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Plan for this lecture

1 Background

2 Counterexamples

3 Modified sparse forms

4 Weighted estimates; modified maximal functions

5 Commutators
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A Dyadic Operator

Definition (Haar Functions)

Fix a dyadic grid D on R. Let I ∈ D. Define the Haar function associated
to I

hI (x) =
1√
|I |

(
1I−(x)− 1I+(x)

)
where I− denotes the left “child” of I and I+ denotes the right child.
Recall that {hI}I∈D is an orthonormal basis for L2(R).

Definition (Dyadic Hilbert Transform)

The dyadic Hilbert transform is the operator

XDf (x) =
∑
I∈D

⟨f , hI ⟩(hI−(x)− hI+(x)), f ∈ L2(R), x ∈ R.
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Motivation

• S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts
XDα,r over translations α and dilations r .

Theorem (S. Petermichl)

There exists a constant c0 ̸= 0 so that

c0
t − x

= lim
L→∞

1

2 log L

∫ L

1/L

lim
R→∞

1

2R

∫ R

−R

Kα,r (t, x) dα
dr

r

where Kα,r is the integral kernel of XDα,r .

Recall that (continuous) Hilbert transform H : Lp(w) → Lp(w) iff w satisfies the
Muckenhoupt Ap(R) condition

[w ]Ap(R) := sup
I⊂R

(
1

|I |

∫
I

w(x) dx

)(
1

|I |

∫
I

w−1/(p−1)(x) dx

)p−1

< ∞

Determining the sharp dependence of ∥H∥Lp(w) (and more generally for generic CZO) on
the weight characteristic was a major problem in harmonic analysis with important
connections to PDE (Beltrami equation)
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A2 Theorem

• Key Point: Petermichl’s averaging result reduces the A2 problem to
dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant C > 0 so that for all w ∈ A2(R) and
f ∈ L2(w),

∥Hf ∥L2(w) ≤ C [w ]A2(R)∥f ∥L2(w).

Moreover, the dependence on the weight characteristic is sharp.

• Hytönen proved the analogous result for general CZOs on Rn. His
argument again relied on showing T is a suitable average of dyadic shift
operators (which can be more complicated than XD in general).
• Natural question: what happens if we change Lebesgue measure on R
(or Rn) to some arbitrary Borel measure µ?
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Non-homogeneous measures

1 If µ is a Borel measure on Rn that satisfies the doubling condition
µ(B(x , 2r)) ≲ µ(B(x , r)), the theory for continuous CZOs and dyadic
shifts is basically the same.

2 On the continuous side, a very satisfactory analog of CZ theory has
been developed for measures with polynomial growth
(µ(B(x , r)) ≲ rd for d ≤ n) (Nazarov-Treil-Volberg, Tolsa).

3 Lopez-Sanchez, Martell, and Parcet [LSMP] considered an
appropriate variant of the dyadic Hilbert transform :

Hµ
Df (x) =

∑
I∈D

⟨f , hI ⟩
(
hI−(x)− hI+(x)

)
.

with Haar functions defined to be orthonormal in L2(µ) (I will often
drop the µ later). They characterized the measures for which HD is
bounded on Lp(µ) (L2(µ) comes for free).

.
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LSMP Results

Definition (Haar Function)

Given I ∈ D, define the Haar function associated to I :

hI (x) =
√
m(I )

(
1I−(x)

µ(I−)
− 1I+(x)

µ(I+)

)
.

where

m(I ) =
µ(I−)µ(I+)

µ(I )
∼ min{µ(I−), µ(I+)}.

Definition

We say that µ is balanced (m-equilibrated in original article) if there exists an
independent constant C > 0 so

1

C
m(I ) ≤ m(Î ) ≤ Cm(I )

for all I ∈ D, where Î denotes the dyadic parent of I .
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LSMP (continued)

Theorem (LSMP)

The operator Hµ
D, and its adjoint, map continuously L1(µ) into L1,∞(µ)

(or Lp(µ) to itself for all 1 < p < ∞) if and only if µ is balanced.

