Dyadic shifts, sparse domination, and commutators in the non-doubling setting

Nathan Wagner¹ [Joint with T. Borges (BrownU), J. Conde Alonso (UAMadrid), and J. Pipher (BrownU)]

> Department of Mathematics Brown University

December 12, 2024, Harmonic Analysis and Convexity at ICERM

1/34 1 Supported in part by National Science Foundation grant DMS=2203272 = \circ ۹۹۰ $\frac{1}{34}$

A Dyadic Operator

Definition (Haar Functions)

Fix a dyadic grid D on R. Let $I \in \mathcal{D}$. Define the Haar function associated to I

$$
h_I(x) = \frac{1}{\sqrt{|I|}} \left(\mathbb{1}_{I_{-}}(x) - \mathbb{1}_{I_{+}}(x) \right)
$$

where $I_-\,$ denotes the left "child" of I and $I_+\,$ denotes the right child. Recall that $\{h_l\}_{l\in\mathcal{D}}$ is an orthonormal basis for $L^2(\mathbb{R}).$

A Dyadic Operator

Definition (Haar Functions)

Fix a dyadic grid D on R. Let $I \in \mathcal{D}$. Define the Haar function associated to I

$$
h_I(x) = \frac{1}{\sqrt{|I|}} \left(\mathbb{1}_{I_{-}}(x) - \mathbb{1}_{I_{+}}(x) \right)
$$

where $I_-\$ denotes the left "child" of $I_+\$ and $I_+\$ denotes the right child. Recall that $\{h_l\}_{l\in\mathcal{D}}$ is an orthonormal basis for $L^2(\mathbb{R}).$

Definition (Dyadic Hilbert Transform)

The dyadic Hilbert transform is the operator

$$
\mathrm{III}_{\mathcal{D}}f(x)=\sum_{I\in\mathcal{D}}\langle f,h_I\rangle(h_{I_{-}}(x)-h_{I_{+}}(x)),\quad f\in L^2(\mathbb{R}), x\in\mathbb{R}.
$$

3/34

 $\frac{3}{34}$

Motivation

• S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts $\mathop{\rm III}\nolimits_{\mathcal{D}^{\alpha,r}}$ over translations α and dilations r.

Motivation

• S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts $\mathop{\rm III}\nolimits_{\mathcal{D}^{\alpha,r}}$ over translations α and dilations r.

Theorem (S. Petermichl)

There exists a constant $c_0 \neq 0$ so that

$$
\frac{c_0}{t-x} = \lim_{L \to \infty} \frac{1}{2 \log L} \int_{1/L}^{L} \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} K^{\alpha,r}(t,x) d\alpha \frac{dr}{r}
$$

where $K^{\alpha,r}$ is the integral kernel of $\mathop{\rm III}\nolimits_{{\cal D}^{\alpha,r}}.$

Motivation

• S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts $\mathop{\amalg}\nolimits_{\mathcal{D}^{\alpha,r}}$ over translations α and dilations r.

Theorem (S. Petermichl)

There exists a constant $c_0 \neq 0$ so that

$$
\frac{c_0}{t-x} = \lim_{L \to \infty} \frac{1}{2 \log L} \int_{1/L}^{L} \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} K^{\alpha,r}(t,x) d\alpha \frac{dr}{r}
$$

where $K^{\alpha,r}$ is the integral kernel of $\mathop{\rm III}\nolimits_{{\cal D}^{\alpha,r}}.$

Recall that (continuous) Hilbert transform $H: L^p(w) \to L^p(w)$ iff w satisfies the Muckenhoupt $A_p(\mathbb{R})$ condition

$$
[w]_{A_p(\mathbb{R})} := \sup_{I \subset \mathbb{R}} \left(\frac{1}{|I|} \int_I w(x) \, dx \right) \left(\frac{1}{|I|} \int_I w^{-1/(p-1)}(x) \, dx \right)^{p-1} < \infty
$$

4/34 Determining the sharp dependence of $||H||_{L^p(w)}$ (and more generally for generic CZO) on the weight characteristic was a major problem in harmonic analysis with important connections to PDE (Beltrami equation) $\frac{4}{34}$

$\overline{A_2}$ Theorem

• Key Point: Petermichl's averaging result reduces the A_2 problem to dyadic operators, which are easier to deal with.

5/34

A_2 Theorem

• Key Point: Petermichl's averaging result reduces the A_2 problem to dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant $C > 0$ so that for all $w \in A_2(\mathbb{R})$ and $f\in L^2(w)$,

$$
||Hf||_{L^2(w)} \leq C[w]_{A_2(\mathbb{R})}||f||_{L^2(w)}.
$$

Moreover, the dependence on the weight characteristic is sharp.

5/34

A_2 Theorem

• Key Point: Petermichl's averaging result reduces the A_2 problem to dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant $C > 0$ so that for all $w \in A_2(\mathbb{R})$ and $f\in L^2(w)$,

$$
||Hf||_{L^2(w)} \leq C[w]_{A_2(\mathbb{R})}||f||_{L^2(w)}.
$$

Moreover, the dependence on the weight characteristic is sharp.

• Hytönen proved the analogous result for general CZOs on \mathbb{R}^n . His argument again relied on showing T is a suitable average of dyadic shift operators (which can be more complicated than $\mathop{\rm III}\nolimits_{\cal D}$ in general).

5/34

A_2 Theorem

• Key Point: Petermichl's averaging result reduces the A_2 problem to dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant $C > 0$ so that for all $w \in A_2(\mathbb{R})$ and $f\in L^2(w)$,

$$
||Hf||_{L^2(w)} \leq C[w]_{A_2(\mathbb{R})}||f||_{L^2(w)}.
$$

Moreover, the dependence on the weight characteristic is sharp.

• Hytönen proved the analogous result for general CZOs on \mathbb{R}^n . His argument again relied on showing T is a suitable average of dyadic shift operators (which can be more complicated than $III_{\mathcal{D}}$ in general). • Natural question: what happens if we change Lebesgue measure on $\mathbb R$ (or \mathbb{R}^n) to some arbitrary Borel measure μ ?

 \bullet If μ is a Borel measure on \mathbb{R}^n that satisfies the *doubling condition* $\mu(B(x, 2r)) \lesssim \mu(B(x, r))$, the theory for continuous CZOs and dyadic shifts is basically the same.

