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Plan for this lecture

© Background

© Counterexamples

© Modified sparse forms

@ Weighted estimates; modified maximal functions

© Commutators
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A Dyadic Operator

Definition (Haar Functions)

Fix a dyadic grid D on R. Let | € D. Define the Haar function associated
to /

hi(x) = — (1117 (x) — 1/+(X))

where /_ denotes the left “child” of / and /. denotes the right child.
Recall that {h;};ep is an orthonormal basis for L?(R).
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A Dyadic Operator

Definition (Haar Functions)

Fix a dyadic grid D on R. Let | € D. Define the Haar function associated
to /

hi(x) = — (HL(X) - ]l/+(x))

where /_ denotes the left “child” of / and /. denotes the right child.
Recall that {h;};ep is an orthonormal basis for L?(R).

Definition (Dyadic Hilbert Transform)

The dyadic Hilbert transform is the operator

IIpf(x) = > (f, m)(h_(x) — h(x)), f€L*R),xeR.
1€D
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e S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts
I pa.r over translations «v and dilations r.
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e S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts
I pa.r over translations «v and dilations r.

Theorem (S. Petermichl)

There exists a constant ¢y # 0 so that

L R
O lim / lim —

K (t, x) da #

where K% is the integral kernel of Il pa.r.
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e S. Petermichl: continuous Hilbert transform H is an average of dyadic shifts
I pa.r over translations «v and dilations r.

Theorem (S. Petermichl)

There exists a constant ¢y # 0 so that

1 [t 1 [
D _ Jim / lim — K“”(t,x)da#
-R

where K% is the integral kernel of Il pa.r.

Recall that (continuous) Hilbert transform H : LP(w) — LP(w) iff w satisfies the
Muckenhoupt A,(R) condition

o (3 f0) (3 fo 0] <

Determining the sharp dependence of ||H||;e(w) (and more generally for generic CZO) on_,
the weight characteristic was a major problem in harmonic analysis with important e
connections to PDE (Beltrami equation)
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e Key Point: Petermichl's averaging result reduces the A, problem to
dyadic operators, which are easier to deal with.
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A> Theorem

e Key Point: Petermichl's averaging result reduces the A, problem to
dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant C > 0 so that for all w € Ay(R) and
fel?(w),

IH | 2wy < CIW]a,@) I f Il 2(w)-

Moreover, the dependence on the weight characteristic is sharp.
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A> Theorem

e Key Point: Petermichl's averaging result reduces the A, problem to
dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant C > 0 so that for all w € Ay(R) and
fel?(w),

IH | 2wy < CIW]a,@) I f Il 2(w)-

Moreover, the dependence on the weight characteristic is sharp.

e Hytonen proved the analogous result for general CZOs on R". His
argument again relied on showing T is a suitable average of dyadic shift
operators (which can be more complicated than IIp in general).
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A> Theorem

e Key Point: Petermichl's averaging result reduces the A, problem to
dyadic operators, which are easier to deal with.

Theorem (S. Petermichl)

There exists a universal constant C > 0 so that for all w € Ay(R) and
fel?(w),

IH | 2wy < CIW]a,@) I f Il 2(w)-

Moreover, the dependence on the weight characteristic is sharp.

e Hytonen proved the analogous result for general CZOs on R". His
argument again relied on showing T is a suitable average of dyadic shift
operators (which can be more complicated than IIp in general).

e Natural question: what happens if we change Lebesgue measure on R
(or R™) to some arbitrary Borel measure p?
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Non-homogeneous measures

Q If pu is a Borel measure on R” that satisfies the doubling condition
u(B(x,2r)) < u(B(x,r)), the theory for continuous CZOs and dyadic
shifts is basically the same.
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Non-homogeneous measures

Q If pu is a Borel measure on R” that satisfies the doubling condition
u(B(x,2r)) < u(B(x,r)), the theory for continuous CZOs and dyadic
shifts is basically the same.

@ On the continuous side, a very satisfactory analog of CZ theory has

been developed for measures with polynomial growth
(u(B(x,r)) < rd for d < n) (Nazarov-Treil-Volberg, Tolsa).
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Non-homogeneous measures

Q If pu is a Borel measure on R” that satisfies the doubling condition
u(B(x,2r)) < u(B(x,r)), the theory for continuous CZOs and dyadic
shifts is basically the same.

