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Sample Average Approximation (SAA)

Sample Average Approximation (SAA) is a commonly-used procedure for
approximating solutions to stochastic optimization problems of the form

min
x∈X

{F(x) := Eξf(x, ξ)}, (1)

The idea of SAA is to first generate an i.i.d. sample ξ1, . . . , ξn of the random variable
ξ, and then approximate the expectation Eξf(x, ξ) using its sample average

min
x∈X

{Fn(x) :=
1

n

n∑
i=1

f(x, ξi)}. (2)
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Sample Bounds

The number of samples n in the SAA problem need to be as small as possible.
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Sample Bounds

The number of samples n in the SAA problem need to be as small as possible.

Towards this goal, a now classical analysis
[Kleywegt et al., 2002, Shapiro, 2003, Shapiro et al., 2009] showed that in order to
ensure

P
(
F(x̂n)− F(x∗) ≤ δ

)
≥ 1− α (3)

for any δ ∈ (0, 1] and α ∈ (0, 1], the number of samples n should satisfy

n ≳ p
δ2
log

1

δ
+

1

δ2
log

1

α
. (4)

These bounds depend polynomially on problem dimension p.
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Rademacher Complexity

Analysis depends on stochastic process theory.

Let ϵ1, . . . , ϵn be i.i.d. Rademacher random variables, where P(ϵ = ±1) = 1
2 ; and let

f(x, ξ) be the function from the objective of the SAA problem. We define the
Rademacher complexity of the function setF := {f(x, ξ) : x ∈ X} to be

Rn[f] = Eξ
(
sup
x∈X

∣∣∣ 1n ∑n
i=1 ϵif(x, ξi)

∣∣∣). (5)
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Rademacher Complexity

With an assumption that−∆/2 ≤ f(x, ξ) ≤ ∆/2 for all (x, ξ) ∈ X × Ξ, for some
finite constant∆ ∈ R+, we give a concentration bound of the form:

Proposition 1

P
(
sup
x∈X

∣∣∣Fn(x)− F(x)
∣∣∣ > t

)
≤ exp

(
− 2n

( t− 2Rn[f]
∆

)2)
. (6)

The proof involves use of Jensen and McDiarmid’s inequalities, a symmetrization
argument, and an application of the triangle inequality.



11/36

Improved Sample Bounds
Proposition 2
Let g : R → R be Lipschitz with constant L, and consider the stochastic optimization
problem

min
x∈S

{
Eξ

(
g(ξTx)

) ∣∣∣ ∥x∥1 ≤ λ
}

(7)

where S ⊆ Rp andmaxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Then the Rademacher complexity of the
above problem is bounded byRn[f] ≤ λLC

√
2 log 2p/n, and we need

n ≥
(3λLC

δ

)2

·
(
2 log

( 2

α

)
+ 2 log 2p

)
(8)

samples to ensure that
P
(
F(x̂n)− F(x∗) ≤ δ

)
≥ 1− α (9)

for any δ ∈ (0, 1] and α ∈ (0, 1], holds.
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Improved Sample Bounds
Proposition 3
Let g : R → R be Lipschitz with constant L, and consider the stochastic optimization
problem

min
X∈S

{
Eξ

(
g(tr(ξTX))

) ∣∣∣ ∥X∥∗ ≤ λ
}

where S ⊆ Rp×q andmaxξ∈Ξ ∥ξ∥2 ≤ C < +∞. Then the Rademacher complexity of
the above stochastic optimization problem is bounded by
Rn[f] ≤ λLC

√
3 log(min{p, q})/n, and we need

n ≥
(3λLC

δ

)2

·
(
2 log

( 2

α

)
+ 3 log

(
min{p, q}

))
samples to ensure that for any δ ∈ (0, 1] and α ∈ (0, 1], (17) holds.
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Numerical experiments

Consider a scenario where we would like to choose a portfolio that allocates
investments into some combination of p risky assets and 1 risk-free asset, while
considering a tradeoff between maximizing the expected return of the portfolio and
the risk tolerance of the investor.

The Markowitz portfolio selection model [Markowitz, 1952, Bruder et al., 2013] is a
simple framework to pose such a problem.
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Numerical Experiments

Let ξ ∈ Rp is a random variable of the returns from the p risky assets, and define
µ = Eξξ andΣ = Eξ((ξ − µ)(ξ − µ)T). Then one formulation of the problem
involves solving a convex quadratic program

min
x∈Rp

{
xTΣx− γ · xT(µ− r1)

∣∣∣ x ≥ 0, ∥x∥1 ≤ 1
}

(10)

where:

r is the rate of return for the risk-free asset,

γ > 0 trades-off betewen the returns and risk of the portfolio, and

Each entry of the vector x gives the fraction of the portfolio allocated to the p risky
assets; hence 1−

∑p
i=1 xi is the fraction of the portfolio allocated to the risk-free

asset.
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Numerical Experiments

(a) log-log plot (b) semi-log plot

Figure 1: Comparison of 95% upper confidence bound of SAA solution gap (solid blue) with
bounds on 95% upper confidence bound gap predicted classically (dash-dotted red), our
Proposition (dashed orange), and our Corollary (dotted green).