6/34

- \bullet If μ is a Borel measure on \mathbb{R}^n that satisfies the *doubling condition* $\mu(B(x, 2r)) \leq \mu(B(x, r))$, the theory for continuous CZOs and dyadic shifts is basically the same.
- 2 On the continuous side, a very satisfactory analog of CZ theory has been developed for measures with polynomial growth $(\mu(B(x,r)) \lesssim r^d$ for $d \leq n)$ (Nazarov-Treil-Volberg, Tolsa).

6/34

- \bullet If μ is a Borel measure on \mathbb{R}^n that satisfies the *doubling condition* $\mu(B(x, 2r)) \leq \mu(B(x, r))$, the theory for continuous CZOs and dyadic shifts is basically the same.
- 2 On the continuous side, a very satisfactory analog of CZ theory has been developed for measures with polynomial growth $(\mu(B(x,r)) \lesssim r^d$ for $d \leq n)$ (Nazarov-Treil-Volberg, Tolsa).
- ³ Lopez-Sanchez, Martell, and Parcet [LSMP] considered an appropriate variant of the dyadic Hilbert transform :

$$
H_{\mathcal{D}}^{\mu}f(x)=\sum_{I\in\mathcal{D}}\langle f,h_{I}\rangle\big(h_{I_{-}}(x)-h_{I_{+}}(x)\big).
$$

with Haar functions defined to be $\bm{orthonormal}$ in $L^2(\mu)$ (I will often drop the μ later). They characterized the measures for which $H_{\mathcal{D}}$ is bounded on $L^p(\mu)$ $(L^2(\mu)$ comes for free).

6/34

 $\frac{1}{2}$, $\frac{1}{2}$,

.

LSMP Results

Definition (Haar Function)

Given $I \in \mathcal{D}$, define the Haar function associated to I:

$$
h_I(x) = \sqrt{m(I)} \left(\frac{\mathbb{1}_{I_{-}}(x)}{\mu(I_{-})} - \frac{\mathbb{1}_{I_{+}}(x)}{\mu(I_{+})} \right).
$$

where

$$
m(I) = \frac{\mu(I_-)\mu(I_+)}{\mu(I)} \sim \min\{\mu(I_-), \mu(I_+)\}.
$$

 \leftarrow \Box \rightarrow

7/34

LSMP Results

Definition (Haar Function)

Given $I \in \mathcal{D}$, define the Haar function associated to I:

$$
h_I(x) = \sqrt{m(I)} \left(\frac{\mathbb{1}_{I_{-}}(x)}{\mu(I_{-})} - \frac{\mathbb{1}_{I_{+}}(x)}{\mu(I_{+})} \right).
$$

where

$$
m(I) = \frac{\mu(I_-)\mu(I_+)}{\mu(I)} \sim \min\{\mu(I_-), \mu(I_+)\}.
$$

Definition

We say that μ is *balanced* (m-equilibrated in original article) if there exists an independent constant $C > 0$ so

$$
\frac{1}{C}m(I)\leq m(\widehat{I})\leq Cm(I)
$$

for all $I \in \mathcal{D}$, where \hat{I} denotes the dyadic parent of I.

7/34

December 12, 2024, Harmonic Analysis (34,

Theorem (LSMP)

The operator $H_{\mathcal{D}}^{\mu}$ $_{\mathcal{D}}^{\mu}$, and its adjoint, map continuously $\mathsf{\mathcal{L}}^1(\mu)$ into $\mathsf{\mathcal{L}}^{1,\infty}(\mu)$ (or $L^p(\mu)$ to itself for all $1 < p < \infty$) if and only if μ is balanced.

8/34

Theorem (LSMP)

The operator $H_{\mathcal{D}}^{\mu}$ $_{\mathcal{D}}^{\mu}$, and its adjoint, map continuously $\mathsf{\mathcal{L}}^1(\mu)$ into $\mathsf{\mathcal{L}}^{1,\infty}(\mu)$ (or $L^p(\mu)$ to itself for all $1 < p < \infty$) if and only if μ is balanced.

[LSMP] provides examples that show that there is no containment relationship between: balanced and polynomial growth measures. Specifically,

• There exists μ balanced, not dyadically doubling, not of polynomial growth.

8/34

Theorem (LSMP)

The operator $H_{\mathcal{D}}^{\mu}$ $_{\mathcal{D}}^{\mu}$, and its adjoint, map continuously $\mathsf{\mathcal{L}}^1(\mu)$ into $\mathsf{\mathcal{L}}^{1,\infty}(\mu)$ (or $L^p(\mu)$ to itself for all $1 < p < \infty$) if and only if μ is balanced.

[LSMP] provides examples that show that there is no containment relationship between: balanced and polynomial growth measures. Specifically,

- There exists μ balanced, not dyadically doubling, not of polynomial growth.
- There exists μ , of polynomial growth, but not balanced (nor "increasing"/"decreasing")

8/34

Theorem (LSMP)

The operator $H_{\mathcal{D}}^{\mu}$ $_{\mathcal{D}}^{\mu}$, and its adjoint, map continuously $\mathsf{\mathcal{L}}^1(\mu)$ into $\mathsf{\mathcal{L}}^{1,\infty}(\mu)$ (or $L^p(\mu)$ to itself for all $1 < p < \infty$) if and only if μ is balanced.

[LSMP] provides examples that show that there is no containment relationship between: balanced and polynomial growth measures. Specifically,

- There exists μ balanced, not dyadically doubling, not of polynomial growth.
- There exists μ , of polynomial growth, but not balanced (nor "increasing"/"decreasing")

Additional assumptions on the measure in \mathbb{R}^n : μ is atomless, finite and nonzero on each cube, and infinite on each "quadrant". (Today: $n = 1$.)

8/34

1 Sparse domination has emerged in modern harmonic analysis as a key tool in proving sharp weighted inequalities.

9/34

 $\frac{9}{34}$

- **•** Sparse domination has emerged in modern harmonic analysis as a key tool in proving sharp weighted inequalities.
- \bullet General principle: dominate (either pointwise or in L^2 pairing) a complicated operator by a simple, positive dyadic averaging operator.

9/34

 $\frac{9}{34}$

- **•** Sparse domination has emerged in modern harmonic analysis as a key tool in proving sharp weighted inequalities.
- \bullet General principle: dominate (either pointwise or in L^2 pairing) a complicated operator by a simple, positive dyadic averaging operator.
- **3** There are versions of sparse domination for both continuous and dyadic operators.