@ On the continuous side, a very satisfactory analog of CZ theory has
been developed for measures with polynomial growth
(u(B(x,r)) < rd for d < n) (Nazarov-Treil-Volberg, Tolsa).

© Lopez-Sanchez, Martell, and Parcet [LSMP] considered an
appropriate variant of the dyadic Hilbert transform :

Hif(x) = > (F, hy) (hi(x) = by, (x)).

1eD

with Haar functions defined to be orthonormal in L2(p) (1 will often
drop the p later). They characterized the measures for which Hp is
bounded on LP(u) (L?() comes for free).

)
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LSMP Results

Definition (Haar Function)

Given | € D, define the Haar function associated to /:

e () L)
) = v (S~ )
where
(=) () :
m(1) = S~ min{u(l), (1))
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LSMP Results
Definition (Haar Function)

Given | € D, define the Haar function associated to /:

hi(x) = v/m(1) (1/ (x) 11,+(X)> |

p(l-)  p(ly)

where

m(r) = AR i), w3,

Definition

We say that p is balanced (m-equilibrated in original article) if there exists an
independent constant C > 0 so
1 =

—m(1) < m(7) < Cm(1)

e

for all I € D, where 1 denotes the dyadic parent of /.

e — 772
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LSMP (continued)

Theorem (LSMP)

The operator Hy, and its adjoint, map continuously L*(u) into L1°°(p)
(or LP(p) to itself for all 1 < p < o0) if and only if p is balanced.
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LSMP (continued)

Theorem (LSMP)

The operator Hy, and its adjoint, map continuously L*(u) into L1°°(p)
(or LP(p) to itself for all 1 < p < o0) if and only if p is balanced.

[LSMP] provides examples that show that there is no containment
relationship between: balanced and polynomial growth measures.
Specifically,

@ There exists u balanced, not dyadically doubling, not of polynomial
growth.
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LSMP (continued)

Theorem (LSMP)

The operator Hy, and its adjoint, map continuously L*(u) into L1°°(p)
(or LP(p) to itself for all 1 < p < o0) if and only if p is balanced.

[LSMP] provides examples that show that there is no containment
relationship between: balanced and polynomial growth measures.
Specifically,

@ There exists u balanced, not dyadically doubling, not of polynomial
growth.

@ There exists u, of polynomial growth, but not balanced (nor
“increasing” / “decreasing’)
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LSMP (continued)

Theorem (LSMP)

The operator Hy, and its adjoint, map continuously L*(u) into L1°°(p)
(or LP(p) to itself for all 1 < p < o0) if and only if p is balanced.

[LSMP] provides examples that show that there is no containment
relationship between: balanced and polynomial growth measures.
Specifically,

@ There exists u balanced, not dyadically doubling, not of polynomial
growth.

@ There exists u, of polynomial growth, but not balanced (nor
“increasing” / “decreasing’)

Additional assumptions on the measure in R": p is atomless, finite and
nonzero on each cube, and infinite on each “quadrant”. (Today: n=1.) =&

o
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Sparse Domination

@ Sparse domination has emerged in modern harmonic analysis as a key
tool in proving sharp weighted inequalities.
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Sparse Domination

@ Sparse domination has emerged in modern harmonic analysis as a key
tool in proving sharp weighted inequalities.

@ General principle: dominate (either pointwise or in L? pairing) a
complicated operator by a simple, positive dyadic averaging operator.
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Sparse Domination

@ Sparse domination has emerged in modern harmonic analysis as a key
tool in proving sharp weighted inequalities.

@ General principle: dominate (either pointwise or in L? pairing) a
complicated operator by a simple, positive dyadic averaging operator.

© There are versions of sparse domination for both continuous and
dyadic operators.
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Sparse Domination

@ Sparse domination has emerged in modern harmonic analysis as a key

tool in proving sharp weighted inequalities.
@ General principle: dominate (either pointwise or in L? pairing) a

complicated operator by a simple, positive dyadic averaging operator.

© There are versions of sparse domination for both continuous and
dyadic operators.

