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What is graph sparsification?

Given a (weighted) graph G = (V,E,w), find a graph G = (V,E,?U) which captures
the essence’ of G but has much fewer edges. j
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Why bother?
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Why bother?

Data is too dang big!!

A dense graph has ~12 edges :ﬂfiﬁ

If n1is huge, that's not fun
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“Internet map 2004." From Math Insight. http://mathinsight.org/image/internet_map_jurvetson_2004
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A dense graph has ~n? edges :"%
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MATHEMATICS

‘Outsiders’ Crack 50 Year-Old
Math Problem

Three computer scientists have solved a problem central to a dozen far-

Erica Klarreich
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“Internet map 2004." From Math Insight. http://mathinsight.org/image/internet_map_jurvetson_2004
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mathematics  networks
physics  polynomials
quantum physics

traveling salesperson
problem

All topics —

- Research is nonlinear
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What is a graph Laplacian?

Definition: The Laplacian L of a graph G = ([n],E,w) is the matrix L=D-A, where
A € R"*"isthe weighted adjacency matrix A;; = w(ij) if ij € E,

D € R"*"isthe diagonal matrix with D;; = degi =} ;. w(ij).
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What is a graph Laplacian?

Definition: The Laplacian L of a graph G = ([n],E,w) is the matrix L=D-A, where
A € R"*"isthe weighted adjacency matrix A;; = w(ij) if ij € E,
D € R"*"isthe diagonal matrix with D;; = degi =} ;. w(ij).

4 —1 —1 —1 —1
— 1l+a —a 0 0

L= |— — l+a 0 0
- = 1+b b
- = = 1+

Definition: The quadratic form induced by L is
Qalr) = ' Lx = Z w(ig)(x; — Ej)z
ijEE 4
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Spectral Sparsification

Definition: A graph G = (V,E, @) is an g-sparsifier of G = (V,E,w) if forall z € R"

(1 —-¢)Qa(x) < Qa(r) < (1+¢)Qqg(x)
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Spectral Sparsification

Definition: A graph G = (V,E, @) is an e-sparsifier of G = (V,E,w) if forall z € R"

(1 -¢)Qa(x) < Qa(r) < (1+¢)Qqg(x)

G and G have similar:

e eigenvalues
e cuts and clustering

e effective resistances

Theorem: Every graph has a near-optimal spectral sparsifier with O(|V/|) edges.

(2010’s) Batson, Lee, Marcus, Peng, Spielman, Srivastava, Teng, Trevisan...
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Spectral Sparsification - an example

A rescaled d-dimensional cube is a v/d -sparsifier of K.
/

‘classical’ graph sparsification



Spectral Sparsification - an example

A rescaled d-dimensional cube is a \/E-sparsiﬁer of K4

d-cube spectrum K spectrum

(2i)(3) fori =0,....d 0 p(n=1)
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The Laplacian spectrum encodes graph structure

(Low Frequency) eigenvalues and eigenvectors of L:

e connected components

e clustering

 mixing time of random walks
e sparsest cut

e spectral drawings
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Low frequency eigenvectors
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The first eigenvector The second eigenvector
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The second eigenvector

The 18th eigenvector



Low frequency eigenvectors
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The first eigenvector The second eigenvector
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k-sparsifiers

Spectral Graph Theory Heuristic. The low-frequency eigen-
values (and eigenvectors) of Lg capture the global structure of G.
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k-sparsifiers

Spectral Graph Theory Heuristic. The low-frequency eigen-
values (and eigenvectors) of Lg capture the global structure of G.

+ Spectral Sparsification Heuristic. A sparsification of G should
preserve the spectrum of L.

Definition: A subgraph G=(V,E,d)is k-isospectralto G = (V,E,w) if they share the

same first k eigenvalues and eigenvectors.
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k-sparsifiers

Spectral Graph Theory Heuristic. The low-frequency eigen-
values (and eigenvectors) of Lg capture the global structure of G.

+ Spectral Sparsification Heuristic. A sparsification of G should
preserve the spectrum of L.

Definition: A subgraph G=(V,E,d)is k-isospectralto G = (V,E,w) if they share the

same first k eigenvalues and eigenvectors.

Definition: A k-isospectral subgraph G = (V,E, @) is a k-sparsifier of G = (V,E,w) if
ECE
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A bare-hands example

eigenvalues: O, 1, 3, 3, 5,

first 2 eigenvectors:

1
— __(1.1.1.1.1
¥1 \/5( )
1
P2 = 5(09 _17 _13 13 1)
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A bare-hands example

eigenvalues: O, 1, 3, 3, 5,

first 2 eigenvectors:

1
— __(1.1.1.1.1
¥1 \/g( )
1
P2 = (03_17_13131)'

