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Lipschitz transport maps and functional inequalities

Suppose P satisfies a log-Sobolev inequality with constant CP.

Suppose there exists 1-Lipschitz transport map T between P and a

measure µ.

Then µ satisfies log-Sobolev with constant CP:

Entµ(g2) = EntP(g2 ◦ T ) ≤ CP

∫
|∇(g ◦ T )|2 dP

≤ CP

∫
|(∇g) ◦ T )|2 dP = CP

∫
|∇g |2 dµ.
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1-Lipschitz transport map

• Caffarelli showed that the Brenier optimal transport map

between a Gaussian and a measure which is more log-concave

than the Gaussian is 1-Lipschitz.

• Kim-E. Milman established the same result (and more) for a

transport map based on the Langevin dynamics of the

Gaussian.

• Many more 1-Lipschitz results for the Kim-E. Milman map,

including on manifolds, but very few for the Brenier map.
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Some challenges

• Due to a result of E. Milman (see below), it is beneficial to

show that a transport map is 1-Lipschitz on average, which

the above techniques cannot show so far.

• Trying to use the transport approach in discrete settings faces

two problems: (a) Splitting of mass (b) Lack of chain rule.
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Solution

“In fact, the effective dimension of (Rn, γ(n)) is infinite, in a

certain sense, whatever n. I admit that this perspective may look

strange, and might be the result of lack of imagination; but in any

case, it will fit very well into the picture (in terms of sharp

constants for geometric inequalities, etc.).”

Optimal transport, old and new, p. 379 (Cédric Villani)

The theme of the talk today is that this perspective is not so

strange: by taking the source measure to be infinite-dimensional

we can overcome the challenges of the transport method.
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The Brownian transport

map

“The Brownian transport map” (Dan Mikulincer, Yair Shenfeld).
Probab. Th. Rel. Fields (2024)



The Föllmer process

Let µ = f γ be a measure on Rd where γ is the standard Gaussian.

Define

dYt = ∇ logH1−t f (Yt)dt + dBt , Y0 = 0,

where (Bt) is a standard Brownian motion, and (Ht) is the heat

semigroup,

Htg(x) :=

∫
Rd

g(x +
√
tz) dγ(z).

Then, Y1 ∼ µ.
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The Föllmer process

Let µ = f γ be a measure on Rd where γ is the standard Gaussian.

Define

dYt = ∇ logH1−t f (Yt)dt + dBt , Y0 = 0,

where (Bt) is a standard Brownian motion, and (Ht) is the heat

semigroup,

Htg(x) :=

∫
Rd

g(x +
√
tz) dγ(z).

Then, Y1 ∼ µ.
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The Brownian transport map

Recall Y1 ∼ µ = f γ where

dYt = ∇ logH1−t f (Yt)dt + dBt , Y0 = 0.

Let P be the Wiener measure on the space

Ω := {ω : ω : [0, 1] 7→ Rd is a continuous function}.

The map

Y1 : ω 7→ Y1(ω)

transport P to µ. We call Y1 the Brownian transport map.
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Lipschitz transport maps and functional inequalities

We say that Y1, which transports P to µ, is 1-Lipschitz if

|DY1| ≤ 1, where DY1 is the Malliavin derivative, and | · | is the

appropriate norm.

If Y1 is 1-Lipschitz we can transfer functional inequalities using the

transport method from P to µ.

The point is that the Wiener measure P satisfies functional

inequalities with the same constant as the Gaussian γ on Rd .
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Some Results

Theorem. [Mikulincer, S.]

Let µ be a κ-log-concave measure with κ ∈ R, and let

S := diam(supp(µ)). Then,

• If κS2 ≥ 1 then the Brownian transport map between the

Wiener measure P and µ is 1√
κ

-Lipschitz.

• If κS2 < 1 then the Brownian transport map between the

Wiener measure P and µ is

√
e1−κS2+1

2 S-Lipschitz.

Example. κ > 0: If κS2 ≥ 1 we get the analogue of

Caffarelli/Kim-E. Milman, and if κS2 < 1 we get improvement.
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Kannan-Loóasz-Simonovits conjecture

• By a result of E. Milman, if EP[|DY1|2] ≤ C , where C is

dimension-free constant, the Kannan-Loóasz-Simonovits

conjecture will follow.

