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Two themes connected by optimal transport as the tool

Inferring gene-regulatory Quantifying patterns and
networks tracing bifurcation curves
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Infer gene-regulatory networks from single-cell data
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Infer gene-regulatory networks from single-cell data
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Infer gene-regulatory networks from time-stamped single-cell count matrices
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Time-stamped single-cell RNA data
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Gromov—Wasserstein optimal transport
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Gromov—Wasserstein optimal transport

Optimal transport
does not respect
local geometry
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Cost function penalizes moving cells closer or farther apart
but does not incorporate distance between the two data sets
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Comparison of RNA and OT cell velocities

scRNA data for pancreatic endocrinogenesis [Bastidas-Ponce et al.]

RNA velocity

UMAP2

RNA velocity estimated in scVelo using
reaction model for unspliced and
spliced RNA counts [Bergen et al.]
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Inference of gene-to-gene interactions

Regularized linear regression
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linear function A of velocities of data x at
time 7, and enforce sparsity through ||A||;

Leads to sparse graphs (for r =~ 1)

Computationally more expensive
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Summation over k leads to prediction of global gene-
regulatory network rather than a dynamic network



Inference of gene-regulatory networks
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Results: Comparison with other algorithms
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Results: scGEM
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Reprogramming human somatic cells to pluripotent stem cells [Cheow et al. (2016)]



Results: Drosophila
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Next steps ...

Inferring gene-regulatory Quantifying patterns and
networks tracing bifurcation curves
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Further validation: Applications to:

ground-truth networks stochastic agent-based models

identifiability of mathematical models contact and source defects

Include other measurements: RNA velocity

, S Systematic convergence analysis
and Chromatin accessibility

and dependence on feature
|dentification of gene pathways conserved functions

across fly & mice and neuron formation &
learning/memory (with O’Connor—Giles,
Fleischmann, Kaun, Larschan, Singh)
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