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Edge bifurcation

Abstract

The propagation of pulses in ideal nonlinear optical fibers without loss is governed by the nonlinear Schrodinger equa-
tion (NLS). When considering realistic fibers one must examine perturbed NLS equations, with the particular perturbation
depending on the physical situation that is being modeled. A common example is the complex Ginzburg-Landau equation
(CGL), which is a dissipative perturbation. It is known that some of the stable bright solitons of the NLS survive a dissipative
perturbation such as the CGL. Given that a wave persists, it is then important to determine its stability with respect to the
perturbed NLS. A major difficulty in analyzing the stability of solitary waves upon adding dissipative terms is that eigenvalues
may bifurcate out of the essential spectrum. Since the essential spectrum of the NLS is located on the imaginary axis, such
eigenvalues may lead to an unstable wave. In fact, eigenvalues can pop out of the essential spectrum even if the unperturbed
problem has no eigenvalue embedded in the essential spectrum. Here we present a technique which can be used to track these
bifurcating eigenvalues. As a consequence, we are able to locate the spectrum for bright solitary-wave solutions to various
perturbed nonlinear Schrédinger equations, and determine precise conditions on parameters for which the waves are stable. In
addition, we show that a particular perturbation, the parametrically forced NLS equation, supports stable multi-bump solitary
waves. The technique for tracking eigenvalues which bifurcate from the essential spectrum is very general and should therefore
be applicable to a larger class of problems than those presented here. © 1998 Elsevier Science B.V.

A major difficulty in analyzing the stability of solitary waves upon adding dissipative terms is that eigenvalues
may bifurcate out of the essential spectrum. Since the essenfial spectrum of the NLS is located on the imaginary axis, such
eigenvalues may lead to an unstable wave. In fact, eigenvalues can pop out of the essential spectrum even if the unperturbed
problem has no eigenvalue embedded in the essential spectrum.



Nonlinear Schrédinger Equation
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Potential is NOT small

Schrodinger equation
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Standing Wave

p(z,t) = e u(x)
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Golovanich and Marzuola:
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Linearization at wave and spectrum

Rotating frame --> Re and Im parts --> Linearize at U, (’r)
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soliton only J‘ ' potential only
e No gap eigenvalues e # gap eigenvalues = # positive
e No end-point resonance eigenvalues of Schrodinger eq. = m(V)

e Gap eigenvalues are O (&%) from end-
points of the essential spectrum

Theorem (Fleurantin, Marzuola, J.) There are at least (exactly?)

m(V) gap eigenvalues in o (JLg)

Contrast with Kapitula and Sandstede (1998)



Interesting Aspects

1. Resetting into DS framework: compactification and
desingluarization

2. Maslov Index: invariance of space of Lagrangian planes

3. Separation of soliton and potential: GSP

4, Estimates for gluing: blow-up at end-point of essential
spectrum and bootsrapping estimates

see difference with Kapitula and Sandstede's work on
bifurcation from the essential spectrum



(5 5)(5)2(5) -

WLOG can take preal L_q=wp

dqi ' (not _
" abiee of notation) Lip=wq.
P=p+gq Q=p—q
LP+2u?*P +v’Q = wP
LQ+ u’P+2u’Q = —wQ
2
L = L% L 1+ V. (r)



Setup

1. Write as a system and append equation for r
2. Campactify by introducing o= —
3. Desingularize by changing independent variable to

s=r—+Inr
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BC for eigenvalue: w is an eigenvalue if

(R,S) - 0ass > —o0 (0 — 0) regularityas » —0
(P,Q) > 0ass — 4oo(oc—1) decayas r — +o0

BC conditions correspond to 2D subspaces

Natural to consider flow induced on G'g 4 X 0, 1]

The space of Lagrangian planes is an invariant submanifold

A(2) x [0,1]



potential

O finite but bdd
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A(2)

Rescale for potential part:
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Coordinates on A(2)

2-plane determined by 2 linearly ai Qa9 Qa3 Q4
independent 4-vectors
b1 b2 b3 by

global but awkward as needs
projectivizing and use of
quadratic G-condition

Lagrangian : p13 + p2sa =0

e A3 A4 ) ai a2 easy to compute
P : ( bs by ) A( by b )etc. with but local

a az

by by etc.

Plicker : P12 —

subspace is the graph of A

Lagrangian : A symmetric
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Blue curve is governed
by soliton only and so
has nice limit as
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A=2CA+(¢C+1) (\Ifg (_C’w) —Az) -
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set e =0

a=20a+ (C+1)[-2uf +2—w— (a® +b°)]
b=2¢b+ (¢ +1) [~ul —bla+d)]
d=2¢d+ (¢+1)[-2u) +w— (b° +d?)]
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w=0

U = Ug (soliton only) and no potential wuy — 0 as s — 400

From soliton's viewpoint, w is small

So, look in neighborhood of fixed point at (+2,0,0,0,0)



We. :b=hy(d,(,w)
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Blow up singularity at (0, 0,0, 0)
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Key is to understand flowon w =0

No end-point
resonance
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