9/34

 $\frac{9}{34}$

- **•** Sparse domination has emerged in modern harmonic analysis as a key tool in proving sharp weighted inequalities.
- \bullet General principle: dominate (either pointwise or in L^2 pairing) a complicated operator by a simple, positive dyadic averaging operator.
- **3** There are versions of sparse domination for both continuous and dyadic operators.

Definition (Dyadic Sparse Collection)

Let $\eta \in (0,1)$. A collection of dyadic intervals $S \subsetneq \mathcal{D}$ is said to be η -sparse, if for each $I \in S$, there exists a measurable subset E_I satisfying $\mu(E_I) \geq \eta \mu(I)$ and moreover the collection $\{E_J\}_{J \in \mathcal{S}}$ is pairwise disjoint. Equivalently (as long as μ is atomless), there exists a constant $\Lambda > 0$ so that for all $I \in \mathcal{D}$:

 $\sum \mu(J) \leq \Lambda \mu(I).$ J⊆I: J∈S

9/34

December 12, 2024, Harmonic Analysis 34

Picture of Sparse Collection

10/34

●■■

Definition (Haar shift of complexity (s, t))

For integers $s, t > 0$, define

$$
\mathcal{T}^{s,t,\alpha} f(x) = \sum_{l \in \mathcal{D}} \sum_{J \in \mathcal{D}_s(l)} \sum_{K \in \mathcal{D}_t(l)} \alpha'_{J,K} \langle f, h_J \rangle h_K.
$$

Definition (Haar shift of complexity (s, t))

For integers $s, t > 0$, define

$$
\mathcal{T}^{s,t,\alpha} f(x) = \sum_{I \in \mathcal{D}} \sum_{J \in \mathcal{D}_s(I)} \sum_{K \in \mathcal{D}_t(I)} \alpha'_{J,K} \langle f, h_J \rangle h_K.
$$

Pairing $\langle \cdot, \cdot \rangle$ (and integral averages $\langle \cdot \rangle$) are taken with respect to μ :

$$
\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x) d\mu(x), \quad \langle f \rangle_I = \frac{1}{\mu(I)} \int_I f(x) d\mu(x).
$$

11/34

 \overline{C} 2024, Harmonic Analysis and Convexity at ICERM \overline{C}

Definition (Haar shift of complexity (s, t))

For integers $s, t > 0$, define

$$
\mathcal{T}^{s,t,\alpha} f(x) = \sum_{I \in \mathcal{D}} \sum_{J \in \mathcal{D}_s(I)} \sum_{K \in \mathcal{D}_t(I)} \alpha'_{J,K} \langle f, h_J \rangle h_K.
$$

Pairing $\langle \cdot, \cdot \rangle$ (and integral averages $\langle \cdot \rangle$) are taken with respect to μ :

$$
\langle f, g \rangle = \int_{\mathbb{R}} f(x)g(x)d\mu(x), \quad \langle f \rangle_I = \frac{1}{\mu(I)} \int_I f(x)d\mu(x).
$$

• Question:

$$
\langle |T^{s,t,\alpha}f,g\rangle| \lesssim \sum_{l\in\mathcal{S}} \langle f\rangle_{l} \langle g\rangle_{l} \mu(l) =: \mathcal{A}_{\mathcal{S}}(f,g)?
$$
 (Sparse)

11/34

Here, S is sparse family of dyadic intervals and f, g non negative. This result is true in the Lebesgue (or doubling) measure case (Culiuic, Di Plinio, Ou) \overline{C} 2024, Harmonic Analysis and Convexity at ICERM \overline{C}

There exists a balanced measure μ on [0, 1] s.t. H_D fails (Sparse).

Weighted estimates?

There exists a balanced measure μ on [0, 1] s.t. H_D fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (μ, w) where μ is balanced, $w \in A_2^{\mathcal{D}}(\mu)$ and $H_{\mathcal{D}}$ is not bounded on $L^2(w d\mu)$.

12/34

 $\frac{12}{34}$

There exists a balanced measure μ on [0, 1] s.t. H_D fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (μ, w) where μ is balanced, $w \in A_2^{\mathcal{D}}(\mu)$ and $H_{\mathcal{D}}$ is not bounded on $L^2(w d\mu)$.

• For CZ operators, the $A_2(\mu)$ condition is not necessary (Tolsa, 2007). For dyadic operators, $A_2^{\mathcal{D}}(\mu)$ condition is not sufficient for the boundedness of $H_{\mathcal{D}}.$

12/34

 $\frac{12}{34}$

There exists a balanced measure μ on [0, 1] s.t. H_D fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (μ, w) where μ is balanced, $w \in A_2^{\mathcal{D}}(\mu)$ and $H_{\mathcal{D}}$ is not bounded on $L^2(w d\mu)$.

• For CZ operators, the $A_2(\mu)$ condition is not necessary (Tolsa, 2007). For dyadic operators, $A_2^{\mathcal{D}}(\mu)$ condition is not sufficient for the boundedness of $H_{\mathcal{D}}.$ •[CAPW] also gives positive results: modified sparse domination result, and a suitably modified A_p class that is both necessary and sufficient. The modified sparse bound is in some sense "as useful" because it still allows for a proof of L^p and weak-type estimates (re-proving [LSMP] results).

12/34

 $\frac{12}{34}$

Picture of Counterexample

 $+$ $+$

13/34

 $\frac{13}{34}$

Modification for a generic Haar shift

Let $\alpha = \{\alpha^I_{J,K}\}_{I,J,K\in\mathcal{D}}$ be a bounded sequence, i.e., assume $\|\alpha\|_{\ell^{\infty}} \leq 1$. Recall, for $s, t \in \mathbb{N}$, a dyadic shift of complexity (s, t) is:

$$
\mathcal{T}^{s,t,\alpha} f(x) = \sum_{l \in \mathcal{D}} \sum_{J \in \mathcal{D}_s(l)} \sum_{K \in \mathcal{D}_t(l)} \alpha_{J,K}^l \langle f, h_J \rangle h_K.
$$

Modification for a generic Haar shift

Let $\alpha = \{\alpha^I_{J,K}\}_{I,J,K\in\mathcal{D}}$ be a bounded sequence, i.e., assume $\|\alpha\|_{\ell^{\infty}} \leq 1$. Recall, for $s, t \in \mathbb{N}$, a dyadic shift of complexity (s, t) is:

$$
\mathcal{T}^{s,t,\alpha}f(x)=\sum_{l\in\mathcal{D}}\sum_{J\in\mathcal{D}_s(l)}\sum_{K\in\mathcal{D}_t(l)}\alpha_{J,K}^l\langle f,h_J\rangle h_K.
$$

