Sources of low degree points on curves

Borys Kadets

based on joint work with Isabel Vogt and Danny Neftin

Einstein Institute of Mathematics

June 23, 2025

A Vague Goal

Given a nice curve X/\mathbb{Q} , understand the structure of $X(\overline{\mathbb{Q}})$ as a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -set.

A Vague Goal

Given a nice curve X/\mathbb{Q} , understand the structure of $X(\overline{\mathbb{Q}})$ as a $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -set.

An application

A polynomial p(x) gives a map $\overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$. Two intuitions:

- 1. For most α , $\mathbb{Q}(p(\alpha)) = \mathbb{Q}(\alpha)$;
- 2. For most α , $[\mathbb{Q}(p^{-1}(\alpha)) : \mathbb{Q}(\alpha)] = \deg p$.

Theorem (K.– Neftin)

Suppose $p \in \mathbb{Q}[x]$ is an indecomposable polynomial with b branch points. Then for all but finitely many $\alpha \in \overline{\mathbb{Q}}$, $\deg \alpha \leq b/6$, for any $\beta \in p^{-1}(\alpha)$ the degree $[\mathbb{Q}(\beta) : \mathbb{Q}(\alpha)]$ is either $\deg p, \deg p - 1$, or 1.

Moral: Study of algebraic points on curves has useful consequences for concrete arithmetic.

Methods apply to the study of

 $\delta(X) \coloneqq \{d \colon X \text{ has infinitely many degree } d \text{ points}\}.$

Basic examples of $d \in \delta(X)$

- 1. A covering $\phi: X \to \mathbb{P}^1$, $\deg \phi = d$
- 2. A covering $\phi: X \to E$, $\deg \phi = d$
- 3. An incidence $I \subset X \times E$ of bidegree (e, d)
- $4. \ {\rm A} \ {\rm covering} \ \phi: X \to Y, Y$ has a mystery source of degree $d/\deg \phi$ points
- 5. Often $g \in \delta(X)$

Claim

 $\min \delta(X) = d$ is "small", implies that X is "special"

$$\begin{aligned} \operatorname{Sym}^{d} X & \stackrel{\simeq}{\longrightarrow} & X^{d} / / S_{d} \\ & \downarrow^{\pi_{AJ}} & & \\ & W_{d} X & \stackrel{\sim}{\longrightarrow} & \operatorname{Pic}^{d} X \end{aligned} \qquad \pi_{AJ}(D) = \pi_{AJ}(D') \text{ whenever } \exists f \colon f^{-1}(0) = D, f^{-1}(\infty) = D' \end{aligned}$$

Remark: We will denote degree d points by D, D' etc., and view them as divisors.

Assume gon(X) > d

 $\operatorname{Sym}^d X \subset \operatorname{Pic}^d X$ has infinitely many rational points \checkmark

A useful triviality

B and abelian group, $A \subset B$ a coset if and only if

 $\forall a_1, a_2, a_3 \in A, \ a_1 + a_2 - a_3 \in A.$

Choose $D_1, D_2, D_3 \in A(\mathbb{Q})$. Then $D_1 + D_2 - D_3 = D_4 \in A(\mathbb{Q})$.

Corollary

If $d = \min \delta(X)$, then $\operatorname{gon}(X) \leq 2d$.

Remark. A is divisible, so $D_1 + D_2 = 2D$. Thus have a large supply of linear systems |2D| on X.

Theorem (K.–Vogt)

X a nice curve, $d = \min \delta(X)$. Then either there exists a nontrivial covering $\phi : X \to Y$ such that $d = \deg \phi \min \delta(Y)$, or |2D| is birational for a general $D \in A$.

 $\{\text{low degree points}\} \rightsquigarrow \{\text{embeddings } X \hookrightarrow \mathbb{P}^n\}$

Main relation

For $D_1 \in A(\mathbb{Q})$, there exists a $D_2 \in A(\mathbb{Q})$ such that $2D = D_1 + D_2$

Theorem (K.–Vogt)

If dim |2D| = 2, then X is a Debarre-Fahlaoui curve.

Key point Embeddings |3D|, |4D|, etc. are even more special than |2D|. The *spans* of low degree points form remarkable combinatorial configurations.

