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Physics-based	Models

q Physics-based	systems	are	approximated	via	
ODEs/PDEs

q POWERFUL	but	computationally	EXPENSIVE

Evolution	of	an	Icelandic	Low	in	the	North	Atlantic	Ocean	over	three	days

Temperature	variations	in	a	star	1.35	times	
as	massive	as	the	Sun	(Kelvin)

Flow	field	around	the	nose	landing	gear	of	a	Boeing	777

Source:	https://www.nas.nasa.gov/SC17/	(NASA)	

Represent	the	Laws	of	Nature

(e.g.,	Cauchy	momentum	equation	for	fluids	–
momentum	transport	in	continuums)	

𝐷𝐮
𝐷𝑡 =

1
𝜌 ∇ ( 𝝈 + 𝑔

https://www.nas.nasa.gov/SC17/


The	5D	Law:	Dinky,	Dirty,	Dynamic,	Deceptive	Data

Data + Laws of Physics

PINNs Neural	OperatorsFEM



Neural Operators

• Generalized	Universal	Approximation	Theorem	for	Operator	[Chen	’95,	Lu	et	al.	’19]	
• Branch	net:	Input	{𝑢(𝑥!)}!"#$ ,	output:	 𝑏#, 𝑏%, . . , 𝑏&

' ∈ ℝ&

• Trunk	net:	Input	𝑦,	output:	 𝑡#, 𝑡%, . . , 𝑡&
' ∈ ℝ&

• Input	𝑢	is	evaluated	at	the	fixed	locations	{𝑦!}!"#$ 𝐺! 𝑢 𝑦 =%
"#$

%

𝑏"(𝑢 𝑥$ , 𝑢 𝑥& , … , 𝑢 𝑥' ) , 𝑡𝑟" 𝑦
branch net trunk net
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𝐺! 𝑢 𝑦

𝜃∗

ℒ" 𝜃 + ℒ#(𝜃)

Minimize loss

DeepONet

• Fourier	neural	operator	[1]
• Wavelet	neural	operator	[2]
• Laplace	neural	operator	[3]

Other	neural	operators

[1] Li, Z. et al. (2020), [2] Tripura, T. and Chakraborty, S. (2022), [3] Cao, Q. and Goswami S. (2023). 
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Brusselator reaction-diffusion system

Initial condition is modeled as GRF:

• 𝑣 𝑡 = 0, x ~𝒢𝒫 𝜇 x , Cov x, x)

𝐷$, 𝐷%, 𝑎, 𝑏:   diffusivity and reaction rate parameters

Autocatalytic 
chemical 
reaction:

𝑢 = {𝑋}
𝑣 = {𝑌}

2D time-dependent rate equations Initial conditions

Mapping:
→

*Solved with a finite difference (FD) solver (discretization: 28x28 grid points)
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Objective:
𝑣(𝑡 = 0, 𝑥, 𝑦)

initial field of species Y evolution of field of species Y
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𝑎 = 1, 𝑏 = 3
	 𝐷,= 1,	𝐷- = 0.5

DOFs:	28	x	28	=	784 DOFs:	20	x	28	x	28	=	15680

#	samples	=	1600

To achieve an error of 2.41% on the test dataset, the DeepONet model required 0.2 M parameters.

Brusselator reaction-diffusion system

Kontolati, K., Goswami, S., Shields, M.D. and Karniadakis, G.E., 2023. On the influence of over-parameterization in manifold based surrogates 
and deep neural operators. Journal of Computational Physics, 479, p.112008.
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𝑎 = 1, 𝑏 = 3
	 𝐷,= 1,	𝐷- = 0.5

DOFs:	28	x	28	=	784 DOFs:	20	x	28	x	28	=	15680

#	samples	=	1600

To achieve an error of 2.41% on the test dataset, the DeepONet model required 0.2 M parameters.

Brusselator reaction-diffusion system
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Viscous Shallow water equation

Atmospheric Flow

• Model the dynamics of large-scale atmospheric flows
• Perturbation is used to induce the development of barotropic instability

Operator:  𝒢: ℎ′(𝜆, 𝜑, 𝑡 = 0) ⟼ 𝑢(𝜑, 𝜆, 𝑡)

𝛼~𝑈 0. :1, 0.5 	𝛽~𝑈[0.0:3, 0.2]rvs:

Input Dimension: 65,536 Output Dimension: 4,718,592
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Latent DeepONet for time-dependent PDEs

𝒢!: 𝒳 → 𝒴, θ ∈ Θ

Training data 𝐱" , 𝒚" "#$*

Operator  𝒢 ∶ 𝒳 → 𝒴

Branch 
net

Trunk 
net

Minimize loss
𝒢!(𝑋)(𝜁)

