for Small Semantic Databases

- → Steven Clontz, University of South Alabama
- → LMFDB, Computation, and Number Theory (LuCaNT) 2025
- → Wed, 2025 July 9, 11:30am

Topology is a dense forest of counterexamples. A usable map of the forest is a fine thing.

— Paraphrased from Mary Ellen Rudin's review of Counterexamples in Topology

A recent result (C, Giacopello 2025) in my subdiscipline of topology

Theorem 4.1. The following are equivalent for any space.

- 1. Bob $\uparrow_{\text{mark}} G_1(\mathcal{N}, \mathcal{N})$
- 2. Bob $\uparrow G_1(\mathcal{N}, \mathcal{N})$
- 3. ALICE $\not\uparrow G_1(\mathcal{N}, \mathcal{N})$
- 4. ALICE $\gamma_{\text{pre}} G_1(\mathcal{N}, \mathcal{N})$ (i.e. $S_1(\mathcal{N}, \mathcal{N})$)
- 5. Every network of the space contains a countable subcollection which is a network.
- 6. The space is countable and second-countable.

In particular, $G_1(\mathcal{N}, \mathcal{N})$ is determined.

Question: Can the game be modified so that all networks contain only finite sets?

One direction is immediate:

The space is countable and second-countable. \square BOB $\uparrow_{\text{mark}} G_1(\mathcal{N}, \mathcal{N})$

What would a counterexample to the converse look like?

Bob $\uparrow_{\text{mark}} G_1(\mathcal{N}, \mathcal{N})$ definitely implies countable...

Advanced Contribute Help

π-Base

Explore Spaces Properties Theorems Questions

Cite as: The pi-Base Community. π -Base, Search for `countable+ \sim Second countable+ $\$T_6\$$ `. Available at: https://topology.pi-base.org/spaces? q=countable%2B%7ESecond+countable%2B%24T_6%24 (Accessed: 2025-07-07).

Space **S000023**

Arens-Fort Space

Let $X = \{(n, m) : n, m \in \omega\}$ with all singletons except $\{(0, 0)\}$ open. Define a set containing (0, 0) to be open if and only if it contains all but a finite number of points in all but a finite number of columns.

Defined as counterexample #26 ("Arens-Fort Space") in DOI 10.1007/978-1-4612-6290-9.

This space is homeomorphic to a subspace of Arens space.

Space S23 | Property P27

Arens-Fort Space is not Second countable

roperties	Theorems			
Property	Value	Id	If	Then
Anticompact	~	T281	T_2	R_1
Countably infinite	~	T286	R_1	R_0
Extremally disconnected	×	T44	Partition topology	Extremally disconnected
T_2	~	T466	Alexandrov \wedge R_0	Partition topology
		T565	Locally finite	Alexandrov
		T454	Countably infinite	Countable
		T292	Anticompact \wedge k_1 -space	Locally finite

T201 Anticompact & Countable

Hamisampast

π-Base Explore Spaces Properties Theorems Questions Advanced Contribute Help

Property P000049

Extremally disconnected

The closure of every open set in X is open or, equivalently, clopen.

Equivalently, any two disjoint open sets have disjoint closures.

Defined in problem 15G of zbMATH 1052.54001 and problem 1H of DOI 10.1007/978-1-4615-7819-2.

DOI 1007/978-1-4612-6290-9 defines it on page 32 with the additional assumption of T_2 , which we do not assume here.

Meta-properties

Doublitian tonaless.

- This property is hereditary with respect to open sets (see Problem 15G.2 in zbMATH 1052.54001).
- This property is hereditary with respect to dense sets (see Math StackExchange 3769214).
- This property is hereditary with respect to locally dense sets (equivalent to previous two meta-properties; see also Proposition 1 of Math StackExchange 5025114). A set $A \subseteq X$ is called *locally dense* (or *preopen*) if every $x \in A$ has neighbourhood U with $U \cap A$ dense in U (equivalently, $A \subseteq \operatorname{int}(\overline{A})$).

Theore	ems Spaces References	
ld	If	Then
T10	Extremally disconnected A Locally Hausdorff	Sequentially discrete