For a sparse $\mathcal{S}\subsetneq\mathcal{D}$ and $f,g\in L^2(d\mu)$ non-negative, set $\mathfrak{A}_{\mathcal{S}}(f,g):=\sum_{I\in\mathcal{S}}\langle f\rangle_{I}\langle g\rangle_{I}\mu(I).$

14/34

 \overline{a} 2024, \overline{a} 2024, \overline{a} 14/34

Modification for a generic Haar shift

Let $\alpha = \{\alpha^I_{J,K}\}_{I,J,K\in\mathcal{D}}$ be a bounded sequence, i.e., assume $\|\alpha\|_{\ell^{\infty}} \leq 1$. Recall, for $s, t \in \mathbb{N}$, a dyadic shift of complexity (s, t) is:

$$
\mathcal{T}^{s,t,\alpha}f(x)=\sum_{l\in\mathcal{D}}\sum_{J\in\mathcal{D}_s(l)}\sum_{K\in\mathcal{D}_t(l)}\alpha_{J,K}^l\langle f,h_J\rangle h_K.
$$

- For a sparse $\mathcal{S}\subsetneq\mathcal{D}$ and $f,g\in L^2(d\mu)$ non-negative, set $\mathfrak{A}_{\mathcal{S}}(f,g):=\sum_{I\in\mathcal{S}}\langle f\rangle_{I}\langle g\rangle_{I}\mu(I).$
- \bullet We need new sparse forms associated to the collection S that reflect the complexity of the operator.

14/34

 \overline{a} 2024, \overline{a} 2024, \overline{a} 14/34
Modification for a generic Haar shift

Let $\alpha = \{\alpha^I_{J,K}\}_{I,J,K\in\mathcal{D}}$ be a bounded sequence, i.e., assume $\|\alpha\|_{\ell^{\infty}} \leq 1$. Recall, for $s, t \in \mathbb{N}$, a dyadic shift of complexity (s, t) is:

$$
\mathcal{T}^{s,t,\alpha}f(x)=\sum_{l\in\mathcal{D}}\sum_{J\in\mathcal{D}_s(l)}\sum_{K\in\mathcal{D}_t(l)}\alpha_{J,K}^l\langle f,h_J\rangle h_K.
$$

- For a sparse $\mathcal{S}\subsetneq\mathcal{D}$ and $f,g\in L^2(d\mu)$ non-negative, set $\mathfrak{A}_{\mathcal{S}}(f,g):=\sum_{I\in\mathcal{S}}\langle f\rangle_{I}\langle g\rangle_{I}\mu(I).$
- \bullet We need new sparse forms associated to the collection S that reflect the complexity of the operator.

Definition (Dyadic Distance)

Define the dyadic distance between two intervals $I, J \in \mathcal{D}$ that share a common ancestor:

$$
dist_{\mathcal{D}}(I,J):=\min_{(s,t):I^{(s)}=J^{(t)}}(s+t).
$$

Note that dist $_D(I, J) = 0$ if and only if $I = J$.

14/34

 \overline{a} 2024, \overline{a} 2024, \overline{a} 14/34

Definition (Sparse forms associated to higher complexities)

Given $\mathcal{S},\ N\in\mathbb{N},$ and $f_1,f_2\in L^2(d\mu),$ define:

$$
\mathfrak{C}_{\mathcal{S}}^N(f_1,f_2):=\sum_{\substack{J,K\in\mathcal{S}:\\ 2<\text{dist}_{\mathcal{D}}(J,K)\leq N+2,\\J\cap K=\emptyset}}\langle f_1\rangle_J\langle f_2\rangle_K\,\sqrt{m(J)}\sqrt{m(K)}.
$$

Definition (Sparse forms associated to higher complexities)

Given $\mathcal{S},\ N\in\mathbb{N},$ and $f_1,f_2\in L^2(d\mu),$ define:

$$
\mathfrak{C}_{\mathcal{S}}^N(f_1,f_2):=\sum_{\substack{J,K\in\mathcal{S}:\\ 2<\text{dist}_{\mathcal{D}}(J,K)\leq N+2,\\J\cap K=\emptyset}}\langle f_1\rangle_J\langle f_2\rangle_K\,\sqrt{m(J)}\sqrt{m(K)}.
$$

Theorem (CAPW)

Let μ be balanced, $\|\alpha\|_{\ell^\infty}\leq 1$ and $\mathsf{N}\in\mathbb{Z}^+.$ There exist constants $\mathsf{C}>0$ and $\eta \in (0,1)$ (independent of α) so that for each pair of compactly supported, bounded nonnegative functions f_1, f_2 there exists an η -sparse collection $S \subset \mathcal{D}$ such that for any integers s, t satisfying $s + t \leq N$, we have the estimate

$$
\left|\langle\mathcal{T}^{s,t,\alpha}f_1,f_2\rangle\right|\leq C\left(\mathfrak{A}_\mathcal{S}(f_1,f_2)+\mathfrak{C}^N_\mathcal{S}(f_1,f_2)\right).
$$

16/34

Hilbert Transform and Adjoint

Let μ be balanced. There exists $C > 0$ and $\eta \in (0,1)$ so that for f_1, f_2 , compactly supported, bounded nonnegative functions there exists an η -sparse collection $\mathcal{S} \subset \mathcal{D}$:

17/34

 $\frac{1}{2}$ $\frac{1}{2}$

Hilbert Transform and Adjoint

Let μ be balanced. There exists $C > 0$ and $\eta \in (0,1)$ so that for f_1, f_2 , compactly supported, bounded nonnegative functions there exists an η -sparse collection $\mathcal{S} \subset \mathcal{D}$:

$$
|\langle H_D f_1, f_2 \rangle| + |\langle H_D^* f_1, f_2 \rangle| \le C \Big(\sum_{I \in S} \langle f_1 \rangle_I \langle f_2 \rangle_I \mu(I) + \sum_{\substack{I \in S:\\|I^s \in S}} \langle f_1 \rangle_I \langle f_2 \rangle_{I^s_+} m(I) + \sum_{\substack{I \in S:\\|I^s_+ \in S}} \langle f_2 \rangle_I \langle f_1 \rangle_{I^s_+} m(I) + \sum_{\substack{I \in S:\\|I^s_+ \in S}} \langle f_2 \rangle_I \langle f_1 \rangle_{I^s_+} m(I) + \sum_{\substack{I \in S:\\|I^s_+ \in S}} \langle f_2 \rangle_I \langle f_1 \rangle_{I^s_+} m(I) \Big)
$$

17/34

 $\frac{1}{2}$ $\frac{1}{2}$

Use a modified CZ decomposition ([LSMP]), together with our observation about the "good" function (not L^{∞}).