[LSMP] provides examples that show that there is no containment
relationship between: balanced and polynomial growth measures.
Specifically,

There exists µ balanced, not dyadically doubling, not of polynomial
growth.

There exists µ, of polynomial growth, but not balanced (nor
“increasing”/“decreasing”)

Additional assumptions on the measure in Rn: µ is atomless, finite and
nonzero on each cube, and infinite on each “quadrant”. (Today: n = 1.)
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Sparse Domination

1 Sparse domination has emerged in modern harmonic analysis as a key
tool in proving sharp weighted inequalities.

2 General principle: dominate (either pointwise or in L2 pairing) a
complicated operator by a simple, positive dyadic averaging operator.

3 There are versions of sparse domination for both continuous and
dyadic operators.

Definition (Dyadic Sparse Collection)

Let η ∈ (0, 1). A collection of dyadic intervals S ⊊ D is said to be
η-sparse, if for each I ∈ S, there exists a measurable subset EI satisfying
µ(EI ) ≥ ηµ(I ) and moreover the collection {EJ}J∈S is pairwise disjoint .
Equivalently (as long as µ is atomless), there exists a constant Λ > 0 so
that for all I ∈ D: ∑

J⊆I :
J∈S

µ(J) ≤ Λµ(I ).
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Picture of Sparse Collection
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Dyadic Shifts

Definition (Haar shift of complexity (s, t))

For integers s, t > 0, define

T s,t,αf (x) =
∑
I∈D

∑
J∈Ds(I )

∑
K∈Dt(I )

αI
J,K ⟨f , hJ⟩hK .

Pairing ⟨·, ·⟩ (and integral averages ⟨·⟩I ) are taken with respect to µ:

⟨f , g⟩ =
∫
R
f (x)g(x)dµ(x), ⟨f ⟩I =

1

µ(I )

∫
I
f (x)dµ(x).

• Question:

⟨|T s,t,αf , g⟩| ≲
∑
I∈S

⟨f ⟩I ⟨g⟩I µ(I ) =: AS(f , g)? (Sparse)

Here, S is sparse family of dyadic intervals and f , g non negative. This
result is true in the Lebesgue (or doubling) measure case (Culiuic, Di
Plinio, Ou)
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Counterexamples

Theorem (Counterexample, CAPW)

There exists a balanced measure µ on [0, 1] s.t. HD fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (µ,w) where µ is balanced, w ∈ AD
2 (µ) and HD is not

bounded on L2(w dµ).

• For CZ operators, the A2(µ) condition is not necessary (Tolsa, 2007). For
dyadic operators, AD

2 (µ) condition is not sufficient for the boundedness of HD.

•[CAPW] also gives positive results: modified sparse domination result, and a
suitably modified Ap class that is both necessary and sufficient. The modified
sparse bound is in some sense “as useful” because it still allows for a proof of Lp

and weak-type estimates (re-proving [LSMP] results).
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suitably modified Ap class that is both necessary and sufficient. The modified
sparse bound is in some sense “as useful” because it still allows for a proof of Lp

and weak-type estimates (re-proving [LSMP] results).
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Picture of Counterexample
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Modification for a generic Haar shift

Let α = {αI
J,K}I ,J,K∈D be a bounded sequence, i.e., assume

∥α∥ℓ∞ ≤ 1. Recall, for s, t ∈ N, a dyadic shift of complexity (s, t) is:

T s,t,αf (x) =
∑
I∈D

∑
J∈Ds(I )

∑
K∈Dt(I )

αI
J,K ⟨f , hJ⟩hK .

For a sparse S ⊊ D and f , g ∈ L2(dµ) non-negative, set
AS(f , g) :=

∑
I∈S⟨f ⟩I ⟨g⟩Iµ(I ).

We need new sparse forms associated to the collection S that reflect
the complexity of the operator.

Definition (Dyadic Distance)

Define the dyadic distance between two intervals I , J ∈ D that share a common ancestor:

distD(I , J) := min
(s,t):I (s)=J(t)

(s + t).