Definition (Dyadic Sparse Collection)

Let n € (0,1). A collection of dyadic intervals S C D is said to be

n-sparse, if for each | € S, there exists a measurable subset E; satisfying
w(E;) > nu(l) and moreover the collection {E,} jes is pairwise disjoint .
Equivalently (as long as  is atomless), there exists a constant A > 0 so

that for all | € D:
> u(d) < Au(l)

JClI:
JeS

o

j
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Picture of Sparse Collection
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Dyadic Shifts

Definition (Haar shift of complexity (s, t))

For integers s, t > 0, define

Ts’t’af(X):Z Z Z O[_II7K<f,hJ>hK.

1€D JeDs(1) KED:(I)
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Dyadic Shifts

Definition (Haar shift of complexity (s, t))

For integers s, t > 0, define

Ts’t’af(X):Z Z Z O[_II7K<f,hJ>hK.

1€D JeDs(1) KED:(I)

Pairing (-,-) (and integral averages (-);) are taken with respect to u:

1
(Fg) = /R FE()dn(). (P = /, F(x)du(x).
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Dyadic Shifts

Definition (Haar shift of complexity (s, t))

For integers s, t > 0, define

Ts’t’af(X):Z Z Z O[_ILK<f,hJ>hK.

1€D JeDs(1) KED:(I)

Pairing (-,-) (and integral averages (-);) are taken with respect to u:

(Fg) = /R F()g()du(x),  (F1= / F(x)du(x).

u(1) Ji
e Question:
(IT=5F,8)| <Y (g u(l) =: As(f, g)? (Sparse)
1es

Here, S is sparse family of dyadic intervals and f, g non negative. This
result is true in the Lebesgue (or doubling) measure case (Culiuic, Di

.
Plinio, Ou)

Nathan Wagner



Counterexamples

Theorem (Counterexample, CAPW)

There exists a balanced measure 1 on [0,1] s.t. Hp fails (Sparse).

Weighted estimates?

)

Nathan Wagner



Counterexamples

Theorem (Counterexample, CAPW)

There exists a balanced measure 1 on [0,1] s.t. Hp fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (j1, w) where y is balanced, w € AP(u) and Hp is not
bounded on L?(w d).
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Counterexamples

Theorem (Counterexample, CAPW)

There exists a balanced measure 1 on [0,1] s.t. Hp fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (j1, w) where y is balanced, w € AP(u) and Hp is not
bounded on L?(w d).

e For CZ operators, the Ax(ut) condition is not necessary (Tolsa, 2007). For
dyadic operators, AP (1) condition is not sufficient for the boundedness of Hp.
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Counterexamples

Theorem (Counterexample, CAPW)

There exists a balanced measure 1 on [0,1] s.t. Hp fails (Sparse).

Weighted estimates?

Theorem (Counterexample, CAPW)

There exists a pair (j1, w) where y is balanced, w € AP(u) and Hp is not
bounded on L?(w d).

e For CZ operators, the Ax(ut) condition is not necessary (Tolsa, 2007). For
dyadic operators, AP (1) condition is not sufficient for the boundedness of Hp.

¢[CAPW] also gives positive results: modified sparse domination result, and a
suitably modified A, class that is both necessary and sufficient. The modified
sparse bound is in some sense “as useful” because it still allows for a proof of LP -

|G )

and weak-type estimates (re-proving [LSMP] results). k
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Picture of Counterexample
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Modification for a generic Haar shift

o Letx = {OJ{I7K}/7J7K€'D be a bounded sequence, i.e., assume
|lcr][go < 1. Recall, for s, t € N, a dyadic shift of complexity (s, t) is:

TORf() =D Y Y alk(f bk

1€D JeDs(1) KeDe(I)
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Modification for a generic Haar shift

o Letx = {OJ{I7K}/7J7K€'D be a bounded sequence, i.e., assume
|lcr][go < 1. Recall, for s, t € N, a dyadic shift of complexity (s, t) is:

TORf() =D Y Y alk(f bk

1€D JeDs(1) KeDe(I)

@ For a sparse S C D and f,g € L?(du) non-negative, set

As(f,8) =D 1es(Fhifg)in(l).
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Modification for a generic Haar shift

o Letx = {OJ{I7K}/7J7K€'D be a bounded sequence, i.e., assume
|lcr][go < 1. Recall, for s, t € N, a dyadic shift of complexity (s, t) is:

TORf() =D Y Y alk(f bk

1€D JeDs(1) KeDe(I)

@ For a sparse S C D and f,g € L?(du) non-negative, set
As(f,g) =2 jes(Filg)in(l).