- Use a modified CZ decomposition ([LSMP]), together with our observation about the "good" function (not L^{∞}).
- Recall for ordinary CZD, we write $f = g + b$, where g is "good" and belongs to L^{∞} and b is "bad" but supported on an exceptional set we can control and has cancellation.

18/34

- Use a modified CZ decomposition ([LSMP]), together with our observation about the "good" function (not L^{∞}).
- Recall for ordinary CZD, we write $f = g + b$, where g is "good" and belongs to L^{∞} and b is "bad" but supported on an exceptional set we can control and has cancellation.
- The lack of doubling in the measure μ means we can no longer achieve $g \in L^{\infty}$.

18/34

- Use a modified CZ decomposition ([LSMP]), together with our observation about the "good" function (not L^{∞}).
- Recall for ordinary CZD, we write $f = g + b$, where g is "good" and belongs to L^{∞} and b is "bad" but supported on an exceptional set we can control and has cancellation.
- The lack of doubling in the measure μ means we can no longer achieve $g \in L^{\infty}$.

Definition (Dyadic BMO)

b belongs to $BMO_{\mathcal{D}}$ (dyadic BMO) if

$$
\|f\|_{\text{BMO}_{\mathcal{D}}} := \sup_{I \in D} \frac{1}{\mu(I)} \int_I |f - \langle f \rangle_{\widehat{I}}| d\mu < \infty.
$$

18/34

- Use a modified CZ decomposition ([LSMP]), together with our observation about the "good" function (not L^{∞}).
- Recall for ordinary CZD, we write $f = g + b$, where g is "good" and belongs to L^{∞} and b is "bad" but supported on an exceptional set we can control and has cancellation.
- The lack of doubling in the measure μ means we can no longer achieve $g \in L^{\infty}$.

Definition (Dyadic BMO)

b belongs to $BMO_{\mathcal{D}}$ (dyadic BMO) if

$$
\|f\|_{\text{BMO}_{\mathcal{D}}} := \sup_{I \in D} \frac{1}{\mu(I)} \int_I |f - \langle f \rangle_{\widehat{I}}| d\mu < \infty.
$$

This is the same definition of BMO that arises from martingales.

Construction of Sparse Set

Let f_1, f_2 be bounded nonnegative functions supported on I_0 . For $I \subset I_0$ dyadic, let $B(I)$ denote the selected intervals in the CZ decomposition applied to $f_1\mathbb{1}_I$ and $f_2\mathbb{1}_I$ at heights $\lambda_1=16\langle f_1\rangle_I$ and $\lambda_2=16\langle f_2\rangle_I.$

19/34

 $\frac{12}{3}$ 2024, Harmonic Analysis and Convexity at ICERMIN

Construction of Sparse Set

Let f_1, f_2 be bounded nonnegative functions supported on I_0 . For $I \subset I_0$ dyadic, let $\mathcal{B}(I)$ denote the selected intervals in the CZ decomposition applied to $f_1\mathbb{1}_I$ and $f_2\mathbb{1}_I$ at heights $\lambda_1=16\langle f_1\rangle_I$ and $\lambda_2=16\langle f_2\rangle_I.$ Set $\mathcal{S}_1=\mathcal{B} (I_0)=\{I_k^0\}.$ Repeat this process on each of the disjoint $I_k^0.$ Set $S_2 = \bigcup_{I \in S_1} \mathcal{B}(I)$. In general,

$$
\mathcal{S}_j = \bigcup_{l \in \mathcal{S}_{j-1}} \mathcal{B}(l) \text{ and set } \mathcal{S} = \{l_0\} \cup \bigcup_{j=1}^{\infty} \mathcal{S}_j
$$

19/34

 $\frac{12}{3}$ 2024, Harmonic Analysis and Convexity at ICERMIN

Construction of Sparse Set

Let f_1, f_2 be bounded nonnegative functions supported on I_0 . For $I \subset I_0$ dyadic, let $\mathcal{B}(I)$ denote the selected intervals in the CZ decomposition applied to $f_1\mathbb{1}_I$ and $f_2\mathbb{1}_I$ at heights $\lambda_1=16\langle f_1\rangle_I$ and $\lambda_2=16\langle f_2\rangle_I.$ Set $\mathcal{S}_1=\mathcal{B} (I_0)=\{I_k^0\}.$ Repeat this process on each of the disjoint $I_k^0.$ Set $S_2 = \bigcup_{I \in S_1} \mathcal{B}(I)$. In general,

$$
\mathcal{S}_j = \bigcup_{I \in \mathcal{S}_{j-1}} \mathcal{B}(I) \text{ and set } \mathcal{S} = \{I_0\} \cup \bigcup_{j=1}^{\infty} \mathcal{S}_j
$$

To prove sparse, using the fact that the intervals in the sum are pairwise disjoint:

$$
\sum_{\substack{J \in S_{j+1}: \\ J \subset I}} \mu(J) \leq \frac{\mu(I)}{16} \sum_{\substack{J \in S_{j+1}: \\ J \subset I}} \left(\frac{\int_J f_1 d\mu}{\int_I f_1 d\mu} + \frac{\int_J f_2 d\mu}{\int_I f_2 d\mu} \right) \leq \frac{\mu(I)}{8}.
$$

19/34

 $\frac{12}{3}$ 2024, Harmonic Analysis and Convexity at ICERMIN

L^p Estimates

We can use modified sparse forms to get weighted estimates: First, need to collect some properties, and introduce some new maximal functions.