Note that distD(I , J) = 0 if and only if I = J.
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Definition (Sparse forms associated to higher complexities)

Given S, N ∈ N, and f1, f2 ∈ L2(dµ), define:

CN
S (f1, f2) :=

∑
J,K∈S:

2<distD(J,K)≤N+2,
J∩K=∅

⟨f1⟩J⟨f2⟩K
√

m(J)
√
m(K ).
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Theorem (CAPW)

Let µ be balanced, ∥α∥ℓ∞ ≤ 1 and N ∈ Z+. There exist constants C > 0
and η ∈ (0, 1) (independent of α) so that for each pair of compactly
supported, bounded nonnegative functions f1, f2 there exists an η-sparse
collection S ⊂ D such that for any integers s, t satisfying s + t ≤ N, we
have the estimate

∣∣⟨T s,t,α f1, f2⟩
∣∣ ≤ C

(
AS(f1, f2) + CN

S (f1, f2)
)
.
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Hilbert Transform and Adjoint

Let µ be balanced. There exists C > 0 and η ∈ (0, 1) so that for f1, f2,
compactly supported, bounded nonnegative functions there exists an
η-sparse collection S ⊂ D:

|⟨HDf1, f2⟩|+ |⟨H∗
Df1, f2⟩| ≤ C

(∑
I∈S

⟨f1⟩I ⟨f2⟩Iµ(I ) +
∑
I∈S:
I s−∈S

⟨f1⟩I ⟨f2⟩I s−m(I )

+
∑
I∈S:
I s+∈S

⟨f1⟩I ⟨f2⟩I s+m(I ) +
∑
I∈S:
I s−∈S

⟨f2⟩I ⟨f1⟩I s−m(I )

+
∑
I∈S:
I s+∈S

⟨f2⟩I ⟨f1⟩I s+m(I )

)
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Tools Used in Proof

Use a modified CZ decomposition ([LSMP]), together with our
observation about the “good” function (not L∞).

Recall for ordinary CZD, we write f = g + b, where g is “good” and
belongs to L∞ and b is “bad” but supported on an exceptional set we
can control and has cancellation.

The lack of doubling in the measure µ means we can no longer
achieve g ∈ L∞.

Definition (Dyadic BMO)

b belongs to BMOD (dyadic BMO) if

∥f ∥BMOD := sup
I∈D

1

µ(I )

∫
I
|f − ⟨f ⟩

Î
| dµ < ∞.

This is the same definition of BMO that arises from martingales.
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Construction of Sparse Set

Let f1, f2 be bounded nonnegative functions supported on I0. For I ⊂ I0
dyadic, let B(I ) denote the selected intervals in the CZ decomposition
applied to f11I and f21I at heights λ1 = 16⟨f1⟩I and λ2 = 16⟨f2⟩I .

Set S1 = B(I0) = {I 0k }. Repeat this process on each of the disjoint I 0k . Set
S2 =

⋃
I∈S1

B(I ). In general,

Sj =
⋃

I∈Sj−1

B(I ) and set S = {I0} ∪
∞⋃
j=1

Sj

To prove sparse, using the fact that the intervals in the sum are pairwise
disjoint:

∑
J∈Sj+1:
J⊂I

µ(J) ≤ µ(I )

16

∑
J∈Sj+1:
J⊂I

(∫
J f1 dµ∫
I f1 dµ

+

∫
J f2 dµ∫
I f2 dµ

)
≤ µ(I )

8
.
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Lp Estimates

We can use modified sparse forms to get weighted estimates: First,
need to collect some properties, and introduce some new maximal
functions.

Recall the notation CN
S (f1, f2) for the “extra terms” in our modified

sparse form. We begin by recovering the main result in [LSMP]. For a
balanced µ, we have:

Theorem (CAPW)

Given a balanced µ, a sparse collection S, and N ∈ N, there exists Cp

depending only on p, the parameter η associated to S, and the µ, s.t. for
f1 ≥ 0 ∈ Lp(dµ) and f2 ≥ 0 ∈ Lp

′
(dµ):

AS(f1, f2) + CS,N(f1, f2) ≤ Cp∥f1∥Lp(dµ)∥f2∥Lp′ (dµ).
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Proof of Lp Estimate

Reduction: To begin the proof, label the dyadic intervals J ∈ D(I ,N +2),
for which J ∩ I = ∅ and 2 < distD(I , J) ≤ N + 2 as
c1(I ), c2(I ), · · · , cN′(I ), and we need to show:∑

I∈S:
cj (I )∈S

⟨f1⟩I ⟨f2⟩cj (I )
√

m(I )m(cj(I )) ≤ Cp∥f1∥Lp(dµ)∥f2∥Lp′ (dµ).

