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Busemann-Petty problem 1956 — 1999 ETH:(irich

Let K and L be convex bodies in R4 Assume that for every hyperplane H through the origin,
vol (KN H) <vol(LnNH).
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Busemann-Petty problem 1956 — 1999 ETH:(irich

Let K and L be convex bodies in R4 Assume that for every hyperplane H through the origin,
vol(KNH) <vol(LNnH).

K

KNH

Does this imply that vol (K) < vol (L)?
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Busemann-Petty problem vi®) =< vol@)? ETH:lrich

In general NOT true!
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n general NOT true! It holds for convex bodies
in RY when d < 4.

Let’s refine it: ' _ - _
| Bourgain’s slicing conjecture (1986):

vol (K) < C vol (L),
where C does[not]depend on d.

Very active research topic in functional
analysis, convex geometry, tomography,...
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Busemann-Petty problem vi®) =< vol@)? ETH:lrich

general NOT true! It holds for convex bodies
in RY when d < 4.

Let’s refine it: ' _ . _
| Bourgain’s slicing conjecture (1986):
vol (K) < C vol (L),

where C does[not]depend on d.

| Bourgain’s slicing conjecture (1986): |
" There exists C > 0 such that |
| for all 4 and all convex bodies K c RY |
iof volume 1 there exists a hyperplane Hi

Very active research topic in functional | satisfying vol(K N H) > %
analysis, convex geometry, tomography,... ’
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Best slices ETH:z(rich

This motivates the study of extremal slices of convex bodies
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This motivates the study of extremal slices of convex bodies

Many collaborators
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that started at
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B. l. ( = Before ICERM ) ETHziirich

Back to Busemann and Petty: problem solved using intersection bodies

Slices of convex bodies 5 Chiara Meroni



B. l. ( = Before ICERM ) ETHziirich

Back to Busemann and Petty: problem solved using intersection bodies

“#encode the volume of the
central slices of a convex body

Slices of convex bodies 5 Chiara Meroni



B. l. ( = Before ICERM ) ETHziirich

Back to Busemann and Petty: problem solved using intersection bodies

“#encode the volume of the
central slices of a convex body

Home > Beitrdge zur Algebra und Geometrie / Contributions to Algebra and Geometr

Intersection bodies of polytopes

Katalin Berlow, Marie-Charlotte Brandenburg, Chiara Meroni [N & Isabelle Shankar

Home > Journal of Algebraic Combinatorics > Article

Intersection bodies of polytopes:
translations and convexity

Marie-Charlotte Brandenburg A & Chiara Meroni
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D. I. ( = During ICERM ) ETHziirich

Back to Busemann and Petty: problem solved using intersection bodies

“#encode the volume of the
‘centrdl slices of a convex body

oz S0

B 1 want all of them!!! D
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D. I. ( = During ICERM ) ETHziirich

Back to Busemann and Petty: problem solved using intersection bodies

“#encode the volume of the
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d I'Xl\/ > math > arXiv:2304.14239

The Best Ways to Slice a Polytope

q Marie-Charlotte Brandenburg, Jesus A. De Loera, Chiara Meroni

to appear in Mathematics of Computation
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Goal: find the “best” slice of P ETH:iirich

P = permutahedron
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Goal: find the “best” slice of P ETH:iirich

P = permutahedron best = largest #vertices
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Goal: find the “best” slice of P ETH:iirich

P = permutahedron best = largest #vertices
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Main idea ETH:zlirich

Small perturbations (generically)
preserve the combinatorial type

P = cube
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Main idea ETH:zlirich

Small perturbations (generically)
preserve the combinatorial type

The combinatorial type (possibly) changes

pP =
cube when the hyperplane crosses a vertex

Strategy: group the slices with the same combinatorial type
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Hyperplane arrangements ETH:ziirich

Construction: slices with the same combinatorial type belong to the same
cell of a certain (combination of) hyperplane arrangement(s)
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Hyperplane arrangements ETHziirich

