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I. Intro: Classical Turing bifurcation/amplitude equations

“The chemical baisis of morphogenesis,” 1952.
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Brilliant mechanism for pattern formation

Homogeneous state u(x , t) ≡ u0 of physical time-evolution

∂tu = F(u, ∂xu, . . . , ∂
m
x u), F(u0, 0, . . . , 0) = 0, (1)

for definiteness m = 2 (reaction-convection-diffusion).
Linearized equations

ut = (A∂2x + B∂x + C )u, (2)

Fourier transform

ût = (−Ak2 + Bik + C )û, symbol S(ik) = −Ak2 + Bik + C .
(3)

IDEA: (B = 0) Stable reaction (C ) and diffusion (A) yield stability
of S for small, large k . But noncommutation of matrices can yield
instability at finite wave number k ∼ periodic patterns...
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Graphical view via dispersion relation

Destabilization of constant state as bifurcation parameter is varied.
Spectra given by dispersion relation, i.e., e-values of Fourier
symbol, λ(k) ∈ σ(−k2A+ ikB +C ) (reaction convection diffusion).

Figure: Dispersion rel. at bifurcation (critical curve). Transl. inv. ⇒
conjugate symm.; x → x − (τ∗/k∗)t → double root at τ∗ = 0, SO(2) bif
to periodic traveling wave ū(kx + τ t), τ = τ(k).
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Eckhaus’ weakly unstable approximation

Let r , λ(k∗) be critical e-vectors/values of
S(µ) = −k2A(µ) + ikB(µ) + C (µ) at bif. point µ = 0, ⇒ exact
nondecaying spatially-periodic solution of the linearized equations

u(x , t) = e i(k∗x+=λ(k∗,0)t)r + c .c . (4)

remaining modes time-exponentially decaying at different rates.

For µ ∼ ε2 (weakly unstable), seek formal asymptotic solution

Uε(x , t) =
1

2
εA(x̂ , t̂)e iξr +O(ε2) + c .c .,

ξ = k∗
(
x +
=λ(k∗, 0)

k∗
t
)
.

(5)

Note: complex vs. real, SO(2) vs. O(2) symmetry.
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Amplitude equations and Eckhaus stability criterion

With scaling x̂ = ε(x + =∂kλ(k∗, 0)t), t̂ = ε2t, automatic solution
to order O(ε2). At O(ε3), get complex Ginzburg-Landau eqn.:

At̂ = −1

2
∂2kλ(k∗, 0)Ax̂ x̂ + ∂µλ(k∗, 0)A + γ|A|2A. (cGL)

NOTE: 1. Explicit (periodic) exponential solutions

A = e i(κx̂+ωt̂)α, α ≡ constant. (6)

2. Linearized e-value equations about periodics reduce to
constant-coefficient, explicitly solvable! (2× 2 disp. relation.)

Resulting conditions are Eckhaus “sideband” stability conditions
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Rigorous verification ([Mielke-Schneider], early 90’s)

Chris Jones: “If you understand the existence problem well enough
then you understand the stability problem” (Here, pushed to limit!)

Existence: In simplest O(2) (stationary) setting, seek Hopf
bifurcation

Lu = µM(µ)u + N(µ, u), u periodic

L const-coeff, dim(kernel)=2, N = O(|u|2). Lyapunov-Schmidt
reduction: Letting v , w denote components in ker and range of L,
solve for w in terms of v , → 2D O(2) (radial) bifurcation, µ ∼ ε2.

Stability: Bloch-Floquet spectrum solves
λu = (L + O(σ) + O(ε))u, reducible (again) by L-S reduction to
2× 2 matrix problemM(λ, σ)r = λr . By direct comparison, agrees
to lowest order with dispersion relation for (cGL), ⇒ (eventually)
Eckhaus condition necessary and sufficient for spectral stability.
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Summary, and challenge...

All three huge results. Together, definitive: used constantly in
applications from engineering to quantum physics, basis for
systematic exploration of pattern formation.

BUT: (our motivation: not unique...) does not apply to modern
biomorphology models featuring conservation laws... e.g.,
Ambrosi-Gamba-Serini model for vasculogenesis (2004):

∂tρ+∇ · (ρu) = 0, ∂t(ρu) +∇ · (ρu ⊗ u) +∇P(ρ) = β∇c − γρu,
∂t(c)− D∆c = αρ− τ−1c,

(7)
ρ and u density and velocity of endothelial cells, P pressure, γ drag
coefficient against extracellular matrix, c chemo-attractant
concentration, α and β release and cell response rates, τ half-life.