@ We need new sparse forms associated to the collection S that reflect
the complexity of the operator.
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Modification for a generic Haar shift

o Letx = {a57K}/7J7K€D be a bounded sequence, i.e., assume
|lcr][go < 1. Recall, for s, t € N, a dyadic shift of complexity (s, t) is:

TR =Y > Y ol k(f h)hk.

1€D JeDs(1) KED:(I)

@ For a sparse S C D and f,g € L?(du) non-negative, set
As(f,g) =2 jes(Filg)in(l).

@ We need new sparse forms associated to the collection S that reflect
the complexity of the operator.

Definition (Dyadic Distance)

Define the dyadic distance between two intervals /, J € D that share a common ancestor:

distp(/,J) ;= min (s+1t).
(s,t):1(8)=J(t)

Note that distp(/,J) = 0 if and only if | = J.

] = = = = (o}
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Definition (Sparse forms associated to higher complexities)
Given S, N € N, and fi, f, € L?(dp), define:

¢S (h, h) = > (f)s{f)k v m(J)v/ m(K).
J,KeS:
2<distp (J,K)<N+2,
JNK=0

)
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Definition (Sparse forms associated to higher complexities)
Given S, N € N, and fi, f, € L?(dp), define:

¢S (h, h) = > (f)s{f)k v m(J)v/ m(K).
J,KeS:
2<distp (J,K)<N+2,
JNK=0
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Theorem (CAPW)

Let pu be balanced, ||c||g~ <1 and N € Z*t. There exist constants C > 0
and n € (0,1) (independent of o) so that for each pair of compactly
supported, bounded nonnegative functions fi, f, there exists an n-sparse
collection S C D such that for any integers s, t satisfying s +t < N, we
have the estimate

(7206, £)] < € (As(fi, ) + B(A, 7))

o
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Hilbert Transform and Adjoint

Let 1 be balanced. There exists C > 0 and 1 € (0, 1) so that for f1, f,
compactly supported, bounded nonnegative functions there exists an
1n-sparse collection S C D:
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Hilbert Transform and Adjoint

Let 1 be balanced. There exists C > 0 and 1 € (0, 1) so that for f1, f,
compactly supported, bounded nonnegative functions there exists an
1n-sparse collection S C D:

(Hph, B)| + [(Hpfi, B)| < C(Z<f1>/(f2)/ﬂ(/) + 3 (A m(l)

1€S l/seés‘é
ST AR m) + S (B () m(1)
1€S: 1€S:
1£€S I£es
. Z(fz>/<f1>/im(/)>

&0
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Tools Used in Proof

@ Use a modified CZ decomposition ([LSMP]), together with our
observation about the “good” function (not L*).

&0

Nathan Wagner



Tools Used in Proof

@ Use a modified CZ decomposition ([LSMP]), together with our
observation about the “good” function (not L*).

@ Recall for ordinary CZD, we write f = g + b, where g is “good” and
belongs to L and b is “bad” but supported on an exceptional set we
can control and has cancellation.
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Tools Used in Proof

@ Use a modified CZ decomposition ([LSMP]), together with our
observation about the “good” function (not L*).

@ Recall for ordinary CZD, we write f = g + b, where g is “good” and
belongs to L and b is “bad” but supported on an exceptional set we
can control and has cancellation.

@ The lack of doubling in the measure  means we can no longer
achieve g € L*°.
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Tools Used in Proof

@ Use a modified CZ decomposition ([LSMP]), together with our
observation about the “good” function (not L*).

@ Recall for ordinary CZD, we write f = g + b, where g is “good” and
belongs to L and b is “bad” but supported on an exceptional set we
can control and has cancellation.

@ The lack of doubling in the measure  means we can no longer
achieve g € L*°.

Definition (Dyadic BMO)
b belongs to BMOp (dyadic BMO) if

1
fllemo :—sup/f—fAdu<oo.
I llemos Sup () /| (f)s]
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Tools Used in Proof

@ Use a modified CZ decomposition ([LSMP]), together with our
observation about the “good” function (not L*).