Construction: slices with the same combinatorial type belong to the same
cell of a certain (combination of) hyperplane arrangement(s)

Hyperplane arrangement Reference object

Central arrangement i Intersection body

Cocircuit arrangement 5 Oriented matroid

Parallel arrangement ’ Fiber polytope

Sweep arrangement Sweep polytope
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Hyperplane arrangements ETH:ziirich

Construction: slices with the same combinatorial type belong to the same
cell of a certain (combination of) hyperplane arrangement(s)

Cocircuit arrangement

N/
5l
(P+1)Nx— ‘v’
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Let's optimize! ETHziirich

Theorem [B,DL,M]: Let P c R? be a polytope.
For fixed d, we can find the slice Pn H with

* maxf,(PNH)
max Z w(F)

* FcP
FNH#O0

*  max vol(P N H)
* minvol(P N H) (through a fixed point)

« mnax J f(x)dx
PnH

*

in polynomial time.
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Let's optimize! ETHziirich

Theorem [B,DL,M]: Let P c R? be a polytope.
For fixed d, we can find the slice P n H with

* maxf,(PNH)

7 or projection z;(P),

, e 2 o(F) or half-space Pn H*
FCP,

FNH#0
*  max vol(P N H)

* minvol(P N H) (through a fixed point)
" maXJ f(x)dx
PnH

B ... Theorem [BDLM]:
- It is #P-hard to compute :
Cannot hope for . the volume of the slice :

more, in general . with largest volume.

in polynomial time.
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Theory and practice ETHziirich

° SageMath https://mathrepo.mis.mpg.de/BestSlicePolytopes/
o Julia
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Theory and practice ETHziirich

° SageMath https://mathrepo.mis.mpg.de/BestSlicePolytopes/
o Julia

o Conjecture on the behaviour of slices from a discrete perspective
o Combinatorics of slices for special families of polytopes

o Applications to other problems in combinatorics

o Improve implementation to reach dimension 6

o Slices of lower dimension

O H BN

Slices of convex bodies 13 Chiara Meroni



Theory and practice ETHziirich

° SageMath https://mathrepo.mis.mpg.de/BestSlicePolytopes/
o Julia

o Conjecture on the behaviour of slices from a discrete perspective
o Combinatorics of slices for special families of polytopes

o Applications to other problems in combinatorics

o Improve implementation to reach dimension 6

o Slices of lower dimension

O H BN

Interested? Curious?
+ Talk to me!
+ Talk to Jesus!
+ Check out Antonio’s poster!

Slices of convex bodies 13 Chiara Meroni



A. l. ( = After ICERM ) ETH:z(irich

Slices of convex bodies 14 Chiara Meroni



A. l. ( = After ICERM )

Hey! There are also NON-discrete objects!

= I'le > math > arXiv:2403.04438

Maximizing Slice-Volumes of Semialgebraic
Sets using Sum-of-Squares Programming

;'ared MiIIe Chiara Meroni, Matteo Tacchi, Mauricio Velasco

=~ Recompile

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
OPTIMIZATION OF STAR-BODIES

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

Slices of convex bodies 14

Chiara Meroni

ETHzurich



A. l. ( = After ICERM) ETH:z(irich

Hey! There are also NON-discrete objects!

PROS: {xeR%|gx)>0 for i=1,...,N}

al iV > math > arXiv:2403.04438 _ _
X CONS: Only an approximation

Maximizing Slice-Volumes of Semialgebraic In R3 it is a|ready out of reach
Sets using Sum-of-Squares Programming
~— KEY: SDP

red Chiara Meroni, Matteo Tacchi, Mauricio Velasco
“ g Adapted Lasserre hierarchies

<~ Recompile

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
OPTIMIZATION OF STAR-BODIES

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO
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=~ Recompile ~ T &

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND B-P problem and Bourgain’s conjecture:
OPTIMIZATION OF STAR-BODIES optimization over all convex bodies