Because µ is balanced:
√

m(I )m(cj(I )) ≲ m(I )1/pm(cj(I ))
1/p′

and now proceed, using Hölder, and the dyadic maximal function, as in the
usual sparse form.
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Weights and modified maximal functions

To prove the weighted estimates, we need to define a new maximal
function.

To that end, define (upper bounded) constants for I , J dyadic intervals
and 1 ≤ p < ∞.

Cp(I , J) =

{
1 I = J(
m(I )p/2m(J)p/2

µ(J)µ(I )p−1

)
otherwise.

Observe that

C1(I , J) =

√
m(I )m(J)

µ(J)
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A Modified Dyadic Maximal Function

Definition (New Dyadic Maximal)

Given N ∈ N, define the following maximal dyadic operator for
f ∈ L1(dµ):

MN
D f (x) := sup

I ,J∈D:
distD(I ,J)≤N+2

C1(I , J)⟨|f |⟩I1J(x)

√
m(I )m(J)

µ(J) ≲ m(J)
µ(J) ≲ 1

MN
D is bounded on Lp(dµ) for 1 < p ≤ ∞ and is weak-type (1, 1).

MN
D admits a (modified) sparse domination.

Can use sparse domination result plus weak-type bound for maximal
operator to provide a new proof for the weak-type estimate for a
dyadic shift wrt balanced measure .
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Weighted estimates

Let w(x) dµ(x) be an absolutely continuous, locally finite, positive
measure w.r.t. µ.

Want weighted Lp estimates for dyadic shift operators T s,t,α. - our
new weight classes characterize boundedness of dyadic shifts, as well
as MN

D . (For doubling measures, the classes are equal.)

Definition

Let w be a weight on R w.r.t. µ, p ∈ (1,∞) and N ∈ Z+. We say
w ∈ AN

p if

[w ]AN
p
:= sup

I ,J∈D:
0≤distD(J,K)≤N+2

Cp(I , J)
(
⟨w⟩I ⟨w1−p′

⟩p−1
J

)
< ∞.
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Properties of Weights

If w ∈ AN
p , [w ]Ap ≤ [w ]AN

p
for any N ∈ N, so that AN

p ⊂ Ap. The

containment is, in general, strict for N ≥ 1 (recall previous example).

As sets, AN
p = AM

p if N,M ≥ 1. We call the single class Ab
p. However,

the weight characteristics are not quantitatively equivalent (the
constants depend on the complexity in an essential way)

w ∈ AN
p if and only if w1−p′ ∈ AN

p′ .

Rubia de Francia extrapolation does hold for these weight classes.

There is also a natural endpoint class of weights when p = 1.
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Main Weighted Theorem

Theorem (CAPW)

Let p ∈ (1,∞) and N ∈ N. There exists a constant C such that all
operators

T ∈
⋃

s,t∈N:
s+t≤N

HS(s, t)

satisfy
∥T∥Lp(wdµ)→Lp(wdµ) ≤ C

if and only if w ∈ Ab
p(µ).

Also have weighted estimates for new maximal function and p = 1.
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A New Operator and Measure Condition

Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the
following new dyadic analog of the Hilbert transform:

H : L2(R) → L2(R), H(hI ) = hI s · sign(I )

Unlike X, H satisfies H2 = −I .

In the biparameter (but still Lebesgue) setting, showed that this operator
can be used to characterize little BMO.

Motivation: Can this operator be used to characterize dyadic BMO in the
non-homogeneous setting?

First: a new (slightly weaker) condition on the measure called sibling
balanced actually characterizes Lp(µ) bounds for H:

m(I ) ∼ m(I s), I ∈ D.
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Commutator Bounds

Somewhat surprisingly and subtly, the commutator characterization of
dyadic BMO fails in the non-homogeneous setting!

