Data-driven methods for inference in dynamical systems

Björn Sandstede

Sam Maffa (Broad Institute)

Wenjun Zhao (Kantorovich Initiative & Wake Forest U)

Erica Larschan (Brown U)

Ritambhara Singh (Brown U)

Two themes connected by optimal transport as the tool

Inferring gene-regulatory networks

Quantifying patterns and tracing bifurcation curves

[Zhao, Maffa, S.]

[Zhao, Larschan, S., Singh]

Gene transcription in cells

Inference: Infer gene-regulatory networks from time-stamped single-cell count matrices

- Task: predict cell positions at later time points
- Assumption: cell samples at different time points represent full cell population

- Task: predict cell positions at later time points
- Assumption: cell samples at different time points represent full cell population

- Task: predict cell positions at later time points
- Assumption: cell samples at different time points represent full cell population

Find joint probability distribution Γ $(\Gamma_{ij} \ge 0, \sum_{i=1}^{N} \Gamma_{ij} = \frac{1}{M}, \sum_{j=1}^{M} \Gamma_{ij} = \frac{1}{N})$ as solution to

$$\Gamma = \arg \min_{\Gamma} \sum_{\substack{i=1,\dots,N\\j=1,\dots,M}} |x_i - y_j|_{\mathbb{R}^m}^2 \Gamma_{ij}$$

We interpret Γ_{ij} as the probability that x_i is mapped to y_j

- Task: predict cell positions at later time points
- Assumption: cell samples at different time points represent full cell population

Find joint probability distribution Γ $(\Gamma_{ij} \ge 0, \sum_{i=1}^{N} \Gamma_{ij} = \frac{1}{M}, \sum_{j=1}^{M} \Gamma_{ij} = \frac{1}{N})$ as solution to

$$\Gamma = \arg \min_{\Gamma} \sum_{\substack{i=1,\dots,N\\j=1,\dots,M}} |x_i - y_j|_{\mathbb{R}^m}^2 \Gamma_{ij}$$

We interpret Γ_{ij} as the probability that x_i is mapped to y_j

Gromov–Wasserstein optimal transport

Optimal transport does not respect local geometry

Gromov–Wasserstein optimal transport

Optimal transport does not respect local geometry Include cost function that aims to preserve pairwise distances $|x_i - x_j|_{knn} x_j \qquad y_k \qquad \int_{y_l} |y_k - y_l|_{knn} \qquad Distance based on$ k-nearest-neighborgraph

Gromov–Wasserstein optimal transport

Find
$$\Gamma$$
 as solution $\arg \min_{\Gamma} \sum_{\substack{i,j=1,...,N\\k,l=1,...,M}} ||x_i - x_j|_{knn} - |y_k - y_l|_{knn} |\Gamma_{ik}\Gamma_{jl}|$

Cost function penalizes moving cells closer or farther apart but does not incorporate distance between the two data sets

Finite differences on cell trajectories

Finite differences on cell trajectories

Gene velocities for each cell are defined by finite differences

$$v(x_c, t_k) := \frac{1}{t_{k+1} - t_k} \left(\Gamma^{t_k, t_{k+1}}(x_c) - x_c \right)$$

Comparison of RNA and OT cell velocities

scRNA data for pancreatic endocrinogenesis [Bastidas-Ponce et al.] OT velocity **RNA** velocity 6 6 4 4 2 2 **UMAP2 UMAP2** 0 0 -2-2 -4 -4 -6-6 10 -10-105 5 10 -5 -5UMAP1 UMAP1

RNA velocity estimated in scVelo using reaction model for unspliced and spliced RNA counts [Bergen et al.] Cell velocity estimated in OTVelo by finite differences

Inference of gene-to-gene interactions

Regularized linear regression

$$A = \arg \min_{A \in \mathbb{R}^{m \times m}} \left[\|v(y, t_{k+1}) - Av(x, t_k)\| + \lambda(r \|A\|_1 + (1 - r) \|A\|_2) \right]$$

Predict velocities of data y at time t_{k+1} as linear function A of velocities of data x at time t_k and enforce sparsity through $||A||_1$