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO
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red Chiara Meroni, Matteo Tacchi, Mauricio Velasco
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=~ Recompile ~ T &

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND B-P problem and Bourgain’s conjecture:
OPTIMIZATION OF STAR-BODIES optimization over all convex bodies

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

How can we do this?
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Star-bodies ETH:zlirich

< Recompile ~

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
OPTIMIZATION OF STAR-BODIES

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

Assumptions: compact, 0 in the interior
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Star-bodies ETH:zlirich

< Recompile

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
OPTIMIZATION OF STAR-BODIES

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

Polytopes

Assumptions: compact, 0 in the interior
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Star-bodies ETH:zlirich

< Recompile

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
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CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

Polytopes

Convex bodies

Star-bodies

Assumptions: compact, 0 in the interior

Slices of convex bodies 15 Chiara Meroni



Radial & gauge functions ETH:irich

Radial function:  p;(x) = max{4 € R, | Ax € L}, for all x € §¢!

L c R4
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Radial function:  p;(x) = max{4 € R, | Ax € L}, for all x € 59!

. 1
Gauge function:  y,(x) = ——, for all x €

pr(x)

L c R4
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Radial & gauge functions ETH:irich

Radial function:  p,(x) = max{1 € R, | ix € L}, for all x € §¢-!

. 1
Gauge function:  y,(x) =  for all x € 57!

pr(x)

L can be uniquely identified with p, or y,

L c R4
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Radial function:  p,(x) = max{1 € R, | ix € L}, for all x € §¢-!

. 1
Gauge function:  y,(x) =  for all x € 57!

pr(x)

L can be uniquely identified with p, or y,

L c R4

For P={xeRY|Ax <1} we have

1
yp(X) = max A; - x, pp(x)=min{A | Al--x>0}
. . X

l l
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Radial & gauge functions ETH:irich

Radial function:  p,(x) = max{1 € R, | ix € L}, for all x € §¢-!

. 1
Gauge function:  y,(x) =  for all x € 57!

pr(x)

can be wild!

L can be uniquely identified with p, or y,

L c R4

For P={xeRY|Ax <1} we have

1
yp(X) = max A; - x, pp(x)=min{A | Al--x>0}
. . X

l l
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Polyradial & polygauge bodies ETHziirich

Polyradial body: a star-body whose radial function is polynomial

(Polygauge) (gauge)
Polyradial star-bodies — positive polynomials on §¢-!
Polygauge star-bodies — positive polynomials on s¢-!
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Polyradial & polygauge bodies ETHziirich

Polyradial body: a star-body whose radial function is polynomial
(Polygauge) (gauge)

p=32x%+ 32y + 128 = 32((cos 0)° + sin O + 4)
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How strict is this assumption?
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Density ETHzirich

lllllllllll

oy
‘e
.

How strict is this assumption?

Theorem [M,M,V]: The set of polyradial/polygauge bodies is dense in .....
the set of star-bodies with continuous radial/gauge function.

.
---------

If B.(0) c L, then the smallest distance between L and

o a polygauge body of degree kisin © : ,
rVk

1

, where m = inf
pr(x)

o a polyradial body of degree k is In @(

m/k
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Theorem [M,M,V]: The set of polyradial/polygauge bodies is dense in .....
the set of star-bodies with continuous radial/gauge function.

.
---------

If B.(0) c L, then the smallest distance between L and

. 1
o a polygauge body of degree k is In @( \/l_c), Spherical harmonics
' 5 Funk-Hecke formula
o a polyradial body of degree k is in @( : ), where m = inf L Fourier series
rmy/k pLX) Convolutions
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Density ETHzirich
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How strict is this assumption?

Theorem [M,M,V]: The set of polyradial/polygauge bodies is dense in .....
the set of star-bodies with continuous radial/gauge function.