• No average-Lipschitz bounds (even with good

dimension-dependent constants) for the Brenier/Kim-E.

Milman maps are known.

• In contrast, due to stochastic localization, we were able to

establish such bounds, with dimension-dependent constants,

for the Brownian transport map. In fact, we proved general

moments bounds which have applications to Stein kernels and

Central Limit Theorems.
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conjecture will follow.

• No average-Lipschitz bounds (even with good

dimension-dependent constants) for the Brenier/Kim-E.

Milman maps are known.

• In contrast, due to stochastic localization, we were able to

establish such bounds, with dimension-dependent constants,

for the Brownian transport map. In fact, we proved general

moments bounds which have applications to Stein kernels and

Central Limit Theorems.
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Kannan-Loóasz-Simonovits conjecture

• By a result of E. Milman, if EP[|DY1|2] ≤ C , where C is

dimension-free constant, the Kannan-Loóasz-Simonovits

conjecture will follow.

• No average-Lipschitz bounds (even with good

dimension-dependent constants) for the Brenier/Kim-E.

Milman maps are known.

• In contrast, due to stochastic localization, we were able to

establish such bounds, with dimension-dependent constants,

for the Brownian transport map. In fact, we proved general

moments bounds which have applications to Stein kernels and

Central Limit Theorems.



The Poisson transport map

“The Poisson transport map” (Pablo López-Rivera, Yair Shenfeld).
arXiv preprint (2024)



Lipschitz transport maps and functional inequalities

Recall the argument

Entµ(g2) = EntP(g2 ◦ T ) ≤ CP

∫
|∇(g ◦ T )|2 dP

≤ CP

∫
|(∇g) ◦ T )|2 dP = CP

∫
|∇g |2 dµ.

Let π be the Poisson measure on N with parameter 1.

Suppose µ is a measure on N which we believe should satisfy a

functional inequality.

We want to find Lipschitz map T from π to µ and use the

transport method.

Two problems: (a) splitting of mass (b) lack of chain rule.
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The controlled Poisson process

What is the discrete analogue of the Föllmer process?

Given µ = f π we want to construct a process (Xt)t∈[0,1] such that

X1 ∼ µ.

First defined by Budhiraja, Dupuis, and Maroulas, but further

elaborated in dimension 1, and used for functional inequalities, by

Klartag and Lehec.
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The controlled Poisson process

Given a Poisson point-process in [0, 1]× [0,M] define

Xt := number of points in [0, t]× [0,M] that fall below the curve λ

M

11
4

(λt)t∈[0,1]
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The controlled Poisson process

Xt := number of points in [0, t]× [0,M] that fall below the curve λ.

Choose

λt :=
P1−t f (Xt + 1)

P1−t f (Xt)
,

where (Pt) is the Poisson semigroup,

Ptg(k) :=
∞∑
n=0

g(k + n)πt(n).

Then,

X1 ∼ µ = f π.
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Then,

X1 ∼ µ = f π.



The Poisson transport map

Let P be the Poisson measure on the space

Ω := {ω : ω =
∑
i

δ(ti ,zi ) for ti ∈ [0, 1], zi ∈ [0,M]}.

The map

X1 : ω 7→ X1(ω)

transport P to µ. We call X1 the Poisson transport map.

Note. This construction avoids the problem of splitting the mass!
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The Poisson transport map

The correct notion of X1 being 1-Lipschitz is that for almost every

ω,

|D(t,z)X1(ω)| ≤ 1 ∀(t, z) ∈ [0, 1]× [0,M],

where D(t,z)X1(ω) is the Malliavin derivative defined by

D(t,z)X1(ω) := X1(ω + δ(t,z))− X1(ω).
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Transfer of functional inequalities

Modified LSI on Poisson space (Wu):

EntP(G ) ≤ EP

[∫
Ψ(G ,D(t,z)G )dt dz

]
,

where Ψ(u, v) := (u + v) log(u + v)− u log u − (log u + 1)v .

