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Why bother?

‘classical’ graph sparsification

Data is too dang big!!

“Internet map 2004.” From Math Insight. http://mathinsight.org/image/internet_map_jurvetson_2004

Research is nonlinear

A dense graph has ~n² edges

If n is huge, that’s not fun
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What is a graph Laplacian?

‘classical’ graph sparsification

Definition: The Laplacian L of a graph G = ([n],E,w) is the matrix L=D-A, where                               
                    is the weighted adjacency matrix                                                      ,

                         is the diagonal matrix with                                                 .

                              
                    

Definition: The quadratic form induced by L  is
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‘classical’ graph sparsification

Definition: A graph G = (V,E,w) is an -sparsifier of  G = (V,E,w) if for all                    ,~~
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 G and G have similar:

    • eigenvalues

    • cuts and clustering 

    • effective resistances 

Theorem:  Every graph has a near-optimal spectral sparsifier with O(|V|) edges. 

(2010’s) Batson, Lee, Marcus, Peng, Spielman, Srivastava, Teng, Trevisan... 
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Spectral Sparsification - an example

‘classical’ graph sparsification

 d-cube spectrum Kn spectrum

dA rescaled d-dimensional cube is a         -sparsifier of K2



The Laplacian spectrum encodes graph structure

‘classical’ graph sparsification

(Low Frequency) eigenvalues and eigenvectors of L:

•  connected components
•  clustering
•  mixing time of random walks
•  sparsest cut
•  spectral drawings
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Average annual precipitation, 1981-2010

Low frequency eigenvectors

‘band limited’ graph sparsification

The first eigenvector The second eigenvector

The 18th eigenvector
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k-sparsifiers

‘band limited’ graph sparsification

+

Definition: A subgraph G = (V,E,w) is k-isospectral to  G = (V,E,w) if they share the

same first k eigenvalues and eigenvectors. 

~ ~ ~

Definition: A k-isospectral  subgraph G = (V,E,w) is a k-sparsifier of  G = (V,E,w) if
 

~ ~ ~
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A bare-hands example

Examples

eigenvalues:

first 2 eigenvectors: 
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Main Structure Theorem

Structure

split the eigenbasis of L into the first k and last n-k eigenvectors

fix the first k eigenpairs

force the last n-k eigenpairs to be at least as large

allow anything in the high frequencies

positive edge weights

no new edges



Main Structure Theorem (proof)

Structure
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Q: Why not just preserve the quadratic form?

Structure

B., Steinerberger, Thomas ‘23

A: We tried that, and got absolute garbage

“4-sparsifier”3-cube

eigenvalues: eigenvalues:



Sparsity Structure

Structure
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Does the choice of basis matter?

Thm: There is a choice of eigenbasis so that Kn has a spanning tree sparsifier for all k < n 



An Example

Structure

Does the choice of basis matter?

Thm: If you preserve whole eigenspaces,                     is independent of the choice of basis
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The Linear Algebra Heuristic

Linear Algebra Heuristic

B., Steinerberger, Thomas ‘23

8-sparsifier, but the largest k for

which the heuristic holds is 5 

typically true of Erdős-Renyi random graphs in experiments

extremely not true in general

a family of graphs has few

edges but wont sparsify



“The cube is already perfect just the way it is”

Linear Algebra Heuristic

B., Steinerberger, Thomas ‘23

 d-cube spectrum
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Recap!

almost done...

A new model of graph sparsification! motivated by things like... 

Cheeger’s Inequality!

spectrahedral geometry

Structural results, including...

well-posed-ness

some graphs shouldn’t sparsifiy (the cube       )

that’s not true but often useful

A linear algebra heuristic...

that verify our construction is behaving sensibly 

Explicit families of examples



Thank you!


