X(\mathbb{Q})$, perform quadratic Chabauty using every eligible prime p of good, ordinary reduction for both E_i such that 3 .
- Recover the list of mock rational points for each prime.
- For each mock rational point, check to see if either of the coordinates satisfy low-degree relations.
- Perform the Mordell-Weil sieve following the methodology of Bianchi and Padurariu.

Analysis - Rank 1

- Consider the 121 unique bielliptic curves up to isomorphism with a known rational point.
- For each rank 1 bielliptic curve X with $J(X) \sim E_1 \times E_2$ and a known $P \in X(\mathbb{Q})$, obtain the list of eligible primes as in the rank 2 case, with 3 .
- For each prime, find the number fields $K = \mathbb{Q}(\sqrt{-D})$ such that: the rank of each E_i over K is 1 and p splits in K, and 1 < D < 20 or $D \in \{43, 67, 163\}$.
- Recover the list of mock rational points using quadratic Chabauty over K for pairs (p, D) five times or until no further pairs exist.
- As before, for each mock rational point, check to see if either of the coordinates satisfy low-degree relations.
- Perform the Mordell-Weil sieve using built-in MAGMA functionality.

Generalized Theorem

We need to account for height contributions of primes that divide the discriminant of the number field *K*.

More precisely, we can modify the previous theorem which defined $\widetilde{\rho}$ and Ω .

Theorem (F., 2025)

Suppose that each E_i has rank 1 over an imaginary quadratic K/\mathbb{Q} . Let $P_i \in E_i(\mathbb{Q})$ be of infinite order. Define $\alpha_i = \frac{h_p(P_i)}{[K:\mathbb{Q}]Log^2(P_i)}$. Then α_i is independent of choice of P_i and:

- 1. The function $\rho: X(\mathbb{Q}_p) \setminus \{P: x(P) \in \{0, \infty\}\} \to \mathbb{Q}_p$, definition unchanged, can be continued to a locally analytic function $\widetilde{\rho}: X(\mathbb{Q}_p) \to \mathbb{Q}_p$.
- 2. For a prime $q \neq p$, let Ω_q be as before and set $\Omega = \{\sum_{q \in S} w_q : w_q \in \Omega_q \}$, where S consists of the bad primes for each E_i , the prime factors of a_0 and a_6 for X, and the prime divisors of the discriminant of K. Then Ω is finite and contains $\widetilde{\rho}(X(\mathbb{Q}))$.

Statement of Rank 2 Results

Proposition (F., 2025)

Among the genus 2 Jacobian rank 2 modular curves satisfying conditions for inclusion in the LMFDB, we provide a complete list of curves with points over the listed number fields through quadratic Chabauty for some prime $3 of good, ordinary reduction, along with the smallest prime for which they appear, up to precision <math>O(p^{25})$.

Table 4: Rank 2 Non-Weierstrass Points

Label	Model	Prime	Number Field	Points
14.48.2.g.1	$y^2 = -x^6 + 83x^4 - 19x^2 + 1$	37	$\mathbb{Q}(\sqrt{-3},\sqrt{21})$	$(\pm \frac{\sqrt{-3}}{3}, \pm \frac{8\sqrt{21}}{9})$
15.60.2.d.1	$y^2 = -45x^6 + 75x^4 - 15x^2 + 1$	19	$\mathbb{Q}(\sqrt{5})$	$(\frac{\sqrt{5}}{5}, \pm \frac{4}{5})$
16.48.2.a.1	$y^2 = x^6 - 5x^4 - 5x^2 + 1$	11	$\mathbb{Q}(\sqrt{-2})$	$(\pm 1, \pm 2\sqrt{2})$
18.72.2.f.1	$y^2 = 9x^6 - 99x^4 + 27x^2 - 1$	7	$\mathbb{Q}(\sqrt{-3})$	$(\pm \frac{\sqrt{-3}}{3}, \pm \frac{8\sqrt{-3}}{3})$
28.48.2.j.1	$y^2 = x^6 - 83x^4 + 19x^2 - 1$	19	$\mathbb{Q}(\sqrt{-3},\sqrt{7})$	$(\pm \frac{\sqrt{-3}}{3}, \pm \frac{8\sqrt{-21}}{9})$
36.72.2.d.1	$y^2 = -9x^6 + 99x^4 - 27x^2 + 1$	13	$\mathbb{Q}(\sqrt{-3},\sqrt{3})$	$(\pm \frac{\sqrt{-3}}{3}, \pm \frac{8\sqrt{3}}{3})$
48.48.2.dk.1	$y^2 = 12x^6 + 54x^4 + 48x^2 + 12$	73	$\mathbb{Q}(\sqrt{3})$	$(0,\pm 2\sqrt{3})$
48.48.2.dm.1	$y^2 = -24x^6 + 54x^4 - 24x^2 + 3$	73	$\mathbb{Q}(\sqrt{3})$	$(0, \pm \sqrt{3})$
48.48.2.dw.1	$y^2 = 27x^6 - 72x^4 + 54x^2 - 8$	73	$\mathbb{Q}(\sqrt{6})$	$(\pm \frac{\sqrt{6}}{9}, \pm 2)$

Statement of Rank 1 Results

Proposition (F., 2025)

Among the genus 2 Jacobian rank 1 modular curves satisfying satisfying conditions for inclusion in the LMFDB, the listed curves in the same paper have points over the listed number fields through quadratic Chabauty for some prime $3 of good, ordinary reduction up to precision <math>O(p^{25})$.