Proposition. Suppose that D(t,z)X1(ω) ∈ {0, 1} for all (t, z).

Then, for any test function g ,

Entµ(g) ≤ | logµ(0)|Eµ[Ψ(g ,DG )],

where Dg(k) := g(k + 1)− g(k).

Note. We overcome the chain rule obstacle but we need

D(t,z)X1(ω) ∈ {0, 1} rather than just D(t,z)X1(ω) ∈ {−1, 0, 1}.
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When to expect Lipschitz transport maps?

In the continuous setting, transport maps between a Gaussian

source γ and a target µ which is more log-concave than γ are

1-Lipschitz.

We expect the same phenomenon in discrete spaces: transport

maps between a Poisson source π and a target µ which is more

log-concave than π should be 1-Lipschitz.

Due to mass splitting issue this doesn’t make sense for transport

maps from π to µ. What about the Poisson transport map from P
to µ?
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Ultra-log-concave measures

Definition. µ is more log-concave than π if µ = f π where f is

log-concave,

f 2(k) ≥ f (k − 1)f (k + 1), for all k ∈ {1, 2, . . .}.

Such measures µ are called ultra-log-concave ⇐⇒

kµ2(k) ≥ (k + 1)µ(k + 1)µ(k − 1), for all k ∈ {1, 2, . . .}.
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Lipschitz properties of the Poisson transport map

Theorem [López-Rivera, S.]

Let µ be an ultra-log-concave measure on N. Then, the Poisson

transport map between the Poisson measure P and µ is

1-Lipschitz:P-almost-surely,

D(t,z)X1 ∈ {0, 1} for all t ∈ [0, 1], z ∈ [0,M].
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Modified log-Sobolev inequalities for ultra-log-concave mea-

sures

Combining the Proposition and the previous Theorem we get:

Theorem. [López-Rivera, S.]

Let µ be an ultra-log-concave measure on N. Then, for any test

function g ,

Entµ(g) ≤ | logµ(0)|Eµ[Ψ(g ,DG )],

where Dg(k) := g(k + 1)− g(k), and

Ψ(u, v) := (u + v) log(u + v)− u log u − (log u + 1)v .
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Modified log-Sobolev inequalities for ultra-log-concave mea-

sures

Theorem. [López-Rivera, S.] If µ is ultra-log-concave measure

on N then, for any test function g ,

Entµ(g) ≤ | logµ(0)|Eµ[Ψ(g ,DG )].

Remark 1. Previous modified LSI for ultra-log-concave measures

(Johnson) hold with the worse constant µ(1)
µ(0) .

Remark 2. In light of concentration result of Aravinda,

Marsiglietti, and Melbourne it is natural to conjecture that the

inequality holds with the even better constant E[µ].
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Theorem. [López-Rivera, S.] If µ is ultra-log-concave measure

on N then, for any test function g ,

Entµ(g) ≤ | logµ(0)|Eµ[Ψ(g ,DG )].

Remark 1. Previous modified LSI for ultra-log-concave measures

(Johnson) hold with the worse constant µ(1)
µ(0) .

Remark 2. In light of concentration result of Aravinda,

Marsiglietti, and Melbourne it is natural to conjecture that the

inequality holds with the even better constant E[µ].



Modified log-Sobolev inequalities for ultra-log-concave mea-

sures
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Other functional inequalities

• We in fact prove more general modified Φ-Sobolev inequalities

(Chafäı) for ultra-log-concave measures.

• We also prove transport-entropy inequalities for

ultra-log-concave measures.
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A few words on proofs



Establishing Lipschitz bounds for the Brownian transport map

Recall: Y1 is the Brownian transport map (Y1 ∼ µ = f γ).

• The Malliavin derivative satisfies

DrYt = Id +

∫ t

r
∇2 logH1−s f (Ys)DrYs ds.

• Hence, if we can bound ∇2 logH1−s f we can derive

differential inequalities for t 7→ |DYt |, which imply Lipschitz

bounds on DY1.