@ Recall for ordinary CZD, we write f = g + b, where g is “good” and
belongs to L and b is “bad” but supported on an exceptional set we
can control and has cancellation.

@ The lack of doubling in the measure  means we can no longer
achieve g € L*°.

Definition (Dyadic BMO)
b belongs to BMOp (dyadic BMO) if

1
fllemo :—sup/f—fAdu<oo.
I llemos Sup () /| (f)s]

This is the same definition of BMO that arises from martingales.

Nathan Wagner
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Construction of Sparse Set

Let f1, > be bounded nonnegative functions supported on ly. For I C Iy
dyadic, let B(/) denote the selected intervals in the CZ decomposition
applied to A11; and f1; at heights A\; = 16(f1); and X\ = 16(f),.
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Construction of Sparse Set

Let f1, > be bounded nonnegative functions supported on ly. For I C Iy
dyadic, let B(/) denote the selected intervals in the CZ decomposition
applied to A11; and f1; at heights A\; = 16(f1); and X\ = 16(f),.

Set S1 = B(lp) = {I?}. Repeat this process on each of the disjoint /2. Set
S, = U,GS1 B(1). In general,

Sj= |J B(/) and set 5:{/0}u©5j

1€S;_1 j=1
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Construction of Sparse Set

Let f1, > be bounded nonnegative functions supported on ly. For I C Iy
dyadic, let B(/) denote the selected intervals in the CZ decomposition
applied to A11; and f1; at heights A\; = 16(f1); and X\ = 16(f),.

Set S1 = B(lp) = {I?}. Repeat this process on each of the disjoint /2. Set
S, = U,GS1 B(1). In general,

Sj= |J B(/) and set 5:{/0}u©5j

1€S;_1 j=1

To prove sparse, using the fact that the intervals in the sum are pairwise
disjoint:

/ fid f>d /
> n)= Ml(6) > (fjfldu * fJdeM> = Mé)‘
JES 11 JES 11 Jifidp [ fodp

Jcli Jci

&0
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LP Estimates

@ We can use modified sparse forms to get weighted estimates: First,
need to collect some properties, and introduce some new maximal
functions.
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LP Estimates

@ We can use modified sparse forms to get weighted estimates: First,
need to collect some properties, and introduce some new maximal
functions.

o Recall the notation €¥(f;, f,) for the “extra terms” in our modified
sparse form. We begin by recovering the main result in [LSMP]. For a
balanced p, we have:
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LP Estimates

@ We can use modified sparse forms to get weighted estimates: First,
need to collect some properties, and introduce some new maximal
functions.

@ Recall the notation (’lg(fl, f2) for the “extra terms” in our modified
sparse form. We begin by recovering the main result in [LSMP]. For a
balanced p, we have:

Theorem (CAPW)

Given a balanced i, a sparse collection S, and N € N, there exists C,
depending only on p, the parameter ) associated to S, and the u, s.t. for
fi>0e LP(du) and f, > 0 € LP'(dp):

As(f, 2) + Csn(fi, 2) < Collfllo(awlIf2ll i (4

Nathan Wagner



Proof of LP Estimate

Reduction: To begin the proof, label the dyadic intervals J € D(/, N + 2),
for which JN /=0 and 2 < distp(/,J) < N + 2 as
ci(l),c(l), -+, enr(l), and we need to show:

> (B g/ mmci (D) < Colllloam IRl o (gp)-
ch(%SGS

&0

Nathan Wagner



Proof of LP Estimate

Reduction: To begin the proof, label the dyadic intervals J € D(/, N + 2),
for which JN /=0 and 2 < distp(/,J) < N + 2 as
ci(l),c(l), -+, enr(l), and we need to show:

> (B gy mmci(D) < Collll o IRl o (ap)
ch(%SGS

Because p is balanced: \/—CJ < m(1)YPm CJ(I))l/pl

and now proceed, using Holder, and the dyadic maximal function, as in the
usual sparse form.

&0
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Weights and modified maximal functions

To prove the weighted estimates, we need to define a new maximal
function.

To that end, define (upper bounded) constants for /, J dyadic intervals
and 1 < p < .

I=J

1
1, J
Coll, J) = {(W) otherwise.
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Weights and modified maximal functions

To prove the weighted estimates, we need to define a new maximal
function.