ℒ" 𝜃 + ℒ# 𝜃

𝜃∗

{ 1𝐲"}#$%
&  − {𝐲"}#$%

&  

dot
product

Locations
𝜁 = {𝑥, 𝑦, 𝑡}

Inputs
{𝐱"}#$%&  
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Latent DeepONet for time-dependent PDEs

𝒢!: 𝒳 → 𝒴, θ ∈ Θ

Training data 𝐱" , 𝒚" "#$*

Operator  𝒢 ∶ 𝒳 → 𝒴

Branch 
net

Trunk 
net

Minimize loss
𝒢!(𝑋)(𝜁)

ℒ" 𝜃 + ℒ# 𝜃

𝜃∗

{𝐲6}6789 {$𝐲6}6789

Multi-layer perceptron autoencoder

Latent
representation {𝐱"# , 𝐲"#}"$%& ∈ ℝ'

{ 1𝐲"}#$%
&  − {𝐲"}#$%

&  

{𝐱6}6789  {$𝐱6}6789  

dot
product

Inputs
{𝐱"}#$%&  

DeepONet training

Locations
𝜁 = {𝑥, 𝑦, 𝑡}
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Latent DeepONet for time-dependent PDEs

𝒢!: 𝒳 → 𝒴, θ ∈ Θ

Training data 𝐱" , 𝒚" "#$*

Operator  𝒢 ∶ 𝒳 → 𝒴

Branch 
net

Trunk 
net

{𝐲6:;<}6789

Minimize loss
𝒢!(𝑋)(𝜁)

ℒ" 𝜃 + ℒ# 𝜃

𝜃∗

Pre-trained decoder

{𝐲6}6789 {$𝐲6}6789

Multi-layer perceptron autoencoder

Latent
representation

Latent DeepONet
{𝐱"# , 𝐲"#}"$%& ∈ ℝ'

{ 1𝐲"}#$%
&  − {𝐲"}#$%

&  

{𝐱6}6789  {$𝐱6}6789  

dot
product

Temporal 
locations
𝜁 = {𝑡}

Reduced 
inputs
{𝐱"}#$%&  

DeepONet training

Pre-trained encoder

{𝐲6}6789

{𝐱6}6789  

Kontolati,	K.,	Goswami,	S.,	Karniadakis,	G.E.	and	Shields,	M.D.,	2023.	Learning	in	latent	spaces	improves	the	predictive	accuracy	of	deep	neural	
operators. arXiv	preprint	arXiv:2304.07599.
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Results

• Ω = 0,2π x 0,2π , (n0	x	n1) = (256x256) mesh points
• Output dimensionality: 72x256x256 = 4,718,592
• Simulation: t = 0,360ℎ , 𝛿𝑡 = 0.1A6ℎ , Time steps: n2 = 72

L-DeepONet

MLAE	+	Latent	DON:	15,	218
Full	DON:	379,022	

Training	Time	(seconds)
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Results

! = 0 ! = 0.28 ! = 0.42 ! = 0.58 ! = 0.72 ! = 0.86 ! = 0.93 ! = 1

Re
fe
re
nc
e

L-
De
ep
ON
et

Er
ro
r

Reference

Prediction Error

Latent	DeepONet
(275,475	Parameters)

DeepONet
(327,872	Parameters)
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Fracture: Shear failure of plate with notch

Goswami et al. (2021) A physics-informed variational DeepONet for predicting the crack path in brittle materials

• Unit square plate with horizontal crack
• Both location 𝑦+ and length ℓ+ of the crack are considered random
• Boundary conditions: 𝑢 𝑥, 0 = 𝑣 𝑥, 0 = 0, 𝑢 𝑥, 1 = Δ𝑢
• Data: 𝑁 = 261, 𝑦+ ∈ 0.2, 0.675 , ℓ+ ∈ [0.3, 0.65] 
• Input dimension: 162x162 Output dimension: 8x162x162

!! ℓ!

Δ"

(0,0) (1,0)

(0,1) (1,1)
a b



15

Fracture: Shear failure of plate with notch

Error metric:
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L-DeepONet

Full DeepONet

Comparison with Benchmark DeepONet

FNO
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Consolidated results

Accuracy of L-DeepONet for MLAE and PCA

MLAE: multi-layer autoencoders
PCA: principal component analysis 

Computational training time in seconds (s) on an NVIDIA A6000 GPU



• DTRA	needs	high-fidelity	CFD	
modeling	to	enhance	hazard	
predictions	for	countering	
weapons	of	mass	destruction.

• Complexities	involve	long	
timeframes,	unpredictable	
phenomena,	and	resource	intensive	
chemical	kinetics	models.

• Stiff	chemical	kinetics	models	are	
the	primary	computational	
bottleneck.