In both plots, the x-axis is the dimension p of the decision variable, and the y-axis is the 95%
upper confidence bound gap.
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Introduction

• Tensors generalize matrices.

Examples
Vectors are 1D tensors, matrices 2D, and so on...
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Introduction

• Tensors generalize matrices.

• Tensor Rank and Decomposition: Though related, many problems that are
polynomial-time solvable for matrices are NP-hard for tensors.

• It is NP-hard to compute the rank of a tensor [Hillar and Lim, 2013], & tensor
versions of the spectral norm, nuclear norm, and matrix singular value
decomposition are also NP-hard to compute.
[Hillar and Lim, 2013, Friedland and Lim, 2014].
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Tensor Completion, Past Approaches
Tensor completion is the problem of observing (possibly with noise) a subset of
entries of a tensor and then estimating the remaining entries based on an
assumption of low-rankness.

Suppose we have data (x⟨i⟩, y⟨i⟩) ∈ R× R for i = 1, . . . , n. Let
I = {i1, . . . , iu} ⊆ [n] be any set of points that specify all the unique x⟨i⟩ for
i = 1, . . . , n.

The nonnegative tensor completion problem is given by

ψ̂ ∈ argmin
ψ

1
n

∑n
i=1

(
y⟨i⟩ − ψx⟨i⟩

)2
s.t. rank(ψ) ≤ λ

(11)

The “state of the art” computational methods use decomposition and an alternating
minimization procedure to solve.
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A “tension” in the TC World

Algorithms that achieve the information-theoretic rate have been developed for a few
special cases of tensors.

Completion of nonnegative rank-1 tensors can be written as a convex optimization
problem [Aswani, 2016].

For symmetric orthogonal tensors, a variant of the Frank-Wolfe algorithm has been
proposed [Rao et al., 2015], which can be shown to achieve the information-theoretic
rate.
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A “tension” in the TC World

To date, no tensor completion algorithm has been shown to achieve the
information-theoretic sample complexity rate, while guaranteeing convergence.

Namely, for a tensor completion problem on a rank k tensor with sample size n, the
information theoretic rate for estimation error is√

k ·
∑

i

ri/n

[Gandy et al., 2011].
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A New Norm for Nonnegative Tensors

Our norm for nonnegative tensors uses a gauge (or Minkowski functional)
construction, common in the Machine Learning world, and this provides some
machinery for analysis [scaling of the ball].

It also depends on concepts and sets from the tensor world we cannot introduce here.
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A New Norm for Nonnegative Tensors
Proposition 4
The function defined as

∥ψ∥+ := inf{λ ≥ 0 | ψ ∈ λC1} (12)

is a norm for nonnegative tensors ψ ∈ Rr1×···×rp
+ .

We will call the set Cλ the nonnegative tensor polytope. A useful observation is that
the following relationships hold: Bλ = λB1, Sλ = λS1, and Cλ = λC1.

In our case Cλ is not symmetric about the origin, and so without proof we do not a
priori know whether scaling C1 eventually includes the entire space of nonnegative
tensors. Thus we have to explicitly prove the gauge is a norm.

Since the set of nonnegative tensors forms a cone [Qi et al., 2014], we must prove our
norm using a modified definition of a norm (Proof omitted).
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Results: Order 3 Tensors (r = dimensions)
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Figure 2: Results for order-3 nonnegative tensors with size r× r× r and n = 500 samples.
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Results: Increasing Tensor Order (p)
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Figure 3: Results for increasing order nonnegative tensors with size 10×p and n = 10, 000
samples.
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Results: 106 entries and Increasing Sample
Size
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Figure 4: Results for nonnegative tensors with size 10×6 and increasing n samples.
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Results: 107 entries and Increasing Sample
Size
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Figure 5: Results for nonnegative tensors with size 10×7 and increasing n samples.
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UN SDGs
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Optimal Intervention Theory (OIT)

Optimal Intervention Theory (OIT) is a method for improving human systems based
on Statistical Learning Theory (SLT), which is the basis for learning in machines.
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A New Solution Framework: Optimal
Intervention Theory (OIT)

• OIT considers the classic trade-off between statistically rigorous methods and
large-scale methods

• The Dynamic Programming algorithm, which solves problems with well-defined
end-goals in stages, is the basis of the SLT applicable to OIT.
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Thank You

The full papers are available on my website at www.calebxb.com
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