Table 5: Rank 1 Non-Weierstrass Points

Label	\mathbf{Model}	(D,p)	Number Field	Points
11.66.2.a.1	$y^2 = 11x^6 + 11x^4 - 7x^2 + 1$	[7,23]	$\mathbb{Q}(\sqrt{-7})$	$(\pm \frac{\sqrt{-7}}{3}, \frac{76}{27})$
16.24.2.f.1	$y^2 = 4x^6 + 6x^4 + 4x^2 + 1$	[6,5]	$\mathbb{Q}(i)$	$(\pm i, \pm i)$
16.24.2.f.1	$y^2 = 4x^6 + 6x^4 + 4x^2 + 1$	[7,37]	$\mathbb{Q}(\sqrt{-7})$	$(\pm \frac{2\sqrt{-7}}{7}, \pm \frac{5\sqrt{-7}}{49})$
16.48.2.bm.1	$y^2 = 8x^6 + 16x^4 + 9x^2 + 1$	[5,41]	$\mathbb{Q}(\sqrt{-5})$	$(\pm \frac{3\sqrt{-5}}{7}, \pm \frac{62}{343})$
16.48.2.bx.1	$y^2 = -x^6 + 7x^4 - 7x^2 + 1$	[1,5]	$\mathbb{Q}(i)$	$(\pm i, \pm 4)$
16.48.2.bx.1	$y^2 = -x^6 + 7x^4 - 7x^2 + 1$	[17,7]	$\mathbb{Q}(\sqrt{-17})$	$(\pm \sqrt{-17}, \pm 84)$
16.48.2.c.1	$y^2 = -x^6 - 5x^4 + 5x^2 + 1$	[7,11]	$\mathbb{Q}(\sqrt{-7})$	$(\pm \sqrt{-7}, \pm 8)$
16.48.2.c.1	$y^2 = -x^6 - 5x^4 + 5x^2 + 1$	[1,17]	$\mathbb{Q}(i,\sqrt{2})$	$(\pm i, \pm 2\sqrt{-2})$
16.48.2.c.2	$y^2 = -2x^6 - 10x^4 + 10x^2 + 2$	[19,11]	$\mathbb{Q}(\sqrt{-19})$	$(\pm \frac{9\sqrt{-19}}{19}, \pm \frac{680\sqrt{-19}}{361})$

Conjectures

Conjecture

Let X be a bielliptic modular curve of genus 2 and level N. If Jac(X) is of rank 2 over \mathbb{Q} and X has a mock rational point over $\mathbb{Q}(\sqrt{D})$ then D must be a divisor of N.

Conjecture

Let X be a bielliptic modular curve of genus 2 and level N. If Jac(X) is of rank 1 and X has a mock rational point over $\mathbb{Q}(\sqrt{D})$ arise through quadratic Chabauty when computing over $\mathbb{Q}(\sqrt{D'})$, then at least one of the following must hold:

- 1. D divides N.
- 2. D divides D'.
- 3. D = 10.

A Rank 2 Example

We highlight points found on the rank 2 modular curve X_{ns}^+ (15).

The model we use is $y^2 = -45x^6 + 75x^4 - 15x^2 + 1$.

prime	# rational points	# mock rational p-adic points
19	14	284
31	14	404
61	14	780

Among these mock rational points, we find four quadratic points: $\{(\pm \frac{\sqrt{5}}{5}, \pm \frac{4}{5})\}$.

A Rank 1 Example

We now highlight points over different number fields found on the rank 1 modular curve with LMFDB label 16.24.2.f.1.

The model we use is $y^2 = 4x^6 + 6x^4 + 4x^2 + 1$.

prime	number field	# mock rational p-adic points	Algebraic points
5	$\mathbb{Q}(\sqrt{-6})$	66	$(\pm i, \pm i)$
37	$\mathbb{Q}(\sqrt{-7})$	566	$(\pm i, \pm i), (\pm \frac{2\sqrt{-7}}{7}, \pm \frac{5\sqrt{-7}}{49})$

Each analysis also recovered the two known rational points for 16.24.2.f.1.

Future work

- All points found were over quadratic or biquadratic fields. Does this generalize to modular curves of different genus or ranks of the Jacobian, or to other hyperelliptic curves in general?
- It is also the case that upon observing one algebraic point, we always find the other points in its Galois orbit. Once again, how does this generalize?
- Could some of the algebraic points found be linearly equivalent to those in the Mordell-Weil group of the Jacobian over the base field? If they have the same heights away from p, could this explain their appearance in the analysis?
- If we find algebraic points over number fields for a given curve, how does the Mordell-Weil group change when computed over these fields or their compositum versus the rationals?

Thank you!