GOAL: Analogs of these important tools in cons. law case!
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II. Prequel: the model of Matthews-Cox

Matthews and Cox (2000), for O(2) symmetric models (e.g.,
binary mixtures) with conservation laws, deduced by symmetry
that amplitude equations should have form

At̂ = aAx̂ x̂ + bA + c |A|2A + dAB,

Bt̂ = eBx̂ x̂ + f (|A|2)x̂ x̂ ,
(8)

and verified this formally for a specific model, later verified
rigorously by Sukhtayev (2018). Here, A ∈ C is amplitude and
B ∈ Rm a vector of “mean modes” ∼ conserved variables.

Note, exponential solutions with |A|,B constant. m new param’s!
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The model of Häcker-Schneider-Zimmermann

With only SO(2) symmetry, the amplitude eqns become, rather

At̂ = aAx̂ x̂ + bA + c |A|2A + dAB,

Bt̂ = eBx̂ x̂ + ε−1(fB + h|A|2)x̂ + ∂x̂<(gAAx̂),
(9)

singular convection in mean modes! Decoupled case d = 0 derived
for Bénard-Marangoni and thin film flow in [HSZ2011].

Key observation: Similar to low Mach number limit, rapid
convection/averaging does not prevent existence up to O(1) time.
(Write B eqn. in Fourier space and use var. of constants.)

• B equation appears at ε4 order, hence for d = 0 may be replaced
simply by B = −h|A|2/f , “Darcy’s law,” with A satisfying (cGL),
⇒ rigorous validation to O(ε2) [HSZ], for bounded time localized
“Darcy” (= CGL) solutions.

Again, (nonlocalized) exponential solutions |A|,B constant. Our
goal is to determine time-asymptotic stability of these, for d 6= 0.
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Converse: “If you understand linearized/nonlinear stability
well enough...”

In 2003/2004, Oh-Zumbrun and Denis Serre investigated exact
Floquet spectral perturbation of critical modes for periodic waves
of systems with conservation laws, not necessarily small. (Noncons.
case treated in [Schneider95].*)
Serre made the important observation that the finite dimensional
critical eigenspace had a nontrivial 2× 2 Jordan block precisely
when wave speed is nonconstant among nearby waves, a possibility
that occurs only in the SO(2) and not the O(2) case.
This suggested singularity of the associated projector, hence failure
of linearized stability. However, in this case the “disease was the
cure,” as shown in [Johnson-Z10] (see also [JRNZ14]*). Namely,
the same conservation principles leading to the Jordan block show
that the lower left corner of the block vanishes to first order in the
Bloch wave expansion in terms of the Floquet number σ.
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“Balancing”/unfolding of Jordan block

That is, expressed in standard basis elements, the Jordan block
expands as

M(σ) =

(
0 1
0 0

)
+ σ

(
∗ ∗
0 ∗

)
+ O(σ2).

A “balancing transformation” M → M̃ := SMS−1, with
S = diag{σ, 1} converts this to

M̃(σ) = σ
((∗ ∗
∗ ∗

)
+ O(σ)

)
,

which generically splits into analytic spectra σλj , λ1(σ) 6= λ2(σ).

THUS, NO OBSTRUCTION TO STABILITY
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III. Current: issues and main results

FORMAL DERIVATION OF AMPLITUDE EQNS: m new
critical (zero) modes for m cons. laws.

Figure: Dispersion relation at bifurcation (critical curve), conservation
law case, zero mode independent of bif. parameter µ.

Not much changed- but now gives singular term in SO(2) case...
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Preliminary observations

• In singular case, a Darcy reduction B = −h|A|2/f + B0 similar as
in [HSZ10] may be shown well-posed to time O(1) even with
coupling d 6= 0 and data near periodic (exp.) solution. But now
modifies (cGL) part through dAB = −dh|A|2A + B0A term,
yielding modified existence/Eckhaus stability criteria. (“A”
macroscopic behavior, ∼ nonnormally hyperbolic slow manifold)

Paradigm shift: Different from low-Mach, plasma dynamics, etc.,
consider singular amplitude equation, not Darcy, as primary object.

• The “usual miracle”: for all cases, linearized amplitude equations
reduce to constant coefficient, in principle soluble by linear
algebra/disp. relation. For singular system, a two-parameter
spectral perturbation problem...
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Main results

O(2) case. For general RD systems, extend Matthews-Cox,
Sukhtayev results for specal system: formal amplitude eqns.,
necessary and sufficient for (“diffusive”) spectral stability.
• No Darcy reduction, stability involves both A and B equation.
• In principle soluble by const. coeff., case B ∈ R explored in [MC].

