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Motivation. Harmonic analysis on ZnK .

n-torus Tn := {z ∈ C : |z| = 1}n

Discrete n-torus Ωn
K := {e2πik/K : k = 0, 1, . . . , K− 1}n

Hypercube Ωn
2 = {−1, 1}n

Bohnenblust–Hille-type inequality
Let f : Ωn

K → C have deg(f) = d. Then

∥̂f∥ 2d
d+1

≲d,K ∥f∥Ωn
K
.

Bounded homogeneous projection
Let f : Ωn

K → C have deg(f) = d. Then

∥fℓ∥Ωn
K
≲d,K ∥f∥Ωn

K
,

where fℓ is the ℓ-homogeneous part of f.
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A silver bullet. Suppose we had for f : Tn → C of degree d and
individual degree K− 1 that

∥f∥Tn ≲K,d ∥f∥Ωn
K
. (∗)

Then as corollaries:

Cyclic-group Bohnenblust–Hille:

∥̂f∥ 2d
d+1

[BH31]
≲d,K ∥f∥Tn

(∗)
≲d,K ∥f∥Ωn

K
.

Bounded ℓ-homogeneous projection:

∥fℓ∥Ωn
K
≤ ∥fℓ∥Tn

(Cauchy est.)
≤ ∥f∥Tn

(∗)
≲d,K ∥f∥Ωn

K
.
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Let us prove (∗).

Theorem (Bernstein-type discretization inequality for Ωn
K).

f : Tn → C a polynomial, deg(f) ≤ d.

∥ f ∥Tn ≤ O(log K)d∥ f ∥Ωn
K
,

where K− 1 ≤ d is the individual degree of f.
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Proposition. (1-D Interpolation)

Fix K ≥ 0 and z ∈ T. There are complex a(z)ω ’s with

f(z) =
∑
ω∈ΩK

a(z)ω f(ω) and
∑
ω

|a(z)ω | ≤ O(log K) .

for any polynomial f : T → C, deg(f) < K.

Proof. Lagrange interpolation:

f(z) =
∑
ω∈ΩK

 ∏
ξ∈ΩK:ξ ̸=ω

z− ξ

ω − ξ

 f(ω) .

So, with z∗ ∈ T a maximizer of |f|,

∥f∥T = |f(z∗)| =
∣∣∑

ω∈ΩK
a(z)ω f(ω)

∣∣ ≤ ∥a(z)∥1∥f∥ΩK ≤ O(log K)∥f∥ΩK .
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Naive induction.

Repeat coordinatewise:

f(z) =
∑

ω1∈ΩK

· · ·
∑

ωn∈ΩK

(∏n
j=1 a

(z)
j (ωj)

)
f(ω1, . . . , ωn)

yields
∥f∥Tn ≤ O(log K)n∥f∥Ωn

K
.

Exponential dependence on n...

Idea: d-wise independent distributions “fool” degree-d polynomials.
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Goal: Find probabilistic expression for interpolation.

Originally: f(z) =
∑
ω∈ΩK

a(z)ω f(ω).

If a(z)ω ⊆ R≥0 f(z) = CE
w
f(w) w ∈ ΩK

If a(z)ω ⊆ R f(z) = C E
w,r
rf(w) w ∈ ΩK, r ∈ {1,−1}

If a(z)ω ⊆ C f(z) = C E
w,r
rf(w) w ∈ ΩK, r ∈ {1, i,−1,−i} .

Lemma. (1-D Interpolation, probabilistic)
There is r : [0, 1] → Ω4 s.t. for any d ≥ 0 and z ∈ C, there is
w : [0, 1] → ΩK s.t. for any polynomial f : C → C, deg(f) < K,

f(z) = C E
T∼[0,1]

[
r(T)f

(
w(T)

)]
and 0 < C ≤ O(log K) .
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Naive induction (probabilistic).

With z ∈ Tn a maximizer of |f|,

f(z) = Cn E
T∼U [0,1]n

[
r1(T1) · · · rn(Tn) · f

(
w1(T1),w2(T2), . . . ,wn(Tn)

)]
yields

|f(z)| ≤ O(log K)n∥f∥Ωn
d
.

New problem: integrand is no longer low-degree!
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The idea. Instead of using

T1, . . . , Tn
iid∼ U [0, 1]

to evaluate

E
T1,...,Tn

[
r1(T1) · · · rn(Tn) · f

(
w1(T1),w2(T2), . . . ,wn(Tn)

)]
,

consider only m-many T1, . . . , Tm
iid∼ U [0, 1] for m≪ n.