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let µ be sibling balanced, b ∈ BMOD and 1 < p < ∞.

Upper estimate:
∥[H, b]∥Lp(µ)→Lp(µ) ≲ ∥b∥BMOD .

Lower estimate:

∥b∥BMOD ≲ ∥[H, b]∥Lp(µ)→Lp(µ) + sup
k∈Z

∥[H,Ekb]∥Lp(µ)→Lp(µ).

Failure of lower estimate in general: The estimate

∥b∥BMOD ≲ ∥[H, b]∥L2(µ)→L2(µ)

fails in general, even if we allow the implicit constant to depend on µ.
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Weighted Estimates for Commutators with Dyadic Shifts

Key Point: The identification of a non-homogeneous weight class, which
we call Âp(µ) that satisfies a reverse Hölder inequality and characterizes
dyadic BMO.

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let µ be a locally finite Borel measure on R satisfying µ(I ) > 0 for all
I ∈ D.

(a) Suppose w ∈ Â2(µ). Then the function logw ∈ BMOD. Conversely,
suppose b ∈ BMOD. Then for sufficiently small δ > 0, the weight
function eδb belongs to Â2(µ).

(b) Let 1 < p < ∞ and w ∈ Âp(µ). Then there exists γ > 1, depending
only on p and [w ]

Âp(µ)
, so that for all I ∈ D,

(
1

µ(I )

∫
I
wγ dµ

)1/γ

≲w

(
1

µ(I )

∫
I
w dµ

)
.
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Weighted Commutator Theorem

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let µ be sibling balanced and atomless. Let 1 < p < ∞, b ∈ BMOD, and
w ∈ Âp(µ). Then there holds

∥[H, b]∥Lp(ω)→Lp(w) ≲[w ]
Âp(µ)

,p ∥b∥BMOD .
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Thanks

Many thanks to the organizers, specifically, Sergei Treil, for the kind
invitation.

Thanks to all of you for your attention!
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New CZD

Lemma

Let f1, f2 ∈ L1(dµ) be nonnegative; supported on I and λ1, λ2 > 0. Then
there exist gj , bj s.t. fj = gj + bj for j = 1, 2 and satisfying:

1 There exist pairwise disjoint, dyadic intervals {Ik} ⊂ D(I ) s.t.
bj =

∑∞
k=1 bj ,k where each bj ,k is supported on Îk ,

∫
Îk
bj ,k = 0, and

∥bj ,k∥L1(dµ) ≲
∫
Ik
|fj | dµ for j = 1, 2.

So, for j = 1, 2 we have

bj ,k = fj1Ik − ⟨fj1Ik ⟩Îk1Îk .

2 For j = 1, 2, the function gj ∈ Lp(dµ) for all 1 ≤ p < ∞ and satisfies

∥gj∥pLp(dµ) ≤ Cpλ
p−1
j ∥fj∥L1(µ).

3 For j = 1, 2 the function gj ∈ BMOD and ∥gj∥BMOD ≤ λj .
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Iteration Lemma

Lemma

Suppose µ is balanced, I0 ∈ D, and that Tm,n
s,t,α as before. Set N = s + t. Let f1, f2

be bounded nonnegative functions supported on I0. For any I ⊂ I0 dyadic, let
B(I ) denote the selected intervals in the Calderón-Zygmund decomposition
applied to f11I and f21I at heights λ1 = 16⟨f1⟩I and λ2 = 16⟨f2⟩I , and let

G(I ) := {J ∈ D(I ) : J ̸⊂ K for any K ∈ B(I )}.

Then, the following estimate holds:∣∣∣∣∣∣
∑

J∈G(I )

αJ
Jns ,J

m
t
⟨f1, hJms ⟩⟨hJnt , f2⟩

∣∣∣∣∣∣
≲

(
⟨f1⟩I ⟨f2⟩Iµ(I ) +

∑
S∈Bs (I ),T∈Bt (I ):
distD(S,T )≤N+2

⟨f1⟩S⟨f2⟩T
√

m(S)
√

m(T )

)
.
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