To that end, define (upper bounded) constants for /, J dyadic intervals
and 1 < p < .

(1, ) {1 =7
p\" = m(1P/2m(J)P/2 .
(W) otherwise.
Observe that
m(/)m(J)

&0
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A Modified Dyadic Maximal Function

Definition (New Dyadic Maximal)

Given N € N, define the following maximal dyadic operator for
feLll(dp):

Mpf(x) := Sup G (1L N (F)iLs(x)
distp (1,J)<N42
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A Modified Dyadic Maximal Function

Definition (New Dyadic Maximal)
Given N € N, define the following maximal dyadic operator for
feLll(dp):

MNf(x) = sup Gl D)) 1Lu(x)

1,JeD:
distp(1,J)<N-+2

m(l)m(J) m(J)
OREESETORSE:

MY is bounded on LP(du) for 1 < p < oo and is weak-type (1,1).
MN admits a (modified) sparse domination.

Can use sparse domination result plus weak-type bound for maximal
operator to provide a new proof for the weak-type estimate for a -

|G )

dyadic shift wrt balanced measure . o
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Weighted estimates

@ Let w(x) du(x) be an absolutely continuous, locally finite, positive
measure w.r.t. u.
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Weighted estimates

@ Let w(x) du(x) be an absolutely continuous, locally finite, positive
measure w.r.t. u.

@ Want weighted LP estimates for dyadic shift operators T55%. - our
new weight classes characterize boundedness of dyadic shifts, as well
as MN. (For doubling measures, the classes are equal.)
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Weighted estimates

@ Let w(x) du(x) be an absolutely continuous, locally finite, positive
measure w.r.t. u.

@ Want weighted LP estimates for dyadic shift operators T55%. - our
new weight classes characterize boundedness of dyadic shifts, as well
as MN. (For doubling measures, the classes are equal.)

Definition
Let w be a weight on R w.r.t. pu, p € (1,00) and N € Z*. We say
w e A if

[W]an = sup Coll, ) (W) (w'=)571) < o0,
i I,JeD:
0<distp (J,K)<N+2

G2
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Properties of Weights

o If we A, [wla, < [wlay for any N € N, so that Al C A,. The
containment is, in general, strict for N > 1 (recall previous example).
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Properties of Weights

o If we A, [wla, < [wlay for any N € N, so that Al C A,. The
containment is, in general, strict for N > 1 (recall previous example).

@ As sets, AQ’ = A,’y if N, M > 1. We call the single class Ag. However,
the weight characteristics are not quantitatively equivalent (the
constants depend on the complexity in an essential way)
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Properties of Weights

o If we A, [wla, < [wlay for any N € N, so that Al C A,. The
containment is, in general, strict for N > 1 (recall previous example).

@ As sets, AQ’ = A,’y if N, M > 1. We call the single class Ag. However,
the weight characteristics are not quantitatively equivalent (the
constants depend on the complexity in an essential way)

o we Al if and only if w7 € AN
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Properties of Weights

o If we A, [wla, < [wlay for any N € N, so that Al C A,. The
containment is, in general, strict for N > 1 (recall previous example).

@ As sets, AQ’ = A,’y if N, M > 1. We call the single class Ag. However,
the weight characteristics are not quantitatively equivalent (the
constants depend on the complexity in an essential way)

o we Al if and only if w7 € AN
@ Rubia de Francia extrapolation does hold for these weight classes.

@ There is also a natural endpoint class of weights when p = 1.
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Main Weighted Theorem

Theorem (CAPW)

Let p € (1,00) and N € N. There exists a constant C such that all
operators

Te |J HS(s,t)

s, teN:
s+t<N

satisfy
Il TNl o (wdp)— Lo (wdp) < €
if and only if w € A,’;(,u,).
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Main Weighted Theorem

Theorem (CAPW)

Let p € (1,00) and N € N. There exists a constant C such that all
operators

Te |J HS(s,t)

s, teN:
s+t<N

satisfy
I Tl Lo (wd )= Lp(wap) < €

if and only if w € A,’;(,u,).

