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Background and context

The Simons Collaboration in Arithmetic Geometry, Number Theory, and Computation
created a database of modular curves that is now in the beta version of the L-functions
and Modular Forms Database, to be expanded prior to LuCaNT. Contributors include:

Nikola Adžaga, Eran Assaf, Jennifer Balakrishnan, Barinder Banwait, Alexander Betts,
Raymond van Bommel, Shiva Chidambaram, Garen Chiloyan, Edgar Costa, Alex Cowan,
Harris Daniels, Maarten Derickx, Juanita Duque-Rosero, Noam Elkies, Sachi Hashimoto,
Daniel Hast, Kate Finnerty, Aashraya Jha, Asimina Hamakiotes, Steve Huang, Eray Kara-
biyik, Timo Keller, Jean Kieffer, Jun Bo Lau, Guido Maria Lido, David Lowry-Duda, Alvaro
Lozano-Robledo, Kimball Martin, Pietro Mercuri, Philippe Michaud-Jacobs, Grant Mol-
nar, Steffen Müller, Filip Najman, Ekin Ozman, Oana Padurariu, Bjorn Poonen, David
Roe, Rakvi, Jeremy Rouse, Ciaran Schembri, Padmavathi Srinivasan, Sam Schiavone,
Bianca Viray, John Voight, Borna Vukorepa, Benjamin York, and David Zywina.

This project has many disparate components, but they are all tied together by a common
group-theoretic scaffold inspired by Mazur’s Program B.

https://simonscollab.icerm.brown.edu/
https://www.lmfdb.org
https://www.lmfdb.org
https://icerm.brown.edu/program/topical_workshop/tw-25-lucant


Mazur’s 1976 lectures on Rational points on modular curves

...



Galois representations attached to elliptic curves
Let E be an elliptic curve over a number field k. The action of Galk on E[N] yields

ρE,N : Galk → Aut(E[N]) ≃ GL2(Z/NZ) =: GL2(N).

After choosing a compatible system of bases, taking the inverse limit yields

ρE : Galk → lim←−GL2(N) ≃ GL2(Ẑ) ≃
∏

GL2(Zℓ).

Note that ρE and its image are defined only up to GL2-conjugacy.
In this talk we always work up to GL2-conjugacy.

Theorem (Serre 1972)

If E/k is a non-CM elliptic curve then ρE(Galk) is an open subgroup of GL2(Ẑ).
When k = Q the index [GL2(Ẑ) : ρE(Galk)] is divisible by 2.

For any fixed k one expects the index [GL2(Ẑ) : ρE(Galk)] to be bounded for non-CM E/k.
For k = Q the bound 2736 has been conjectured (see Zywina 2022).

https://doi.org/10.1007/BF01405086
https://arxiv.org/abs/2206.14959
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The modular curve XH

y4 +5x4−6x2y2 +6x3z+26x2yz+10xy2z−10y3z−32x2z2−40xyz2 +24y2z2 +32xz3−16yz3 = 0

https://xkcd.com/2529
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The modular curve XH

Definition (Deligne, Rapoport 1973)

For each open H ≤ GL2(Ẑ). The modular curves XH and YH are coarse spaces for the
stacksMH andM0

H parametrizing elliptic curves E with H-level structure: equivalence
classes [ι]H of isomorphisms ι : E[N]

∼−→ Z(N)2, where ι ∼ ι′ if ι = h ◦ ι′ for some h ∈ H.

• XH is a smooth proper Z[ 1
N ]-scheme with open subscheme YH.

The complement X∞
H of YH in XH (the cusps) is finite étale over Z[ 1

N ].

• If det(H) = Ẑ× the generic fiber of XH is a nice curve XH/Q, and XH(C) is the
Riemann surface XΓH := ΓH\H, with ΓH ⊆ SL2(Z) the preimage of πN(H) ∩ SL2(N).
If det(H) ̸= Ẑ× then XH is not geometrically connected, but it is a curve over Q.

• For E/k with j(E) ̸= 0, 1728 we have ρE,N(Galk) ≤ H ⇐⇒ (E, [ι]H) ∈ YH(k).

Subgroup inclusions H ≤ H′ induce morphisms XH → XH′ .
In particular, every XH is equipped with a map j : XH → X(1) to the j-line X(1) ≃ P1.

https://doi.org/10.1007/978-3-540-37855-6_4


The three fundamental invariants: level, index, genus
For each (conjugacy class of) open H ≤ GL2(Ẑ) we define the following invariants.

• the level n(H) is the least N for which H contains the kernel of GL2(Ẑ) ↠ GL2(N).

