

Catherine Babecki California Institute of Technology Joint with Stefan Steinerberger and Rekha Thomas

What is graph sparsification?

the `essence' of G but has *much* fewer edges.

Given a (weighted) graph G = (V, E, w), find a graph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ which captures

What is graph sparsification?

the `essence' of G but has *much* fewer edges.

Given a (weighted) graph G = (V, E, w), find a graph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ which captures

What is graph sparsification?

the `essence' of G but has *much* fewer edges.

Given a (weighted) graph G = (V, E, w), find a graph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ which captures

Why bother?

Why bother?

Data is too dang big!!

A dense graph has $\sim n^2$ edges If *n* is huge, that's not fun

"Internet map 2004." From Math Insight. http://mathinsight.org/image/internet_map_jurvetson_2004

Why bother?

Data is too dang big!!

A dense graph has $\sim n^2$ edges If *n* is huge, that's not fun

Erica Klarreich

Contributing Correspondent

November 24, 2015

MATHEMATICS

'Outsiders' Crack 50-Year-Old Math Problem

Three computer scientists have solved a problem central to a dozen farflung mathematical fields.

"Internet map 2004." From Math Insight. http://mathinsight.org/image/internet_map_jurvetson_2004

Research is nonlinear

What is a graph Laplacian?

Definition: The Laplacian L of a graph G = ([n], E, w) is the matrix L=D-A, where $A \in \mathbb{R}^{n \times n}$ is the weighted adjacency matrix $A_{ij} = w(ij)$ if $ij \in E_{ij}$

 $D \in \mathbb{R}^{n \times n}$ is the diagonal matrix with $D_{ii} = \deg i = \sum_{ij \in E} w(ij)$.

What is a graph Laplacian?

Definition: The Laplacian L of a graph G = ([n], E, w) is the matrix L = D - A, where $A \in \mathbb{R}^{n \times n}$ is the weighted adjacency matrix $A_{ij} = w(ij)$ if $ij \in E_{ij}$ $D \in \mathbb{R}^{n \times n}$ is the diagonal matrix with $D_{ii} = \deg i = \sum_{ij \in E} w(ij)$.

What is a graph Laplacian?

Definition: The Laplacian L of a graph G = ([n], E, w) is the matrix L = D - A, where $A \in \mathbb{R}^{n \times n}$ is the weighted adjacency matrix $A_{ij} = w(ij)$ if $ij \in E_{ij}$ $D \in \mathbb{R}^{n \times n}$ is the diagonal matrix with $D_{ii} = \deg i = \sum_{ij \in E} w(ij)$.

Definition: The quadratic form induced by $Q_G(x) = x^\top L x =$

$$L$$
 is $= \sum_{ij \in E} w(ij)(x_i - x_j)^2$

Spectral Sparsification

Definition: A graph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ is an ε -sparsifier of G = (V, E, w) if for all $x \in \mathbb{R}^n$ $(1 - \varepsilon)Q_G(x) \le Q_{\widetilde{G}}(x) \le (1 + \varepsilon)Q_G(x)$

Spectral Sparsification

Definition: A graph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ is an ε -sparsifier of G = (V, E, w) if for all $x \in \mathbb{R}^n$ $(1 - \varepsilon)Q_G(x) \le Q_{\widetilde{G}}(x) \le (1 + \varepsilon)Q_G(x)$

- G and \widetilde{G} have similar:
 - eigenvalues
 - cuts and clustering
 - effective resistances

Spectral Sparsification

Definition: A graph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ is an ε -sparsifier of G = (V, E, w) if for all $x \in \mathbb{R}^n$ $(1 - \varepsilon)Q_G(x) \le Q_{\tilde{G}}(x) \le (1 + \varepsilon)Q_G(x)$

- G and \widetilde{G} have similar:
 - eigenvalues
 - cuts and clustering
 - effective resistances

Theorem: Every graph has a near-optimal spectral sparsifier with O(|V|) edges.

(2010's) Batson, Lee, Marcus, Peng, Spielman, Srivastava, Teng, Trevisan...

Spectral Sparsification - an example

A rescaled d-dimensional cube is a \sqrt{d} -sparsifier of K_{2^d}

Spectral Sparsification - an example

A rescaled d-dimensional cube is a \sqrt{d} -sparsifier of K_{2^d}

d-cube spectrum $(2i)^{\binom{d}{i}}$ for $i = 0, \dots, d$

 K_n spectrum $0^{(1)}, n^{(n-1)}$

The Laplacian spectrum encodes graph structure

(Low Frequency) eigenvalues and eigenvectors of L:

- connected components
- clustering
- mixing time of random walks
- sparsest cut
- spectral drawings

Low frequency eigenvectors

The first eigenvector

The second eigenvector

Low frequency eigenvectors

The first eigenvector

The 18th eigenvector

The second eigenvector

Low frequency eigenvectors

The first eigenvector

The 18th eigenvector

The second eigenvector

Average annual precipitation, 1981-2010

Spectral Graph Theory Heuristic. The low-frequency eigenvalues (and eigenvectors) of L_G capture the global structure of G.

preserve the spectrum of L.