.
---------

If B.(0) c L, then the smallest distance between L and

. 1
o a polygauge body of degree k is In @( \/l_c), Spherical harmonics
' 5 Funk-Hecke formula
o a polyradial body of degree k is in @( : ), where m = inf L Fourier series
rmy/k pLX) Convolutions

Moreover: if L is convex, it’s easy to make the approximating polygauge body convex too.
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Example ote: ETH:iirich

It is not enough to truncate the
Fourier series.
This operation does NOT guarantee
uniform convergence.
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Okay but why? ETHziirich

Back to the slice volume...
(central)

vol(L N xY) = R(p,(x))
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Okay but why? ETHziirich

. -~ ~ Radon transform
Back to the slice volume...

(central)

vol(L N xY) = R(p, (x))

It Is a positive polynomial
in x € S if L is polyradiall
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Okay but why? ETHziirich

. -~ ~ Radon transform
Back to the slice volume...

vol(L N x1) = R(p, (1))

It Is a positive polynomial
in x € S if L is polyradiall

‘Finding the slice with maximal (minimal) volume:
. is reduced to a sum-of-squares optimization .

Slices of convex bodies 21 Chiara Meroni



More optimization... ETH:iirich

With the gauge function we can express the width of a body:

W(L) — m%XI y(conVL)°(x) T }/(COIIVL)°(_'X)
xeST
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More optimization... ETH:iirich

With the gauge function we can express the width of a body:

W(L) — IIlE}ZXl y(conVL)°(x) T }/(COIIVL)°(_'X)
xeST

: Meissner: among all convex bodies with constant
. unit width, what is the smallest possible volume?
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More optimization... ETH:iirich

With the gauge function we can express the width of a body:

W(L) — IIlE}ZXl y(conVL)°(x) T }/(COIIVL)°(_'X)
xeST

: Meissner: among all convex bodies with constant
. unit width, what is the smallest possible volume?

Volume and width constraints can be
formulated in terms of the gauge function
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G-width

Define the G-width now, for a group G < 0(d):

ETHzurich

1
w~(L) = max Gx)dw

w(L) = Wy _1qy(L)

G:{<0 il)}

WG(L) — (m;aejél ( }/(conv L)°(x9 y) + y(conv L)°(~x9 o y) + }/(CODV L)°(_x9 o y) + y(conv L)°(_x9 )’) )
A,y

G-Meissner: among all convex bodies with constant
unit G-width, what is the smallest possible volume?
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Summary ETHziirich

=~ Recompile

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
OPTIMIZATION OF STAR-BODIES

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO
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Summary

< Recompile ~

PROS:

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND
OPTIMIZATION OF STAR-BODIES

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

Slices of convex bodies

CONS:

WHY NOT ON ARXIV:

24

ETHzurich

Exact for polyradial/polygauge bodies
Optimization over the set of convex/
star-bodies/polytopes

Works probably in R?

For polytopes just an approximation
In R* it is probably out of reach

Implementation is a work-in-progress!

Chiara Meroni



Summary ETHziirich

PROS: Exact for polyradial/polygauge bodies
Optimization over the set of convex/

ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND Star'b0d|eS/pO|ytOpeS
OPTIMIZATION OF STAR-BODIES Works prObany in R3

< Recompile ~ &

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

CONS: For polytopes just an approximation
In R* it is probably out of reach

WHY NOT ON ARXIV: Implementation is a work-in-progress!

Do you have an optimization problem that fits in this framework?
Come talk to me!
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Summary ETHziirich

PROS: Exact for polyradial/polygauge bodies

2 Recompile ~ % v o Optimization over the set of convex/
ON THE USE OF POLYNOMIALS IN THE APPROXIMATION AND Star-bOdIeS/polytOpeS
OPTIMIZATION OF STAR-BODIES Works probably in R3

CHIARA MERONI, JARED MILLER, AND MAURICIO VELASCO

CONS: For polytopes just an approximation
In R* it is probably out of reach

WHY NOT ON ARXIV: Implementation is a work-in-progress!

Do you have an optimization problem that fits in this framework?Tv\a“k

Come talk to me! Tha“ks ‘c

Slices of convex bodies 24 Chiara Meroni