• the index i(H) is the positive integer [GL2(Ẑ) : H] = [GL2(N) : H(N)].

• the genus g(H) is the nonnegative integer

g(H) := g(Γ) := 1 +
i(Γ)
12
− e2(Γ)

4
− e3(Γ)

3
− e∞(Γ)

2
(
Γ := ±H(N) ∩ SL2(N)

)
,

where i(Γ) := [SL2(N) : Γ] counts right Γ-cosets in SL2(N), e2 and e3 count cosets
fixed by

(
0 1
−1 −1

)
and

(
0 1
−1 0

)
, respectively, and e∞(Γ) counts

(
1 1
0 1

)
-orbits of Γ\ SL2(N).

When det(H) = Ẑ× and −I ∈ H, the level n(H) controls the bad primes of XH, the index
i(H) is the degree of the map XH → X(1), and g(H) is the genus of of XH/Q.

If H′ ≤ H then n(H)|n(H′) and i(H)|i(H′) and g(H) ≤ g(H′).



A fourth fundamental invariant: Gassmann class
For subgroups H1 and H2 of a finite group G the following are equivalent:

#(H1 ∩ C) = #(H2 ∩ C) for every conjugacy class C ⊆ G.

There is a conjugacy-class-preserving bijection of sets H1 ↔ H2.

The permutation characters χH1 : G→ Z and χH2 : G→ Z coincide.

The G-sets [H1\G] and [H2\G] are isomorphic as K-sets for every cyclic K ≤ G.

The permutation modules Q[H1\G] and Q[H2\G] are isomorphic as Q[G]-modules.
Subgroups that satisfy any of these equivalent conditions are Gassmann equivalent.1

Open H1,H2 ≤ GL2(Ẑ) are Gassmann equivalent if H1(N),H2(N) ≤ GL2(N) are
Gassmann equivalent for any N divisible by the levels of H1 and H2.

Proposition

For Gassmann equivalent H1,H2 ≤ GL2(Ẑ) we have Jac(XH1) ∼ Jac(XH2).

1See [S21] for more on arithmetic equivalence.

https://arxiv.org/abs/2104.01956


Coarse and fine subgroups
Definition

Open H ≤ GL2(Ẑ) that contain −I are coarse groups; those that do not are fine groups.
A quadratic refinement of a coarse group H is a fine group H′ for which H = ±H′.

A typical coarse subgroup H has infinitely many quadratic refinements H′, all of which
satisfy:
• n(H)|n(H′), i(H′) = 2i(H), g(H′) = g(H).

• XH′ ≃ XH (as curves); in particular L(XH′ , s) = L(XH, s) and XH′(k)↔ XH(k).

• j(XH′(k)) = j(XH(k)) for every k/Q.
If H′ is a quadratic refinement of H and E/k has Galois image ρE(Galk) = H,
the quadratic twist Ẽ/k by the fixed field of ρ−1

E (H′) has Galois image ρẼ(Galk) = H′.

Example
The elliptic curve 14.a4 corresponds to a point on X1(3), a quadratic refinement of X0(3).
Quadratic twists have a rational 3-isogeny, but only 14.a4 has a rational 3-torsion point.

https://alpha.lmfdb.org/EllipticCurve/Q/14/a/4
https://alpha.lmfdb.org/ModularCurve/Q/3.8.0-3.a.1.2/
https://alpha.lmfdb.org/ModularCurve/Q/3.4.0.a.1/
https://alpha.lmfdb.org/EllipticCurve/Q/?hst=List&jinv=128787625%2F98&search_type=List&showcol=jinv.modell_images&hidecol=lmfdb_iso


Labels
Coarse groups H ≤ GL2(Ẑ) with det(H) = Ẑ× have labels of the form N.i.g.c.n:

N, i, g are the level, index, genus of H, respectively;

c identifies the Gassmann class of H among those with label prefix N.i.g;

n identifies the conjugacy class of H for those with label prefix N.i.g.c.

Fine groups H ≤ GL2(Ẑ) with det(H) = Ẑ× have labels of the form N.i.g-M.c.m.n:
N, i, g are the level, index, genus of H, respectively;

M, c,m are components of the label M.j.g.c.m of ±H;

n identifies the conjugacy class of H for those with label prefix N.i.g-M.c.m.

Gassmann classes are ordered by lexicographically sorting characters via their values on
conjugacy classes of elements ordered by similarity invariant.