20/34

L^p Estimates

- We can use modified sparse forms to get weighted estimates: First, need to collect some properties, and introduce some new maximal functions.
- Recall the notation $\mathfrak{C}^N_{\mathcal{S}}(f_1,f_2)$ for the "extra terms" in our modified sparse form. We begin by recovering the main result in [LSMP]. For a balanced μ , we have:

20/34

L^p Estimates

- We can use modified sparse forms to get weighted estimates: First, need to collect some properties, and introduce some new maximal functions.
- Recall the notation $\mathfrak{C}^N_{\mathcal{S}}(f_1,f_2)$ for the "extra terms" in our modified sparse form. We begin by recovering the main result in [LSMP]. For a balanced μ , we have:

Theorem (CAPW)

Given a balanced μ , a sparse collection S, and $N \in \mathbb{N}$, there exists C_p depending only on p, the parameter η associated to S, and the μ , s.t. for $f_1\geq 0\in L^p(d\mu)$ and $f_2\geq 0\in L^{p'}(d\mu)$:

 $\mathfrak{A}_\mathcal{S}(f_1,f_2)+\mathfrak{C}_{\mathcal{S},\textsf{N}}(f_1,f_2)\leq \textsf{C}_\rho\|f_1\|_{L^p(d\mu)}\|f_2\|_{L^{p'}(d\mu)}.$

20/34

Proof of L^p Estimate

Reduction: To begin the proof, label the dyadic intervals $J \in \mathcal{D}(I, N+2)$, for which $J \cap I = \emptyset$ and $2 < \text{dist}_{\mathcal{D}}(I, J) \leq N + 2$ as $c_1(I), c_2(I), \cdots, c_{N'}(I)$, and we need to show:

> $\sum \langle f_1 \rangle_I \langle f_2 \rangle_{c_j(I)} \sqrt{m(I) m(c_j(I))} \leq C_p \|f_1\|_{L^p(d\mu)} \|f_2\|_{L^{p'}(d\mu)}.$ I∈S: c^j (I)∈S

21/34

Proof of L^p Estimate

Reduction: To begin the proof, label the dyadic intervals $J \in \mathcal{D}(I, N+2)$, for which $J \cap I = \emptyset$ and $2 < \text{dist}_{\mathcal{D}}(I, J) < N + 2$ as $c_1(I), c_2(I), \cdots, c_{N'}(I)$, and we need to show:

 $\sum \langle f_1 \rangle_I \langle f_2 \rangle_{c_j(I)} \sqrt{m(I) m(c_j(I))} \leq C_p \|f_1\|_{L^p(d\mu)} \|f_2\|_{L^{p'}(d\mu)}.$ I∈S: c^j (I)∈S

Because μ is balanced: $\sqrt{m(I)m(c_j(I))} \lesssim m(I)^{1/p}m(c_j(I))^{1/p'}$

and now proceed, using Hölder, and the dyadic maximal function, as in the usual sparse form.

21/34

Weights and modified maximal functions

To prove the weighted estimates, we need to define a new maximal function.

To that end, define (upper bounded) constants for I, J dyadic intervals and $1 \leq p \leq \infty$.

$$
C_p(I,J) = \begin{cases} 1 & I = J \\ \left(\frac{m(I)^{p/2}m(J)^{p/2}}{\mu(J)\mu(I)^{p-1}}\right) & \text{otherwise.} \end{cases}
$$

22/34

Weights and modified maximal functions

To prove the weighted estimates, we need to define a new maximal function.

To that end, define (upper bounded) constants for I, J dyadic intervals and $1 \leq p < \infty$.

$$
C_p(I,J) = \begin{cases} 1 & I = J \\ \left(\frac{m(I)^{p/2}m(J)^{p/2}}{\mu(J)\mu(I)^{p-1}}\right) & \text{otherwise.} \end{cases}
$$

Observe that

$$
C_1(I,J)=\frac{\sqrt{m(I)m(J)}}{\mu(J)}
$$

22/34

A Modified Dyadic Maximal Function

Definition (New Dyadic Maximal)

Given $N \in \mathbb{N}$, define the following maximal dyadic operator for $f\in L^1(d\mu)$:

> $M_{\mathcal{D}}^N f(x) := \sup_{I,J \in \mathcal{D}:}$ dist $_{\mathcal{D}}(I,J){\leq}N{+}2$ $C_1(I,J)\langle |f| \rangle_I \mathbbm{1}_J(x)$

A Modified Dyadic Maximal Function

Definition (New Dyadic Maximal)

Given $N \in \mathbb{N}$, define the following maximal dyadic operator for $f\in L^1(d\mu)$:

$$
M_{\mathcal{D}}^{N}f(x):=\sup_{\substack{I,J\in\mathcal{D}:\\ \text{dist}_{\mathcal{D}}(I,J)\leq N+2}}C_{1}(I,J)\langle |f|\rangle_{I}\mathbb{1}_{J}(x)
$$

$$
\bullet \ \frac{\sqrt{m(I)m(J)}}{\mu(J)} \lesssim \frac{m(J)}{\mu(J)} \lesssim 1
$$

- $M^N_{\cal D}$ is bounded on $L^p(d\mu)$ for $1< p\leq \infty$ and is weak-type $(1,1).$
- $M^N_{\cal D}$ admits a (modified) sparse domination.
- Can use sparse domination result plus weak-type bound for maximal operator to provide a new proof for the weak-type estimate for a dyadic shift wrt balanced measure .

23/34

Weighted estimates

• Let $w(x) d\mu(x)$ be an absolutely continuous, locally finite, positive measure w.r.t. μ .

Weighted estimates

- Let $w(x) d\mu(x)$ be an absolutely continuous, locally finite, positive measure w.r.t. μ .
- Want weighted L^p estimates for dyadic shift operators $\mathcal{T}^{s,t,\alpha}$. our new weight classes characterize boundedness of dyadic shifts, as well as $M_{\mathcal{D}}^{\mathcal{N}}.$ (For doubling measures, the classes are equal.)

24/34

Weighted estimates

- Let $w(x) d\mu(x)$ be an absolutely continuous, locally finite, positive measure w.r.t. μ .
- Want weighted L^p estimates for dyadic shift operators $\mathcal{T}^{s,t,\alpha}$. our new weight classes characterize boundedness of dyadic shifts, as well as $M_{\mathcal{D}}^{\mathcal{N}}.$ (For doubling measures, the classes are equal.)

Definition

Let w be a weight on \R w.r.t. μ , $\rho \in (1,\infty)$ and $\mathsf{N} \in \mathbb{Z}^+$. We say $w \in A_p^N$ if

$$
[w]_{A_p^N} := \sup_{\substack{I,J \in \mathcal{D}: \\ 0 \leq \text{dist}_{\mathcal{D}}(J,K) \leq N+2}} C_p(I,J) \left(\langle w \rangle_I \langle w^{1-p'} \rangle_J^{p-1} \right) < \infty.
$$

24/34

If $w\in A_p^N$, $[w]_{A_p}\leq [w]_{A_p^N}$ for any $N\in\mathbb{N}$, so that $A_p^N\subset A_p.$ The containment is, in general, strict for $N \geq 1$ (recall previous example).