More on Debarre-Fahlaoui

Case of interest

What if generically dim |2D| = 2, dim |3D| = 5? In that case $\text{Span}_{|3D|}(D')$ is a 2-plane for a general D'.

Corollary

If $d=\min \delta(X),$ then there is a covering $\phi:X\to Y$ of degree e|d such that $\min \delta(Y)=d/e$ and

 $g(Y) \leqslant \frac{3}{4} \left(d/e \right)^2 + d/e.$

Main problem

Given a degree ℓ polynomial $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ want to understand fibers $\phi^{-1}(P)$ above low degree d points P. Expect for low degrees all fibers are either irreducible or $(1, \ell - 1)$

Geometrically:

$$X_n = \tilde{X}/S_n \times S_{\ell-n} = \left(\left(\mathbb{P}^1 \times_{\phi} \mathbb{P}^1 \times_{\phi} \cdots \times_{\phi} \mathbb{P}^1 \right) \setminus \Delta \right) / S_n$$

Simplest case

Simple branching, monodromy S_{ℓ} .

Want to understand $\min \delta(X_n) \approx \operatorname{gon}(X_n)$. Let γ be the gonal map.

$$\begin{array}{ccc} X_n & \stackrel{\binom{\ell}{n}}{\longrightarrow} & \mathbb{P}^1 \\ \downarrow^{\gamma} & & \\ \mathbb{P}^1 \end{array} & \text{So } g_n \lessapprox \operatorname{gon}(X_n)\binom{\ell}{n}. & \text{But } g_n \gtrless (\ell-1)\binom{\ell-2}{n-1} + \binom{\ell}{n} \end{array}$$

Want to understand $\min \delta(X_n) \approx \operatorname{gon}(X_n)$. Let γ be the gonal map.

$$\begin{array}{ccc} X_n & \stackrel{\binom{\ell}{n}}{\longrightarrow} & \mathbb{P}^1 \\ \downarrow^{\gamma} & & \\ \mathbb{P}^1 \end{array} & \text{So } g_n \lessapprox \operatorname{gon}(X_n)\binom{\ell}{n}. \text{ But } g_n \gtrless (\ell-1)\binom{\ell-2}{n-1} + \binom{\ell}{n} \end{array}$$

$$\operatorname{gon}(X_n) \gtrsim n \frac{\ell - n}{\ell} \qquad : \mathsf{C}$$

Useful fact

If $\psi \colon X \to Y$ is a covering then $\operatorname{gon}(Y) \leq \operatorname{gon}(X) \leq \operatorname{gon}(Y) \operatorname{deg} \psi$; same for $\min \delta(\bullet)$.

So the diagram of covers $\tilde{X}/H \to \mathbb{P}^1$ has to satisfy the above and the Castelnuovo-Severi constraints. Restricts the function $\gamma(H) = \operatorname{gon}(\tilde{X}/H)$.

The generic case

Let $Y_n = \tilde{X}/S_{\ell-n}$, a degree n! covering of X_n . Castelnuovo-Severi for $Y_n \to Y_{n-1}$ and the gonal map gives

$$\operatorname{gon}(Y_n) \gtrsim \frac{(\ell-1)\underline{n}}{\ell-n}.$$

This means

$$\operatorname{gon} X_n \gtrsim \frac{1}{\ell - n} \binom{\ell - 1}{n}$$

Theorem (K.– Neftin)

Suppose $p \in \mathbb{Q}[x]$ is an indecomposable polynomial with b branch points. Then for all but finitely many $\alpha \in \overline{\mathbb{Q}}$, $\deg \alpha \leq b/6$, for any $\beta \in p^{-1}(\alpha)$ the degree $[\mathbb{Q}(\beta) : \mathbb{Q}(\alpha)]$ is either $\deg p, \deg p - 1$, or 1.

Strategy

- 1. Use combinatorics to understand the genera of \tilde{X}/H
- 2. Use the properties of the gonality function of the diagram to prove that gonality grows fast
- 3. Use refined methods to study $\min\delta$ for small quotients, most importantly for X_2

Remarks: Vojta inequality does not help. Applies to covering $X \to Y$, not just polynomial maps.