Conjugacy classes of subgroups are ordered by their canonical generators,
as computed by the function GL2CanonicalGenerators in gl2base.m.

https://github.com/AndrewVSutherland/Magma/blob/6d09900e13387cc41f3273c7c2dd6e213182faf8/gl2base.m#L2851
https://github.com/AndrewVSutherland/Magma/blob/main/gl2base.m


What’s in the database (coming soon)

level/index/genus constraints coarse fine total

N ≤ 70 804 450 7 361 885 8 166 335
N ≤ 1000 prime power 584 661 3 954 166 4 538 827
g ≤ 6,N < 840 613 696 6 582 027 7 195 723
g ≤ 12, N < 480 390 416 5 334 650 5 725 066
g ≤ g(X1(N)), i ≤ i(X1(N)), N < 120 783 941 11 891 829 12 675 770
g ≤ g(X0(N)), i ≤ i(X0(N)), N < 360, −I ∈ H 1 678 612 0 1 678 612

4 855 776 35 124 557 39 980 333

The counts in each row exclude groups in rows above, so there is no overlap.



Coarse modular curves XH/Q of level N ≤ 70 and genus g ≤ 24
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Subgroups of GL2(Ẑ) vs subgroups of SL2(Ẑ)
For any fixed g there are only finitely many open Γ ≤ SL2(Ẑ) containing −I with g(Γ) = g.
You can find complete lists for g ≤ 24 in the Cummins–Pauli database.2

By contrast, GL2(Ẑ) contains infinitely many coarse subgroups of every genus.

For open H ≤ GL2(Ẑ) with det(H) = Ẑ×, the index and genus of H depend only on
Γ := H ∩ SL2(Ẑ), but the levels of H and Γ may differ.

For distinct H,H′ of the same level N with common intersection in SL2(N), the curves
XH, XH′ are not isomorphic. They typically have non-isgoenous Jacobians and different
sets of rational points (in particular, one may be empty when the other is not!).

Example

For the groups H = 15.60.2.c.1 and 15.60.2.d.1, H ∩ SL2(Ẑ) has CP label 15D2.
The first XH has no Q-points and rank 1 Jac(XH) ∼ 75.c × 225.c.
The second XH = X+

ns(15) has 6 rational Q-points and rank 2 Jac(XH) ∼ 225.a × 225.c.

2Cummins and Pauli consider Γ up to GL2(Z)-conjugacy, not GL2(Ẑ)-conjugacy.

https://mathstats.uncg.edu/sites/pauli/congruence/
https://alpha.lmfdb.org/ModularCurve/Q/15.60.2.c.1/
https://alpha.lmfdb.org/ModularCurve/Q/15.60.2.d.1/
https://mathstats.uncg.edu/sites/pauli/congruence/csg2.html#group15D2
https://alpha.lmfdb.org/EllipticCurve/Q/75/c/
https://alpha.lmfdb.org/EllipticCurve/Q/225/c/
https://alpha.lmfdb.org/EllipticCurve/Q/225/a/
https://alpha.lmfdb.org/EllipticCurve/Q/225/c/


Rational points on XH

Let H be an open subgroup of GL2(Ẑ) of level N (which we may view as H ≤ GL2(N)).

Definition
The set YH(k̄) consists of equivalence classes (E, [ι]H), where (E, [ι]H) ∼ (E′, [ι′]H)
if there is an isomorphism ϕ : E → E′ for which ϕN : E[N]→ E′[N] satisfies ι ∼ ι′ ◦ ϕN .

Each σ ∈ GalK induces σ−1 : Eσ[N]
∼→ E[N] via (x : y : z) 7→ (σ−1(x) : σ−1(y) : σ−1(z)).

We have a Galk-action on YH(k̄): (E, [ι]H 7→ (Eσ, [ι ◦ σ−1]H), and define YH(k) := YH(k̄)Galk .

Equivalently, YH(k̄) is the set of pairs (j(E), α), with α = HgAut(Ek̄) ∈ H\GL2 /Aut(Ek̄),
on which Galk acts via (j(E), α) 7→ (j(E)σ, ασ), where ασ = HgρE(σ)Aut(Ek̄).

Galk acts on X∞
H (k̄) := ±H\GL2 /⟨

(
1 1
0 1

)
⟩ via

(
χcyc(σ) 0

0 1

)
, and X∞

H (k) := X∞
H (k̄)Galk .

We now define XH(k̄) := YH(k̄) ⊔ X∞
H (k̄), and XH(k) := XH(k̄)Galk = YH(k) ⊔ X∞

H (k).