Future and aller alice and a second

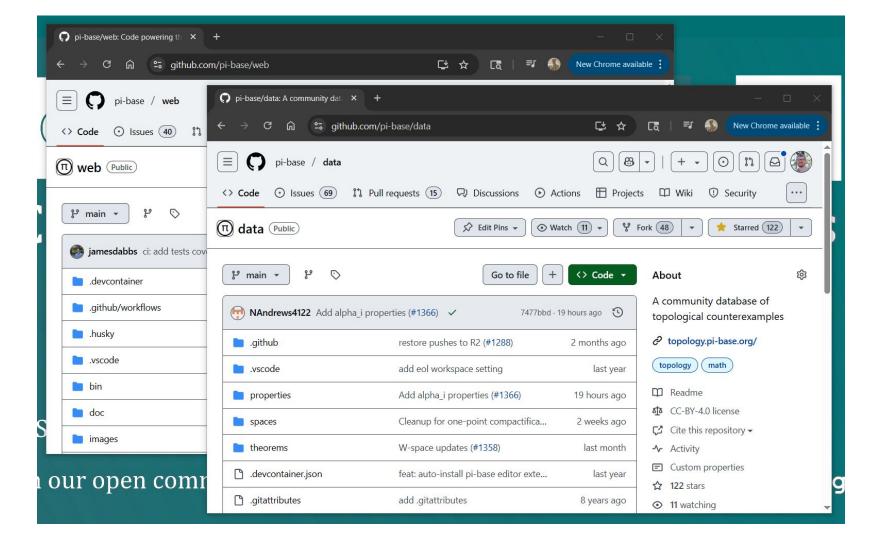
Aside: Davide Giacopello proved last week that

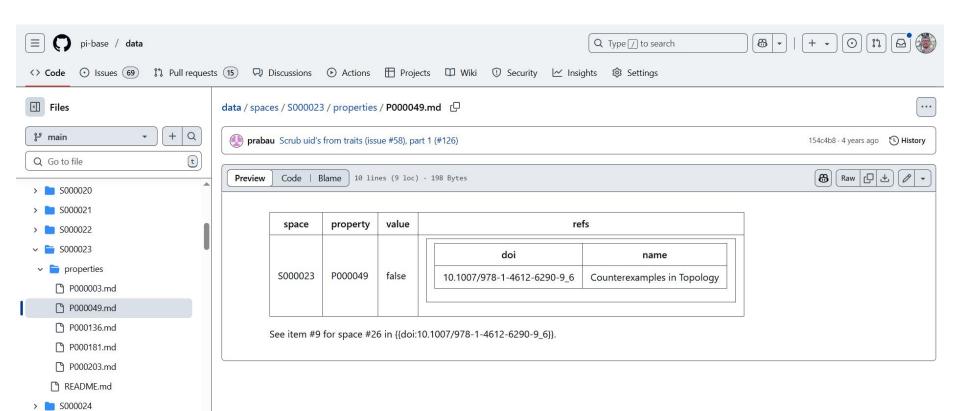
The space is countable and second-countable. $\langle \Longrightarrow \rangle$ Bob $\uparrow_{\max} G_1(\mathscr{N}, \mathscr{N})$

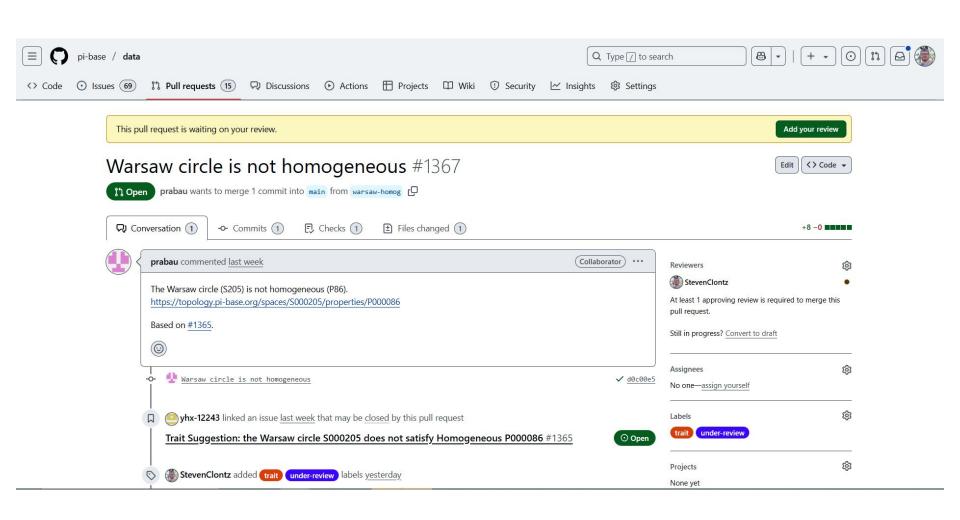
It remains open whether $Bob \uparrow_{mark} G_1(\mathcal{N}, \mathcal{N})$