Also have weighted estimates for new maximal function and p = 1.
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A New Operator and Measure Condition

@ Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the
following new dyadic analog of the Hilbert transform:

H: L2(R) — L2(R), H(h;) = hys - sign(/)
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A New Operator and Measure Condition

@ Domelevo, Kakaroumpas, Soler i Gibert, and Petermichl considered the
following new dyadic analog of the Hilbert transform:

H: L2(R) — L2(R), H(h;) = hys - sign(/)

@ Unlike III, A satisfies H2 = —1.

@ In the biparameter (but still Lebesgue) setting, showed that this operator
can be used to characterize little BMO.

@ Motivation: Can this operator be used to characterize dyadic BMO in the
non-homogeneous setting?

@ First: a new (slightly weaker) condition on the measure called sibling
balanced actually characterizes LP(u) bounds for H:

m(l) ~m(I*), [1eD.
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Commutator Bounds

Somewhat surprisingly and subtly, the commutator characterization of
dyadic BMO fails in the non-homogeneous setting!

Theorem (Borges, Conde Alonso, Pipher, W. 2024)
Let p be sibling balanced, b € BMOp and 1 < p < co.

@ Upper estimate:
I[H, blllce(uy— ey S llbllBmOs -

@ Lower estimate:

lbllemor S I1[H, bl e (uy—tr(u) + sup [+, Exb]l| o ()2 (11)-

@ Failure of lower estimate in general: The estimate

lbllemor S IH, BIll 2y 12()

fails in general, even if we allow the implicit constant to depend on p.

3
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Weighted Estimates for Commutators with Dyadic Shifts

Key Point: The identification of a non-homogeneous weight class, which
we call Ap(p) that satisfies a reverse Holder inequality and characterizes
dyadic BMO.
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Weighted Estimates for Commutators with Dyadic Shifts

Key Point: The identification of a non-homogeneous weight class, which

we call ﬂp(u) that satisfies a reverse Holder inequality and characterizes
dyadic BMO.

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let v be a locally finite Borel measure on R satisfying u(1) > 0 for all
I €D.

(a) Suppose w € /Zg(u). Then the function logw € BMOp. Conversely,
suppose b € BMOp. Then for sufficiently small § > 0, the weight
function e’ belongs to Ax(11).

(b) Letl<p<ooandwe Zp(,u). Then there exists v > 1, depending
only on p and [W];\p(u), so that for all | € D,

(i for ) "= o )

= = Ty 3R
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Weighted Commutator Theorem

Theorem (Borges, Conde Alonso, Pipher, W. 2024)

Let p be sibling balanced and atomless. Let1 < p < oo, b € BMOp, and
w € Ap(r). Then there holds

NI Blll e ) Lo(w) Stwlgy,e 16llBMO-

G2
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@ Many thanks to the organizers, specifically, Sergei Treil, for the kind
invitation.

@ Thanks to all of you for your attention!
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Let f,f, € L*(du) be nonnegative; supported on | and Ay, \» > 0. Then
there exist gj, b s.t. f; = gj + b; for j = 1,2 and satisfying:
Q There exist pairwise disjoint, dyadic intervals {Ix} C D(/) s.t.
b; = Ziozl b; x where each bj y is supported on Iy, ka bj x =0, and
b kcllrqapy <y, |fil di for j=1,2.
So, for j = 1,2 we have
bjk = i1y, — (fily); 1

@ For j =1,2, the function gj € LP(dyu) for all 1 < p < oo and satisfies
-1
g l1Ze(apy < CoAF ™ Iillaga
© For j = 1,2 the function g € BMOp and ||gj||smop < A;.

.
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Iteration Lemma

Suppose ju is balanced, Iy € D, and that T.;',, as before. Set N = s+ t. Let fi, f
be bounded nonnegative functions supported on ly. For any | C Iy dyadic, let
B(I) denote the selected intervals in the Calderén-Zygmund decomposition
applied to i1, and f, 1, at heights Ay = 16(f1); and A\, = 16(f),, and let

G():={JeD(l):J ¢ K forany K € B(I)}.
Then, the following estimate holds:

Z ajg,Jt’"<f17 hJ5m><th7 f2>
Jeg()

S(<ﬁ>/<fz>:u(l)+ > <ﬁ>s<@>r\/m(5>\/m(r)).

SeBs(l), TeB(I):
distp (S, T)<N+2

£
)
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