2

Examples



A bare-hands example

l eigenvalues: O, 1, 3, 3, 5,
I
|
(L b -
, first 2 eigenvectors:
|

9 1 1 e o) = \}5(1,1,1,1,1)
|

P2 = 5(07_17_13131)
4 —1 —1 —1 —1
— 1+a —a 0 0
{2-isospectral graphs} = { [, = | — — 1 +a 0 0 :a,b>10
= 14b b
- - = 1+
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Main Structure Theorem

Theorem 3.1. Let G = (|n|, E,w) be a connected, weighted graph with eigenpairs
(0,01), (A2y2), ooy (Apson) where 0 = Ay < Ay < -+ < N\, and {@;}!'_, are

orthonormal. Fix 2 < k <n and define the matrices
(I)k — [991 ... (Pk] - Rnij (I):>k — [Sak—l—l c . (an.] c RHX(ﬂ—k)j

A = diag(0, \o, ..., A\g) € RFEXE.
Then the set of Laplacians of all k—isospectral subgraphs of G is

Y e St
Spe(k) = L = ®pAp @, + N\ @op @, + P YO, Ly <0V (s,t)€E
— Ly=0Vs#t, (s,t)¢E

»

B., Steinerberger, Thomas ‘23
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Main Structure Theorem

split the eigenbasis of L into the first k and last n-k eigenvectors

Theorem 3.1. Let G = (|n|, E,w) be a connected, weighted graph with eigenpairs

(0,01), ( A2y 2), .oy (Apson) where 0 = Ay < Ay <\--- < A\, and {@;}!'_, are
orthonormal. Fix 2 < k <n and define the matrices
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Theorem 3.1. Let G = (|n|, E,w) be a connected, weighted graph with eigenpairs
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Main Structure Theorem

split the eigenbasis of L into the first k and last n-k eigenvectors

Theorem 3.1. Let G = (|n|, E,w) be a connected, weighted graph with eigenpairs
(0!991)?()\23902)?"'!(Aﬂ?(ﬁﬂ,) where 0 = )\1 < )\2 g S )\‘?’L and {99%}?:1 are
orthonormal. Fix 2 < k <n and define the matrices

O = [p1 -0 @r] ER™F, Doy = [orp

A = diag(0, \o, ..., A\g) € RFEXE.
Then the set of Laplacians of all k—isospectral subgraphs of G is

(Pn] c R"X (n—k) ?

Y e St
Spg(k) =< L= <I>;CA;C<I>T+A;€<I>>;§<I> k+<1>}kyq> . Ly <0V (s,t)eEE

/ Lst—OVS#t(S,t)QE

fix the first k eigenpairs

no new edges
allow anything in the high frequencies

force the last n-k eigenpairs to be at least as large positive edge weights

Structure



Main Structure Theorem (proof)

Theorem 3.1. Let G = (|n], E.,w) be a connected, weighted graph with eigenpairs
(0,01), (A2, 02)s oy (Any0n) where 0 = Ay < Ao < --- < N\, and {p;}'_, are

orthonormal. Fix 2 < k <n and define the matrices

O =[p1 o or] ERVFL Doy =[popq1 0 pn] € RPTR)

A = diag(0, Ao, ... . A\p) € RFEXHA.
Then the set of Laplacians of all k—isospectral subgraphs of G is

Y e St
Spe(k) = { L =®p A\ ®) + N\ @op @, + P YO, Ly <0V (s,t)EE
— Ly=0Vs#t (s,t)ZE

F

Structure



Spectrahedra

Polyhedron = cone of nonnegative vectors intersected with an affine space

= feasible set of a linear program
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Spectrahedra

Polyhedron = cone of nonnegative vectors intersected with an affine space
= feasible set of a linear program
Spectrahedron = cone of positive semidefinite matrices intersected with an affine space

= feasible set of a semi-definite program
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Spectrahedra

Polyhedron = cone of nonnegative vectors intersected with an affine space
= feasible set of a linear program
Spectrahedron = cone of positive semidefinite matrices intersected with an affine space

= feasible set of a semi-definite program

/
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Q: Why not just preserve the quadratic form?

A: We tried that, and got absolute garbage

6
3-cube “4-sparsifier”
eigenvalues: eigenvalues:

0,23 4 61 0,0.3677,0.6383, 1.3889,

2.4974. 3.6368, 4.3896., 11.0814

B., Steinerberger, Thomas ‘23

Structure



Sparsity Structure

polyhedron Pg(k) := {(yz-j) c R

spectrahedron  Sg(k) := {(yij) Cr(E . La =0V (s,t) € B, s #t, }

Sp (k) = Pa(k) N Sa(k)  convex

sparsity patterns <> faces of Pg(k) in Sps (k)

Structure



An Example

K5 k=3

preserve (0, ¢1), (5, ¢2), (5, ¢3)

.