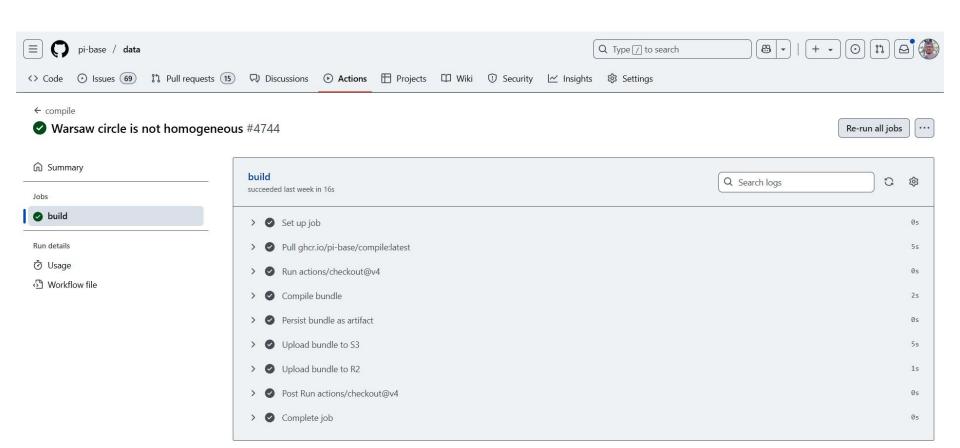
can be replaced by ALICE $\gamma G_1(\mathcal{N}, \mathcal{N})$

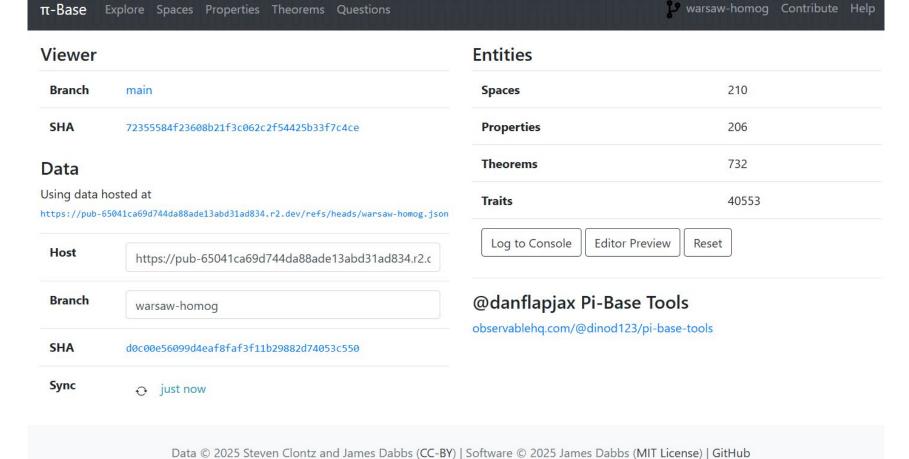
(But we're here to talk about databases, not topology!) 😅











Data last synchonized: 😛 just now

Space S205 | Property P86

Warsaw circle is not Homogeneous

At any point not in $\{0\} \times [-1,1]$ the space is locally Euclidean, hence locally connected. But this does not hold at all points since Warsaw circle is not Locally connected.

Show markdown

References

No references available. If appropriate, please consider contributing a reference.

Data © 2025 Steven Clontz and James Dabbs (CC-BY) | Software © 2025 James Dabbs (MIT License) | GitHub

Data last synchonized:
2 minutes ago

Limitations

π-Base Explore Spaces Properties Theorems Questions Advanced Contribute Help

Properties

Q (cardinality		
Id	Name	Description	
P58	Cardinality $<\mathfrak{c}$ Smaller than the continuum, Cardinality $<\mathfrak{I}_1$	The cardinality of the space is less than the cardinality of ${\mathbb R}.$	
P65	$\begin{aligned} & \text{Cardinality} = \mathfrak{c} \\ & \text{Continuum-sized, Cardinality} = \beth_1 \end{aligned}$	The cardinality of the space is equal to the cardinality of ${\mathbb R}.$	
P78	Finite $\label{eq:cardinality} \mbox{Cardinality} < \aleph_0, \mbox{Cardinality} < \beth_0$	The cardinality of the space is finite.	
P181	Countably infinite $ \text{Cardinality} = \aleph_0, \text{Cardinality} = \beth_0 $	The cardinality of the space is equal to the cardinality of $\mathbb N.$	
P59	Cardinality $\leq 2^{c}$ Smaller or same as the power set of the continuum, Cardinality $\leq \beth_2$	The cardinality of the space is at most the cardinality of $\mathcal{P}(\mathbb{R})$, the set of subsets of $\mathbb{R}.$	
P57	$\begin{aligned} & \text{Countable} \\ & \text{Cardinality} \leq \aleph_0, \text{Cardinality} \leq \beth_0 \end{aligned}$	The cardinality of the space is less than or equal to the cardinality of $\mathbb{N}.$	
D11/	Cardinality — λ .	The cardinality of the chase is equal to $N_{\rm c}$, the cardinality of the first uncountable ordinal $\omega_{\rm c}$	