 $sign(A_{g1g2})$ indicates up- or downregulation of gene g_2 by gene g_1

- Leads to sparse graphs (for $r \approx 1$)
- Computationally more expensive

Inference of gene-to-gene interactions

Regularized linear regression

$$A = \arg \min_{A \in \mathbb{R}^{m \times m}} \left[\|v(y, t_{k+1}) - Av(x, t_k)\| + \lambda(r \|A\|_1 + (1 - r) \|A\|_2) \right]$$

Predict velocities of data y at time t_{k+1} as linear function A of velocities of data x at time t_k and enforce sparsity through $||A||_1$

 $sign(A_{g1g2})$ indicates up- or downregulation of gene g_2 by gene g_1

- Leads to sparse graphs (for $r \approx 1$)
- Computationally more expensive

Time-lagged correlation

$$C_{g_1g_2} = \sum_{c=1}^{n_k} \sum_{d=1}^{n_{k+1}} v_{g_1}(x_c, t_k) v_{g_2}(y_d, t_{k+1}) \Gamma_{cd}^{t_k, t_{k+1}}$$

Correlation between velocities of cell c at time t_k and cell d at time t_{k+1} weighted by likelihood that cell d descended from cell c

 $sign(C_{g1g2})$ suggests up- or downregulation of gene g_2 by gene g_1

- Leads to denser graphs
- Computationally efficient (scales well with number of genes)

Inference of gene-to-gene interactions

Regularized linear regression

$$A = \arg \min_{A \in \mathbb{R}^{m \times m}} \left[\|v(y, t_{k+1}) - Av(x, t_k)\| + \lambda(r \|A\|_1 + (1 - r) \|A\|_2) \right]$$

Predict velocities of data y at time t_{k+1} as linear function A of velocities of data x at time t_k and enforce sparsity through $||A||_1$

 $sign(A_{g1g2})$ indicates up- or downregulation of gene g_2 by gene g_1

- Leads to sparse graphs (for $r \approx 1$)
- Computationally more expensive

Time-lagged correlation

$$C_{g_1g_2} = \sum_{c=1}^{n_k} \sum_{d=1}^{n_{k+1}} v_{g_1}(x_c, t_k) v_{g_2}(y_d, t_{k+1}) \Gamma_{cd}^{t_k, t_{k+1}}$$

Correlation between velocities of cell c at time t_k and cell d at time t_{k+1} weighted by likelihood that cell d descended from cell c

 $sign(C_{g1g2})$ suggests up- or downregulation of gene g_2 by gene g_1

- Leads to denser graphs
- Computationally efficient (scales well with number of genes)

Summation over k leads to prediction of global generegulatory network rather than a dynamic network

Inference of gene-regulatory networks

Threshold θ serves as a measure of confidence we have in the identified edge: this allows us to prioritize the predicted gene interactions

Quantifying success

Quantifying success

Results: Comparison with other algorithms

Results: scGEM

Reprogramming human somatic cells to pluripotent stem cells [Cheow et al. (2016)]

Results: Drosophila

Drosophila embryonic development: neuroectoderm [Calderon et al. 2022]

Two themes connected by optimal transport as the tool

Inferring gene-regulatory networks

Quantifying patterns and tracing bifurcation curves

[Zhao, Maffa, S.]

[Zhao, Larschan, S., Singh]

Next steps ...

Inferring gene-regulatory networks

- Further validation:
 - ground-truth networks
 - identifiability of mathematical models
- Include other measurements: RNA velocity and Chromatin accessibility
- Identification of gene pathways conserved across fly & mice and neuron formation & learning/memory (with O'Connor–Giles, Fleischmann, Kaun, Larschan, Singh)

Quantifying patterns and tracing bifurcation curves

- Applications to:
 - stochastic agent-based models
 - contact and source defects
- Systematic convergence analysis and dependence on feature functions

Thanks to my fantastic collaborators!

Sam Maffa

Wenjun Zhao

Erica Larschan

Ritambhara Singh

And thank you for listening!