Computing rational cusps (explicitly)

Given H ≤ GL2(N) containing −I with det(H) = Z(N)×, we compute #X∞
H (Q) by counting

double cosets H\GL2 /⟨
(

1 1
0 1

)
⟩ fixed by all

( g 1
0 1

)
with g ∈ Z(N)×.

The following Magma code snippet does this:

R := BaseRing(H);
G := GL(2,R);
pi := CosetAction(G,H);
O := Orbits(pi(sub<G|[1,1,0,1]>));
M,cyc := MultiplicativeGroup(R);
cycgens := [G|[cyc(g),0,0,1]:g in Generators(M)];
ratcusps := [o : o in O | &and[oˆg eq o :g in cycgens];

See the function GL2RationalCuspCount in gl2base.m.

https://github.com/AndrewVSutherland/Magma/blob/6d09900e13387cc41f3273c7c2dd6e213182faf8/gl2base.m#L1341
https://github.com/AndrewVSutherland/Magma/blob/main/gl2base.m


Computing rational CM points (explicitly)
Let E/Q be an elliptic curve with (potential) CM by an imaginary quadratic order O.
Let ϕ be [OK : O] if discO is odd and 0 otherwise, and let δ = (D− ϕ2)/4 ∈ Z.

As shown by Lozano-Robledo, for each N ∈ Z≥1, if we define

CO(N) :=
{( a+bϕ b

δb a

)
: a, b ∈ Z(N), a2 + abϕ− δ2 ∈ Z(N)×

}
≤ GL2(N)

NO(N) :=
〈
CO(N),

(
−1 0
ϕ 1

)〉
then ρE,N(GalQ) ≤ NO(N). Equality holds for all but finitely many twists of E, and we can
explicitly compute the set SO(N) of subgroups of NO(N) that arise as ρE′,N(GalQ) for any
twist E′ (including when j(E) = 0, 1728; see §12 of RSZB for details).

Given H ≤ GL2(N) we can determine the rational CM points on XH by checking whether
any K ∈ SO(N) is conjugate to a subgroup of H for each of the 13 O with h(O) = 1.

See the function GL2RationalCMPoints in gl2base.m.

https://arxiv.org/abs/1809.02584
https://arxiv.org/pdf/2106.11141
https://github.com/AndrewVSutherland/Magma/blob/6d09900e13387cc41f3273c7c2dd6e213182faf8/gl2base.m#L3187
https://github.com/AndrewVSutherland/Magma/blob/main/gl2base.m


Counting rational Fq-points on XH (explicitly)

Theorem (Duke, Tóth 2002)
Let E/Fq be an elliptic curve, and let πE denote its Frobenius endomorphism. Define
a := trπE = q + 1−#E(Fq) and R := End(E) ∩Q(πE), let ∆ := disc(R) and δ := ∆ mod 4,
and let b :=

√
(a2 − 4q)/∆ if ∆ ̸= 1 and b := 0 otherwise. The integer matrix

AE :=

(
(a + bδ)/2 b
b(∆− δ)/4 (a− bδ)/2

)
gives the action of πE on E[N] for all N ≥ 1.

We compute AE = A(t, v, d) for all E/Fq by enumerating solutions (t, v,D) to

4q = t2 − v2D,

and making appropriate adjustments for j(E) = 0, 1728 and supersingular E/Fq.
We then count the double cosets fixed by A(t, v, d) with multiplicity h(D).

http://projecteuclid.org/euclid.em/1057864664


Counting rational Fq-points on XH (explicitly)

Given H ≤ GL2(N) containing −I and a prime power q, compute #XH(Fq) as follows:

1 Compute the permutation character χH : GL2(N)→ Z counting H-cosets fixed by g.
which is equal to [GL2(N) : H]#(H ∩ [g])/#[g] where [g] is the conjugacy class of g.

2 Compute n∞ := #X∞
H (Fq) by counting elements of H\GL2(N)/⟨

(
1 1
0 1

)
⟩ fixed by

( q 0
0 1

)
.

3 Compute n0 := #j−1
H (0) and n1728 := #j−1

H (1728) by computing Aπ

for each twist, summing χH(Aπ) values, and dividing by #Aut(Ek̄).

4 Compute nord :=
∑

t,v,D χH(A(t, v,D))h(D) with (t, v,D) varying over solutions to
4q = t2 − v2D with t ⊥ q and D < −4.