Sample unif. random map P : {1, 2, . . . ,n} → {1, 2, . . . ,m} to obtain

Rm :=
∏m

j=1 r(Tj) and Wm :=
(
w1(TP(1)),w2(TP(2)), . . . ,wn(TP(n))

)
and consider E[Rmf(Wm)] .

Result:

f(z) = Cm E[Rmf(Wm)] + error = Cm E[Rmf(Wm)] + p( 1m )

with deg(p) < d and p(0) = 0.
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Proof. Argue for single monomial: zα = Cm E[RWα] + p
( 1
m
)
; that is,

E[RWα] = C−m
(
zα − p

( 1
m
) )

.

Notation

zα :=
∏n

j=1zαj , α ∈ {0, 1, . . . , K− 1}n

Condition on choice of function P : [n] → [m]. P induces partition S of
supp(α) in the natural way:

Example on board.

Notation

P↣ S : P induces S.
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Goal: E[RWα] = C−m
(
zα − p

( 1
m
) )

.

Case 1. P induces the “singleton partition” S∗ :=
{
{j} : j ∈ supp(α)

}
.

E[RWα|P↣ S∗] = C−mzα

Case 2. P induces some S ̸= S∗…only easy to say for all m ≥ |S|,

E[RWα|P↣ S ̸= S∗] =: C−m · stuff(S),

where stuff(S) is independent of m.
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Goal: E[RWα] = C−m
(
zα − p

( 1
m
) )

.

However, Pr[P↣ S] is nice. For any partition S,

Pr[P↣ S] = m(m− 1) · · · (m− |S|+ 1)
m|supp(α)| =:

{
1+ q|S∗|( 1m ) S = S∗,
q|S|( 1m ) S ̸= S∗

and deg(q|S|) < d, q|S|(0) = 0.

E[RWα] = C−mzα
(
1+ q|S∗|( 1m )

)
+ C−m

∑
S ̸=S∗

stuff(S)q|S|( 1m )

=: C−m
(
zα − p( 1m )

)
. □
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Proposition. (Interpolation with error)
Given f, z, there is
• p = pf,z : R → R a polynomial
such that for anym ∈ Z+, there are dependent random variables
• R = Rm on Ω4
• W = Wz,m on Ωn

K

f(z) = Cm E[R f(W)] + p
( 1
m
)

for C = O(log K). Moreover, deg(p) < d and p(0) = 0.

How to remove the error: Consider a linear combination of
m = 1, 2, . . . ,d .
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Have:
f(z) = Cm E[R f(W)] + p

( 1
m
)
.

There are b1, . . . ,bd ∈ C such that for any polynomial p with
deg(p) < d and p(0) = 0,

d∑
m=1

bmp
( 1
m
)
= 0,

d∑
m=1

bm = 1, and ∥b∥∞ ≲ exp(d) .

Thus

f(z) =
d∑

m=1
bmf(z) =

d∑
m=1

bm
(
Cm E[R f(W)] + p

( 1
m
))

=
d∑

m=1
bmCm E[R f(W)]

≤
∑d

m=1|bmC
m| ∥ f ∥Ωn

K
≤ O(log K)d∥ f ∥Ωn

K
. □
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Theorem (Becker, Klein, S., Volberg, Zhang).
Consider Y = X1 × X2 × . . . Xn ⊂ Dn with
• |Xj| = K for all j = 1, . . . ,n
• All y ̸= y′ ∈ Y have ∥y− y′∥∞ ≥ η > 0

Then for any f with deg(f) ≤ d and individual degree K− 1,

∥f∥Dn ≤ C(K, η)d∥f∥Y .

• Holds in the real category too
• About the constant:

• Exponential dependence on degree d is necessary
• Correct dependence on K not understood

• About the cardinality |Y|
• Exponential dependence on dimension n necessary
• Y can be subsampled down to |Ỹ| = (1+ ε)n · C(ε,d)
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For more, see:
For a concise proof of the Ωn

K case:

Section 2 of Klein, S., Volberg, and Zhang, Quantum and classical
low-degree learning via a dimension-free Remez inequality. ITCS
2024, TQC 2024. arXiv:2301.01438

Full version (with extensions and discussion):

Becker, Klein, S., Volberg, and Zhang, Dimension-free discretiza-
tions of the uniform norm by small product sets, Invent. Math.
(to appear). arXiv:2310.07926
" Out of date, to be updated very shortly!
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