- If $w\in A_p^N$, $[w]_{A_p}\leq [w]_{A_p^N}$ for any $N\in\mathbb{N}$, so that $A_p^N\subset A_p.$ The containment is, in general, strict for $N > 1$ (recall previous example).
- As sets, $A^N_p=A^M_p$ if $N,M\geq 1.$ We call the single class $A^b_p.$ However, the weight characteristics are not quantitatively equivalent (the constants depend on the complexity in an essential way)

25/34

- If $w\in A_p^N$, $[w]_{A_p}\leq [w]_{A_p^N}$ for any $N\in\mathbb{N}$, so that $A_p^N\subset A_p.$ The containment is, in general, strict for $N > 1$ (recall previous example).
- As sets, $A^N_p=A^M_p$ if $N,M\geq 1.$ We call the single class $A^b_p.$ However, the weight characteristics are not quantitatively equivalent (the constants depend on the complexity in an essential way)

•
$$
w \in A_p^N
$$
 if and only if $w^{1-p'} \in A_{p'}^N$.

25/34

- If $w\in A_p^N$, $[w]_{A_p}\leq [w]_{A_p^N}$ for any $N\in\mathbb{N}$, so that $A_p^N\subset A_p.$ The containment is, in general, strict for $N > 1$ (recall previous example).
- As sets, $A^N_p=A^M_p$ if $N,M\geq 1.$ We call the single class $A^b_p.$ However, the weight characteristics are not quantitatively equivalent (the constants depend on the complexity in an essential way)

•
$$
w \in A_p^N
$$
 if and only if $w^{1-p'} \in A_{p'}^N$.

• Rubia de Francia extrapolation does hold for these weight classes.

25/34

- If $w\in A_p^N$, $[w]_{A_p}\leq [w]_{A_p^N}$ for any $N\in\mathbb{N}$, so that $A_p^N\subset A_p.$ The containment is, in general, strict for $N > 1$ (recall previous example).
- As sets, $A^N_p=A^M_p$ if $N,M\geq 1.$ We call the single class $A^b_p.$ However, the weight characteristics are not quantitatively equivalent (the constants depend on the complexity in an essential way)

•
$$
w \in A_p^N
$$
 if and only if $w^{1-p'} \in A_{p'}^N$.

- Rubia de Francia extrapolation does hold for these weight classes.
- There is also a natural endpoint class of weights when $p = 1$.

25/34

Main Weighted Theorem

Theorem (CAPW)

Let $p \in (1,\infty)$ and $N \in \mathbb{N}$. There exists a constant C such that all operators

$$
\mathcal{T} \in \bigcup_{\substack{s,t \in \mathbb{N}: \\ s+t \leq N}} \mathsf{HS}(s,t)
$$

satisfy

$$
||T||_{L^p(w d\mu) \to L^p(w d\mu)} \leq C
$$

if and only if $w \in A_p^b(\mu)$.

Main Weighted Theorem

Theorem (CAPW)

Let $p \in (1,\infty)$ and $N \in \mathbb{N}$. There exists a constant C such that all operators

$$
\mathcal{T} \in \bigcup_{\substack{s,t \in \mathbb{N}: \\ s+t \leq N}} \mathsf{HS}(s,t)
$$

satisfy

$$
||T||_{L^p(w d\mu) \to L^p(w d\mu)} \leq C
$$

if and only if $w \in A_p^b(\mu)$.

Also have weighted estimates for new maximal function and $p = 1$.

26/34

A New Operator and Measure Condition

Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the following new dyadic analog of the Hilbert transform:

 $\mathcal{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \mathcal{H}(h_I) = h_{I^s} \cdot \mathrm{sign}(I)$

A New Operator and Measure Condition

• Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the following new dyadic analog of the Hilbert transform:

 $\mathcal{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \mathcal{H}(h_I) = h_{I^s} \cdot \mathrm{sign}(I)$

 \bullet Unlike III. H satisfies $H^2 = -I$.

27/34

A New Operator and Measure Condition

• Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the following new dyadic analog of the Hilbert transform:

 $\mathcal{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \mathcal{H}(h_I) = h_{I^s} \cdot \mathrm{sign}(I)$

- Unlike III. H satisfies $H^2 = -I$.
- In the biparameter (but still Lebesgue) setting, showed that this operator can be used to characterize little BMO.

27/34
A New Operator and Measure Condition

• Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the following new dyadic analog of the Hilbert transform:

 $\mathcal{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \mathcal{H}(h_I) = h_{I^s} \cdot \mathrm{sign}(I)$

- Unlike III. H satisfies $H^2 = -I$.
- In the biparameter (but still Lebesgue) setting, showed that this operator can be used to characterize little BMO.
- Motivation: Can this operator be used to characterize dyadic BMO in the non-homogeneous setting?

27/34

 $\frac{2l}{34}$

A New Operator and Measure Condition

• Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the following new dyadic analog of the Hilbert transform:

 $\mathcal{H}: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \mathcal{H}(h_I) = h_{I^s} \cdot \mathrm{sign}(I)$

- \bullet Unlike III, H satisfies $\mathcal{H}^2 = -I$.
- In the biparameter (but still Lebesgue) setting, showed that this operator can be used to characterize little BMO.
- Motivation: Can this operator be used to characterize dyadic BMO in the non-homogeneous setting?
- First: a new (slightly weaker) condition on the measure called *sibling* balanced actually characterizes $L^p(\mu)$ bounds for H:

 $m(I) \sim m(I^s), \quad I \in \mathcal{D}.$

27/34

December 12, 2024, Harmonic Analysis and Convexity at ICERM

Commutator Bounds

Somewhat surprisingly and subtly, the commutator characterization of dyadic BMO fails in the non-homogeneous setting!

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let μ be sibling balanced, $b \in BMO_{\mathcal{D}}$ and $1 < p < \infty$.

Upper estimate:

$$
\|[\mathcal{H},b]\|_{L^p(\mu)\to L^p(\mu)}\lesssim \|b\|_{\mathcal{BMO}_{\mathcal{D}}}.
$$

 \bullet Lower estimate:

$$
\|b\|_{\mathcal{BMO}_{\mathcal{D}}} \lesssim \|[{\mathcal{H}},b]\|_{L^p(\mu) \to L^p(\mu)} + \sup_{k \in \mathbb{Z}} \|[{\mathcal{H}},E_k b]\|_{L^p(\mu) \to L^p(\mu)}.
$$

• Failure of lower estimate in general: The estimate

 $||b||_{BMO_{\mathcal{D}}} \leq ||[\mathcal{H}, b]||_{L^2(\mu) \to L^2(\mu)}$

28/34

 $\frac{2}{3}$, $\frac{2}{3}$,

fails in general, even if we allow the implicit constant to depend on μ .