• Use properties of µ = f γ to bound ∇2 logH1−s f .
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Establishing Lipschitz bounds for the Poisson transport map

Recall: X1 is the Poisson transport map (X1 ∼ µ = f π).

In the Poisson setting we do not have the differential equation

structure of the Brownian transport map.

The key point is to exploit the log-concavity of f to show that for

all s ∈ [0, 1],

Xs(ω) ≤ Xs(ω + δ(t,z)) ≤ Xs(ω) + 1.

This is done by comparing λs(ω + δ(t,z)) to λs(ω), where we recall

λs =
P1−s f (Xs + 1)

P1−s f (Xs)
.
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Entropic representation

formulas and functional

inequalities

“Stability of Wu’s logarithmic Sobolev inequality via the Poisson-Föllmer

process” (Shrey Aryan, Pablo López-Rivera, Yair Shenfeld).
arXiv preprint (2024)



Entropy representation formula for the Gaussian

Recall the Föllmer process: Y1 ∼ µ = f γ where

dYt = ∇ logH1−t f (Yt)dt + dBt , Y0 = 0.

Then,

H(µ|γ) =
1

2

∫
Rd

E
[
|∇ logH1−t f (Yt)|2

]
dt,

with

H(µ|γ) :=

∫
log

(
dµ

dγ

)
dµ.

The entropy representation formula is due to Boué &

Dupuis/Borell/Lehec.
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Lehec’s proof of the Gaussian log-Sobolev inequality

Recall Y1 ∼ µ = f γ and

H(µ|γ) =
1

2

∫
Rn

E
[
|∇ logH1−t f (Yt)|2

]
dt.

Since t 7→ ∇ logH1−t f (Yt) is a martingale,

H(µ|γ) ≤ 1

2
E
[
|∇ log f (Y1)|2

]
=

1

2
I(µ|γ),

where I(µ|γ) =
∫
|∇ log f |2 dµ is the relative Fisher information

w.r.t. the Gaussian.
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Wu’s modified log-Sobolev inequality

Let µ = f π be a positive probability measure on N where π is the

Poisson measure with parameter 1. Then,

H(µ|π) ≤
∫
N
f (k + 1)

{
log

(
f (k + 1)

f (k)

)
− 1 +

f (k)

f (k + 1)

}
dπ(k).
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Entropy representation formula for the Poisson

Recall the Poisson-Föllmer process: X1 ∼ µ = f π where

Xt := number of points in [0, t]× [0,∞) that fall below the curve λ,

with

λt =
P1−t f (Xt + 1)

P1−t f (Xt)
.

Then,

H(µ|π) =

∫ 1

0
E[λt log λt − λt + 1] dt.

The entropy representation formula is due to Budhiraja & Dupuis

& Maroulas/Klartag & Lehec.
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New proof of Wu’s inequality

Recall

H(µ|π) =

∫ 1

0
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Since t 7→ λt is a martingale,
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Stability of the Gaussian log-Sobolev inequality and Wu’s in-

equality

• In “Stability of the logarithmic Sobolev inequality via the

Föllmer Process” (Ronen Eldan, Joseph Lehec, Yair Shenfeld)

we used the Gaussian entropy representation formula to derive

stability results for the Gaussian log-Sobolev inequality.

• In ‘Stability of Wu’s logarithmic Sobolev inequality via the

Poisson-Föllmer process” (Shrey Aryan, Pablo López-Rivera,

Yair Shenfeld) we used the Poisson entropy representation

formula to derive new stability results of the inequality when

µ = f π, assuming f is ultra-log-concave.
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Föllmer Process” (Ronen Eldan, Joseph Lehec, Yair Shenfeld)

we used the Gaussian entropy representation formula to derive

stability results for the Gaussian log-Sobolev inequality.

• In ‘Stability of Wu’s logarithmic Sobolev inequality via the
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Comparison between the Gaussian and Poisson settings

• In the Gaussian setting the stability results are obtained by

deriving differential inequalities for |∇ log f (Y1)|2.

• The discrete nature of the Poisson setting does not allow for

such differential inequalities for λt .

• Instead, we find a useful representation formula as a

replacement for the lack of differential inequalities, from

which we derive our stability results.
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