Spectral Graph Theory Heuristic. The low-frequency eigenvalues (and eigenvectors) of L_G capture the global structure of G.

Spectral Sparsification Heuristic. A sparsification of G should

k-sparsifiers

Spectral Graph Theory Heuristic. The low-frequency eigenvalues (and eigenvectors) of L_G capture the global structure of G.

+ Spectral Sparsification Heuristic. A sparsification of G should preserve the spectrum of L.

Definition: A subgraph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ is *k*-isospectral to G = (V, E, w) if they share the

same first k eigenvalues and eigenvectors.

k-sparsifiers

Spectral Graph Theory Heuristic. The low-frequency eigenvalues (and eigenvectors) of L_G capture the global structure of G.

Spectral Sparsification Heuristic. A sparsification of G should +preserve the spectrum of L.

Definition: A subgraph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ is k-isospectral to G = (V, E, w) if they share the same first k eigenvalues and eigenvectors.

Definition: A k-isospectral subgraph $\widetilde{G} = (V, \widetilde{E}, \widetilde{w})$ is a k-sparsifier of G = (V, E, w) if $\tilde{E} \subsetneq E$

eigenvalues: 0, 1, 3, 3, 5,

first 2 eigenvectors:

$$\varphi_1 = \frac{1}{\sqrt{5}}(1, 1, 1, 1, 1)$$
$$\varphi_2 = \frac{1}{2}(0, -1, -1, 1, 1).$$

Examples

eigenvalues: 0, 1, 3, 3, 5,

first 2 eigenvectors:

$$\varphi_1 = \frac{1}{\sqrt{5}}(1, 1, 1, 1, 1)$$
$$\varphi_2 = \frac{1}{2}(0, -1, -1, 1, 1).$$

Examples

eigenvalues: 0, 1, 3, 3, 5,bfirst 2 eigenvectors: $\varphi_1 = \frac{1}{\sqrt{5}}(1, 1, 1, 1, 1)$ $\varphi_2 = \frac{1}{2}(0, -1, -1, 1, 1).$ -1 -1 - $: a, b \ge 0$

eigenvalues: 0, 1, 5, 6, 11

first 2 eigenvectors: $\varphi_1 = \frac{1}{\sqrt{5}}(1, 1, 1, 1, 1)$ $\varphi_2 = \frac{1}{2}(0, -1, -1, 1, 1).$

Theorem 3.1. Let G = ([n], E, w) be a connected, weighted graph with eigenpairs $(0,\varphi_1), (\lambda_2,\varphi_2), \ldots, (\lambda_n,\varphi_n)$ where $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$ and $\{\varphi_i\}_{i=1}^n$ are orthonormal. Fix $2 \le k \le n$ and define the matrices $\Phi_k = \begin{bmatrix} \varphi_1 & \cdots & \varphi_k \end{bmatrix} \in \mathbb{R}^{n \times k}, \ \Phi_{>k} = \begin{bmatrix} \varphi_{k+1} & \cdots & \varphi_n \end{bmatrix} \in \mathbb{R}^{n \times (n-k)},$ $\Lambda_k = \operatorname{diag}(0, \lambda_2, \dots, \lambda_k) \in \mathbb{R}^{k \times k}.$ Then the set of Laplacians of all k-isospectral subgraphs of G is $\operatorname{Sp}_{G}(k) = \left\{ L = \underbrace{\Phi_{k} \Lambda_{k} \Phi_{k}^{\top} + \lambda_{k} \Phi_{>k} \Phi_{>k}^{\top}}_{F} + \Phi_{>k} Y \Phi_{>k}^{\top} : \begin{array}{c} Y \in \mathcal{S}_{+}^{n-k} \\ L_{st} \leq 0 \ \forall \ (s,t) \in E \\ L_{st} = 0 \ \forall \ s \neq t, \ (s,t) \notin E \end{array} \right\}.$

B., Steinerberger, Thomas '23

Main Structure Theorem

split the eigenbasis of L into the first k and last n-k eigenvectors

Theorem 3.1. Let G = ([n], E, w) be a connected, weighted graph with eigenpairs $(0,\varphi_1), (\lambda_2,\varphi_2), \ldots, (\lambda_n,\varphi_n)$ where $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$ and $\{\varphi_i\}_{i=1}^n$ are orthonormal. Fix $2 \leq k \leq n$ and define the matrices $\Phi_k = \begin{bmatrix} \varphi_1 & \cdots & \varphi_k \end{bmatrix} \in \mathbb{R}^{n \times k}, \ \Phi$ $\Lambda_k = \operatorname{diag}(0, \lambda)$ Then the set of Laplacians of all k-isospectral subgraphs of G is $\operatorname{Sp}_{G}(k) = \left\{ L = \Phi_{k} \Lambda_{k} \Phi_{k}^{\top} + \lambda_{k} \Phi_{>k} \Phi_{>k}^{\top} \right\}$ fix the first k eigenpairs