Weighted Estimates for Commutators with Dyadic Shifts

Key Point: The identification of a non-homogeneous weight class, which we call $\widehat{A}_p(\mu)$ that satisfies a reverse Hölder inequality and characterizes dyadic BMO.

29/34

 $\frac{29}{34}$

Weighted Estimates for Commutators with Dyadic Shifts

Key Point: The identification of a non-homogeneous weight class, which we call $A_n(\mu)$ that satisfies a reverse Hölder inequality and characterizes dyadic BMO.

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let μ be a locally finite Borel measure on $\mathbb R$ satisfying $\mu(I) > 0$ for all $I \in \mathcal{D}$.

- (a) Suppose $w \in \widehat{A}_2(\mu)$. Then the function log $w \in BMO_{\mathcal{D}}$. Conversely, suppose $b \in BMO_{\mathcal{D}}$. Then for sufficiently small $\delta > 0$, the weight function $e^{\delta b}$ belongs to $\widehat{A}_2(\mu)$.
- **(b)** Let $1 < p < \infty$ and $w \in A_p(\mu)$. Then there exists $\gamma > 1$, depending only on p and $[w]_{\widehat{A}_{\rho}(\mu)},$ so that for all $I\in\mathcal{D},$

$$
\left(\frac{1}{\mu(I)}\int_I w^{\gamma}\,d\mu\right)^{1/\gamma}\lesssim_{w}\left(\frac{1}{\mu(I)}\int_I w\,d\mu\right).
$$

29/34

 $\frac{29}{34}$

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let μ be sibling balanced and atomless. Let $1 < p < \infty$, $b \in BMO_D$, and $w \in \widetilde{A}_p(\mu)$. Then there holds

$$
\|[\mathcal{H},b]\|_{L^p(\omega)\to L^p(w)}\lesssim_{[w]_{\widehat{A}_p(\mu)},p} \|b\|_{BMO_{\mathcal{D}}}.
$$

Thanks

- Many thanks to the organizers, specifically, Sergei Treil, for the kind invitation.
- Thanks to all of you for your attention!

31/34

 $\frac{31}{34}$

Selected References I

- [CAPW23] J. M. Conde-Alonso, J. Pipher, and N. A. Wagner, Balanced measures, sparse domination and complexity-dependent weight classess, preprint arXiv:2309.13943 (2023).
- [CDPO18] A. Culiuc, F. Di Plinio, and Y. Ou, Uniform sparse domination of singular integrals via dyadic shifts, Math. Res. Lett. 25 (2018), no. 1, 21–42.
- [DKPSiG23] K. Domelevo, S. Kakaroumpas, S. Petermichl, and O. Soler i Gibert, Dyadic lower little BMO estimates, Publ. Mat. 67 (2023), no. 2, 661–685, DOI 10.5565/publmat6722307. MR4609015
	- [LSMP14] L. D. López-Sánchez, J. M. Martell, and J. Parcet, Dyadic harmonic analysis beyond doubling measures, Adv. Math. 267 (2014), 44-93.

32/34

 $\frac{32}{34}$

Lemma

Let $f_1,f_2\in L^1(d\mu)$ be nonnegative; supported on I and $\lambda_1,\lambda_2>0.$ Then there exist g_j, b_j s.t. $f_j = g_j + b_j$ for $j = 1,2$ and satisfying:

■ There exist pairwise disjoint, dyadic intervals $\{I_k\} \subset \mathcal{D}(I)$ s.t. $b_j = \sum_{k=1}^{\infty} b_{j,k}$ where each $b_{j,k}$ is supported on \widehat{I}_k , $\int_{\widehat{I}_k} b_{j,k} = 0$, and $||b_{j,k}||_{L^1(d\mu)} \lesssim \int_{I_k} |f_j| \, d\mu$ for $j=1,2$. So, for $j = 1, 2$ we have

$$
b_{j,k}=f_j\mathbb{1}_{I_k}-\langle f_j\mathbb{1}_{I_k}\rangle_{\widehat{I}_k}\mathbb{1}_{\widehat{I}_k}.
$$

 $\bullet\;\;$ For $j=1,2,\;$ the function $\mathrm{g}_j\in L^p(d\mu)\;$ for all $1\leq p<\infty\;$ and satisfies $\left\Vert g_{j}\right\Vert _{L^{p}(d\mu)}^{p}\leq C_{p}\lambda_{j}^{p-1}$ $_{j}^{p-1}$ $||f_j||_{L^1(\mu)}$.

 $\textbf{3}$ For $j=1,2$ the function $\textit{g}_j \in \textit{BMO}_{\mathcal{D}}$ and $\|\textit{g}_j\|_{\textit{BMO}_{\mathcal{D}}} \leq \lambda_j.$

33/34

 $\frac{33}{34}$

Lemma

Suppose μ is balanced, $I_0 \in \mathcal{D}$, and that $T_{s,t,\alpha}^{m,n}$ as before. Set $\mathcal{N}=s+t.$ Let f_1,f_2 be bounded nonnegative functions supported on I_0 . For any $I \subset I_0$ dyadic, let $B(1)$ denote the selected intervals in the Calderón-Zygmund decomposition applied to $f_1\mathbb{1}_I$ and $f_2\mathbb{1}_I$ at heights $\lambda_1=16\langle f_1\rangle_I$ and $\lambda_2=16\langle f_2\rangle_I$, and let

 $G(I) := \{J \in \mathcal{D}(I) : J \not\subset K \text{ for any } K \in \mathcal{B}(I)\}.$

Then, the following estimate holds:

$$
\left|\sum_{J\in\mathcal{G}(I)}\alpha_{J_s^o,J_t^m}^{J} \langle f_1,h_{J_s^m}\rangle\langle h_{J_t^o},f_2\rangle\right|\\\lesssim \left(\langle f_1\rangle_I\langle f_2\rangle_I\mu(I)+\sum_{\substack{S\in\mathcal{B}^s(I),\ T\in\mathcal{B}^t(I):\\ \text{dist}_\mathcal{D}(S,\ T)\leq N+2}}\langle f_1\rangle_S\langle f_2\rangle_T\sqrt{m(S)}\sqrt{m(T)}\right).
$$

34/34

 $\frac{34}{34}$