SO(2) case.* For general conv. reaction diff. systems: HSZ-type
amplitude eqns, now fully coupled, nec. and suff for stability.
• Stability again involves both A and B equation. Darcy necessary.
• Stability computation simplifies, yielding m + 1 Eckhaus-type
criteria as nec. and suff. conditions. Reminiscient of relaxation,
Chapman-Enskog and Kawashima conditions. Compare numerics
[Barker-Jung-Z,2018] (incredibly stiff), analysis [BJNRZ13].

Zumbrun Singular amplitude equations



Focus on singular case, m = 1: linearized stability system

SPECTRAL PERTURBATION PROBLEM, λ ∈ spec(M(σ, ε):

M(ε, σ) =

2A2
0<(c) 0 A0<(d)

2A2
0=(c) 0 A0=(d)
0 0 0

+ (σ/ε)M1 + σ2M2. (10)

(Coordinatization by (<A,=A,B), σ = Bloch-Floquet number, ∼
sideband stability. )

OBS. 1. As ε−1 enters with σ, existence, co-periodic stability are
nonsingular, go as usual (same for exact spectra, PDE).

2. M0 rank one- generically, 2× 2 Jordan block! -inherited from
nonlinear theory, Serre, JZ10... And, SAME CURE!
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Balanced, block-diagonalized system

Projecting out critical modes, then balancing to remove Jordan
block, get O(ε, σ) = σO1 + σ2O2 + O(σ3), with

O1 = i

(
−2κ(<(a)q + =(a)) O(1)

4iκε−1A0h<(a) ε−1(2A0hp + f )

)
,

O2 = −m−1
(

O(1) −pqε−1(2A0hp + f )
O(ε−2) ε−22A0ph(2A0hp + f )

)
.

(11)

Relaxation analogy: Separation of scales allows further reduction,
“effective diffusions”

µt = `tO2rt = O(ε−1) =: ε−1µ0t + h.o.t. (∼ Darcy !),

µc = `cO2rc = ε−2<(d)hf <(ĉ)/<(c)22A2
0 + O(ε−1) =: ε−2µ0c + h.o.t.

(12)
giving 2nd-order coefficients. Explicit Eckhaus conditions <µj < 0 .

Zumbrun Singular amplitude equations



Further details

• Radius of convergence only O(ε), not O(1) as nonsingular case.
Requires separate consideration of several parameter regimes;
however, each has property that stability properties are constant
through each regime, hence inherited from boundaries.
Reminiscent of studies of JNRZ for KdV limit of KdV-KS, again
relaxation structure.

• Rigorous validation. Lyapunov-Schmidt reduction gives
approximate matrix perturbation problem

0 = det
(
M(λ, σ, ε)− λId

)
= det

(
M(σ, ε)− λ(Id + E)

)
.

Previously analyzed by quadratic formula [M,S] or Weierstrass
preparation in char. poly. We instead invert (Id + E) by Neumann
expansion to obtain smaller error term ∼ EM in matrix problem.
Then apply the detailed matrix pert. computations already done to
conclude that resulting “convergence error” small as well.
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IV. Discussion and open problems

• Opens applications to biomorphology, systematic study!
• More important than usual (Turing/cGL) case, since numerically
stiff. Real need for analysis...
• (bounded-time) Darcy and (time-asymptotic) Eckhaus slow
modes agree, i.e., Darcy behaves like approximate slow manifold in
both finite-time approximation and spectral sense- reminiscent of
classical case, Mielke-Schneider analysis.
• Vectorial case m > 1: requires an additional “consistent
transfer” condition for |σ| ∈ [ε/C , ε/C ], ⇔ absence of real roots of
an explicitly computable polynomial. (Hidden subtlety.)

OPEN PROBLEMS:
• Systematic exploration for bio-models! With existing nonlinear
theory, complete toolkit (m = 1: Darcy cond’s. + <c < <ĉ).
• “Emergent dynamics:” modulation approx’n for large patterns?
• Multi-dimensions, secondary bifurcations.

Zumbrun Singular amplitude equations



Classical Turing vs. patterns with conservation law (2D)

(a) (b)

Figure: Classical Turing (Belousov-Zhabatinski): a) spiral. b) target.

(a) (b)

Figure: Vasculogenesis (AGS), m = 1): a) in vitro. b) numerical.
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THANKS FOR YOUR ATTENTION
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