5 Similarly compute nss (omitting j(E) = 0, 1728; see [RSZB22] for details).

6 Output #XH(Fq) = n∞ + n0 + n1728 + nord + nss.

See the function GL2PointCount in gl2points.m.

https://arxiv.org/abs/2106.11141
https://github.com/AndrewVSutherland/Magma/blob/6d09900e13387cc41f3273c7c2dd6e213182faf8/gl2points.m#L359
https://github.com/AndrewVSutherland/Magma/blob/main/gl2points.m


Decomposing the Jacobian of XH

Let H be an open subgroup of GL2(Ẑ) of level N and let JH denote the Jacobian of XH.

Theorem (Rouse, S, Voight, Zureick-Brown 2021)

Each simple factor of JH is isogenous to Af for a weight-2 eigenform f on Γ0(N2) ∩ Γ1(N).

If we know the q-expansions of the eigenforms in S2(Γ0(N2) ∩ Γ1(N)) we can uniquely
determine the decomposition of JH up to isogeny using linear algebra and point-counting.

It suffices to work with trace forms Tr(f ) (the sum of the Galois conjugates of f )

Tr(f )(q) :=
∞∑

n=1

TrQ(f )/Q(an(f ))qn,

since the integers an(Tr(f )) uniquely determine L(Af , s) and the isogeny class of Af .
By strong multiplicity one (Soundararajan 2004), the ap(Tr(f )) for enough p ∤ N suffice.

https://doi.org/10.4153/CMB-2004-046-0


Decomposing the Jacobian of XH

Let {[f1], . . . , [fm]} be the Galois orbits of the weight-2 eigenforms for Γ0(N2) ∩ Γ1(N). Then

L(JH, s) =
m∏

i=1

L(Afi , s)ei

for some unique vector of nonnegative integers e(H) := (e1, . . . , ei).

Let T(B) ∈ Zn×m have columns [a1(Tr(fi)), a2(Tr(fi)), . . . , ap(Tr(fi)), . . .] for good p ≤ B.
Let a(H;B) := [g(H), a2(H), . . . , ap(H), . . .], where ap(H)p + 1−#XH(Fp), for good p ≤ B.

For all sufficiently large B the Q-linear system

T(B)x = a(H;B),

has the unique solution x = e(H).

We can then compute the analytic rank of JH as rk(JH) =
∑

ei rk(fi) using the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/


Gonality bounds via point-counting

Definition
The gonality gon(X) of a nice curve X/k, is the minimal degree of a map to P1

k .
Let d(X) be the least integer d for which X has infinitely many degree-d points.

Proposition (Abramovich–Harris, Frey)
For any nice curve X we have d(X) ≤ gon(X) ≤ 2d(X).
Proof: See Kadets’ talk.

For modular curves XH with −I ∈ H, the map XH → X(1) ≃ P1 has degree i(H) ≥ gon(XH).
If g(XH) > 1 then gon(XH) ≤ 2g− 2, which improves to gon(XH) ≤ g when XH(Q) ̸= 0.

We also have gon(XH) ≥ 325
32768 [SL2(Ẑ) : H ∩ SL2(Ẑ)] due to Abramovich (via Kim–Sarnak).

For every prime power q coprime to the level of H we have

#XH(Fq) ≤ gon(XH)#X(1)(Fq) =⇒ gon(XH) ≥ #XH(Fq)/(q + 1)

https://eudml.org/doc/90088
https://link.springer.com/article/10.1007/BF02758637
http://imrn.oxfordjournals.org/content/1996/20/1005
http://dx.doi.org/10.1090/S0894-0347-02-00410-1


Gonality bounds via subgroup lattices
If −I ∈ K ≤ H then gon(XH) ≤ gon(XK) ≤ [H : K] gon(XH). (see Poonen).
This allows us to propagate gonality bounds through lattices of subgroups. Even better:

Theorem (Castelnuovo–Severi inequality, Poonen, Najman–Orlić)
Let X,Y,Z be geometrically integral curves over Q with non-constant maps πY : X → Y and
πZ : X → Z of degrees dY , dZ. Assume that there is no morphism X → X′ of degree > 1
through which both maps factor. Let gX, gY , gZ be the genera of X,Y,Z respectively. Then

gX ≤ dYgY + dZgZ + (dY − 1)(dZ − 1) (1)

Applying this to X = XK , Y = XH, Z = X(1), if dY = [H : K] is coprime to gon(XK) then

gon(XK) ≥
g(XK)− [H : K]g(XH)

[H : K]− 1
+ 1.

The gonality bounds of Kadets–Vogt may also be applicable.

https://math.mit.edu/~poonen/papers/gonality.pdf
https://math.mit.edu/~poonen/papers/gonality.pdf
https://arxiv.org/abs/2207.11650
https://arxiv.org/abs/2208.01067


Thank you for listening!