1] 1 0 1 1 |
1 —1 0 1 1
1 1 1 1 1
0,01 = —= |1 2o2=—72= 10|, 03=—F4 | 1|, 0a=5|-1|,05=—F%|1
V5 |4 V2 | V2| 4 214 2V5 | 4
1] 0 0 0 —4
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An Example

Ks "
preserve (0, ¢1), (5, ¢2), (5, ¢3) ‘
&
ba+b+2vV5c <20 (1,2)
ba+b—2v/5c <20 (3,4)
—5a +b <20 (1,3),(1,4),(2,3),(2,4)
—b— 56 S D (175)?(235)
—b —+ \/5(3 S 5 (37 5)? (41 5)

Structure



An Example

K-

k=3
preserve (0, ¢1), (5, p2), (5, ¢3)

4

5a + b+ 2v5c < 20
5a +b—2v5c <20
—5a + b < 20
—b — V/5e <9
—b+V/5c <9

(1,2)

(3,4)

(17 3)7 (17 4)? (27 3)? (2’ 4)
(1,5),(2,5)

(3,5), (4,5)

SPK5 (3)

Structure



An Example

K5 k=3

preserve (0, ¢1), (5, ¢2), (5, ¢3)

.

5a +b+2v5c <20 (1,2)
5a +b—2vbe <20 (3,4)
—5a + b <20 (1,3),(1,4),(2,3),(2,4)
—b —/5¢ <5 (1,5),(2,5)

—b+ V/5e <5 (3,5),(4,5)

Structure



An Example

K5 k=4)

1

O: ¢’1 — \/5

—

Does the choice of basis matter?

Structure



An Example

K5 k= 4/7 Does the choice of basis matter?

1] 1 0 1 1

1] 0 0 0 —4
d.4 = ¢5 Sp,(K5) = [0, 20] Spanning tree rooted at 5
P-4 = ¢4 Sp4(Ks5) = [0,4] Missing (1,2), (3,4)
d.4 = ¢ Spy(K5) = |0, o0 No sparsifiers

Thm: There is a choice of eigenbasis so that K has a spanning tree sparsifier forall k < n /

Structure



An Example

K5 k= 4/7 Does the choice of basis matter?

1] 1 0 1 1

1] 0 0 0 —4
d.4 = ¢5 Sp,(K5) = [0, 20] Spanning tree rooted at 5
P-4 = ¢4 Sp4(Ks5) = [0,4] Missing (1,2), (3,4)
d.4 = ¢ Spy(K5) = |0, o0 No sparsifiers

Thm: If you preserve whole eigenspaces, Sp (k) is independent of the choice of basis /

Structure



The Linear Algebra Heuristic

B., Steinerberger, Thomas ‘23

Principle. If G = (|n|, E,w) is a ‘generic’ graph and

n<(2)- (5

then, generically, the only k—1isospectral subgraph of G 1s G itself.

»
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n<(2)- (5
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extremely not true in general

8-sparsifier, but the largest k for
which the heuristic holds is 5
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The Linear Algebra Heuristic

B., Steinerberger, Thomas ‘23

Principle. If G = (|n|, E,w) is a ‘generic’ graph and

n<(2)- (5

then, generically, the only k—1isospectral subgraph of G 1s G itself.

typically true of Erdés-Renyi random graphs in experiments

extremely not true in general

a family of graphs has few

edges but wont sparsify

8-sparsifier, but the largest k for

which the heuristic holds is 5

Linear Algebra Heuristic



“"The cube is already perfect just the way it 1s”

Theorem 4.5. There is no (d + 1)-sparsifier of the d-cube graph

>

d-cube spectrum

(22)((5) for:=20,...,d

B., Steinerberger, Thomas ‘23

Linear Algebra Heuristic



Families

These families of graphs have spanning tree sparsifiers for the following values of k
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B., Steinerberger, Thomas ‘23
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Families

These families of graphs have spanning tree sparsifiers for the following values of k
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B., Steinerberger, Thomas ‘23
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Families

<\

Theorem 5.3. Let G = (|n], E,w) be a connected, weighted graph and let T =

: LT T e Ty S
(In|, Ep,w|g,) be a spanning tree of G. Let k € |n| be arbitrary and let ©1,..., 0 - AR
. . . . I A N
be eigenvectors corresponding to the k smallest eigenvalues of the spanning tree T . S~ ,:’ NN,
. AT / - \ ~
Suppose that for all (u,v) € E either AR I:‘“-L___}\ M
| \ ~ / I hf"""-..__ ~
L . I \ ~ / | \ ~ -
(u,v) € Er or  pi(u) = pi(v) for alll <i <k, V2N : \ 4
: : . . \ /N : !
then the spanning tree T is a k—sparsifier of G with respect to {p1,...,0k} . i L ‘k/ 7o
~
| \ ,’ \\: ,/, \\ I, :
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| \ ” | \\f \ |
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Recap!

A new model of graph sparsification! motivated by things like...
C heeger S lnequal/ty’

S tructural results, incl uding. .

spectrahedral geometry

well-posed-ness

some graphs shouldn’t sparsifiy (the cube &

A linear algebra heuristic...

that’s not true but often useful
Explicit families of examples

that verify our construction is behaving sensibly

almost done...



Jhank you!