Stiff Chemical Kinetics



𝜕Φ
𝜕𝑡 = − 𝜈 ⋅ ∇ Φ +

1
𝑝∇ ⋅ ∇ΦΓ + 𝑆(𝜌,Φ)

Φ	:	Species	mass	fraction	and	temperature
Γ :	Diffusivities	at	each	spatial	point
S		:	Chemical	source	term
𝜌  :	Fluid	density,		𝜈 :	Velocity,	 𝑝 :	Pressure

Hydrodynamic Chemical Kinetics
Δ𝑡[\ Δ𝑡]^_`

Aim: Learn a solution propagator for Δ𝑡[\time advancement

𝜕Φ
𝜕𝑡 = 𝑆(𝜌,Φ)

𝐹aabca: 	ℝdbe → ℝdbe

Φ 𝑡 + Δ𝑡 = 𝐹../0.(Φ(t))

Chemical	Kinetics	Solution	Propagator



• 11	Species	(𝐻1,	𝑂1,	𝑂,	𝑂𝐻,	𝐻1𝑂,	𝐻,	𝐻𝑂1,	𝐶𝑂,	𝐶𝑂1,	𝐻𝐶𝑂,	𝑁1)

• 21	Reactions
• The	fuel	is	comprised	of	50%	𝐶𝑂,	10%	𝐻1,	and	40%	𝑁1	by	volume.

• The	oxidizer	streams	comprised	of	25%	𝑂1	and	75%	𝑁1	by	volume.	

DNS: Temperature (2D) DNS: Temperature (3D)

Simulation/Implementation 
Pele-LM (AMReX)

Combustion	Chemistry	of	Syngas



𝑇 = 𝑡3 𝑇# = 𝑡3 + 250 𝑇% = 𝑡3 + 500 𝑇4 = 𝑡3 + 750 𝑇5 = 𝑡3 + 1000

𝑇 = 1000
𝑇 = 2000…

𝑇 = 9000

𝑇# = 1000 + 250 𝑇% = 1000 + 500 𝑇4 = 1000 + 750 𝑇5 = 1000 + 1000
𝑇# = 2000 + 250 𝑇% = 2000 + 500 𝑇4 = 2000 + 750 𝑇5 = 2000 + 1000

𝑇# = 9000 + 250 𝑇% = 9000 + 500 𝑇4 = 9000 + 750 𝑇5 = 9000 + 1000

Re
cu

rs
iv

e 
In

pu
ts

250×Δ𝑡 500×Δ𝑡 750×Δ𝑡 1000×Δ𝑡

Recursive Inputs

Training	and	Testing



Latent DeepONet

Accuracy	Comparison

Goswami, S., Jagtap, A.D., Babaee, H., Susi, B.T. and Karniadakis, G.E., 2024. Learning stiff chemical kinetics using extended deep neural 
operators. Computer Methods in Applied Mechanics and Engineering, 419, p.116674.



Representative	Plots



Representative	Plots



Accelerating	traditional	methods
Non-linear	microstructure	evolution	of	a	two-phase	mixture	during	Spinodal	decomposition	 𝜕𝜙!

𝜕𝑡 = ∇ ⋅ (𝑀!"∇
𝛿𝐹
𝛿𝜙"

)

High-Fidelity Simulations

25
Oommen,	V.,	Shukla,	K.,	Goswami,	S.,	Dingreville,	R.	and	Karniadakis,	G.E.,	2022.	Learning	two-phase	microstructure	evolution	using	neural	
operators	and	autoencoder	architectures. npj	Computational	Materials, 8(1),	p.190.



Accelerating	traditional	methods
Non-linear	microstructure	evolution	of	a	two-phase	mixture	during	Spinodal	decomposition	

𝜕𝜙!
𝜕𝑡 = ∇ ⋅ (𝑀!"∇

𝛿𝐹
𝛿𝜙"

)

Convolutional 
Autoencoders

(Reduced 
dimension = 100)

Pre-trained 
Transposed 

Convolutional 
decoder

𝜙7

High-Fidelity Simulations

26
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Accelerating	traditional	methods

Interpolation Error

Extrapolation Error
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Key Takeaways

• Latent	DeepONet	is	beneficial	for	time	dependent	problems	that	can	be	represented
in	lower-order	manifold.	

• The	training	time	of	the	autoencoder	and	the	latent	DeepONet	is	less	than	the	training	
						time	of	DeepONet	on	high-dimensional	data.

• Standalone	deep	learning	frameworks	are	not	enough.	Integrating	with	numerical	
methods	expands	the	application	horizon	of	SciML.

• Future	work:	Integrating	Physics	with	the	L-DeepONet	architecture



Thank	you!
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