force the last n-k eigenpairs to be at least as large

$$\Phi_{>k} = \begin{bmatrix} \varphi_{k+1} & \ddots & \varphi_n \end{bmatrix} \in \mathbb{R}^{n \times (n-k)},$$

$$\lambda_2, \ldots, \lambda_k) \in \mathbb{R}^{k \times k}.$$

$$Y \in \mathcal{S}^{n-k}_+$$

$$\Psi_{>k} \Psi_{>k} T : \qquad L_{st} \leq 0 \ \forall \ (s,t) \in E$$

$$L_{st} = 0 \ \forall \ s \neq t, \ (s,t) \notin E$$

Main Structure Theorem

split the eigenbasis of L into the first k and last n-k eigenvectors

Theorem 3.1. Let G = ([n], E, w) be a connected, weighted graph with eigenpairs $(0,\varphi_1), (\lambda_2,\varphi_2), \ldots, (\lambda_n,\varphi_n)$ where $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$ and $\{\varphi_i\}_{i=1}^n$ are orthonormal. Fix $2 \leq k \leq n$ and define the matrices $\Phi_k = \begin{bmatrix} \varphi_1 & \cdots & \varphi_k \end{bmatrix} \in \mathbb{R}^{n \times k}, \ \Phi_{>k} = \begin{bmatrix} \varphi_{k+1} & \cdots & \varphi_n \end{bmatrix} \in \mathbb{R}^{n \times (n-k)},$ $\Lambda_k = \operatorname{diag}(0, \lambda_2, \dots, \lambda_k) \in \mathbb{R}^{k \times k}.$ Then the set of Laplacians of all k-isospectral subgraphs of G is $\operatorname{Sp}_{G}(k) = \left\{ L = \Phi_{k} \Lambda_{k} \Phi_{k}^{\top} + \lambda_{k} \Phi_{>k} \Phi_{>k}^{\top} \right\}$ fix the first k eigenpairs allow anything in the high frequencies force the last n-k eigenpairs to be at least as large

$$Y \in \mathcal{S}_{+}^{n-k}$$

$$Y \in \mathcal{S}_{+}^{n-k}$$

$$L_{st} \leq 0 \ \forall \ (s,t) \in E$$

$$L_{st} = 0 \ \forall \ s \neq t, \ (s,t) \notin E$$

Main Structure Theorem

split the eigenbasis of L into the first k and last n-k eigenvectors

Theorem 3.1. Let G = ([n], E, w) be a connected, weighted graph with eigenpairs $(0,\varphi_1), (\lambda_2,\varphi_2), \ldots, (\lambda_n,\varphi_n)$ where $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$ and $\{\varphi_i\}_{i=1}^n$ are orthonormal. Fix $2 \leq k \leq n$ and define the matrices $\Phi_k = \begin{bmatrix} \varphi_1 & \cdots & \varphi_k \end{bmatrix} \in \mathbb{R}^{n \times k}, \quad \Phi$ $\Lambda_k = \operatorname{diag}(0, \lambda_2, \dots, \lambda_k) \in \mathbb{R}^{k \times k}.$ Then the set of Laplacians of all k-isospectral subgraphs of G is $\operatorname{Sp}_{G}(k) = \begin{cases} L = \underbrace{\Phi_{k} \Lambda_{k} \Phi_{k}^{\top} + \lambda_{k} \Phi_{>k} \Phi_{>k}^{\top}}_{F} + \Phi_{>k} Y \Phi_{>k}^{\top} : & L_{st} \leq 0 \ \forall \ (s,t) \in E \\ L_{st} = 0 \ \forall \ s \neq t, \ (s,t) \notin E \end{cases}$ fix the first k eigenpairs no new edges allow anything in the high frequencies force the last n-k eigenpairs to be at least as large

$$\Phi_{>k} = \begin{bmatrix} \varphi_{k+1} & \ddots & \varphi_n \end{bmatrix} \in \mathbb{R}^{n \times (n-k)},$$

positive edge weights

Main Structure Theorem (proof)

Theorem 3.1. Let G = ([n], E, w) be a connected, weighted graph with eigenpairs $(0,\varphi_1), (\lambda_2,\varphi_2), \ldots, (\lambda_n,\varphi_n)$ where $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n$ and $\{\varphi_i\}_{i=1}^n$ are orthonormal. Fix $2 \le k \le n$ and define the matrices $\Phi_k = \begin{bmatrix} \varphi_1 & \cdots & \varphi_k \end{bmatrix} \in \mathbb{R}^{n \times k}, \ \Phi_{>k} = \begin{bmatrix} \varphi_{k+1} & \cdots & \varphi_n \end{bmatrix} \in \mathbb{R}^{n \times (n-k)},$ $\Lambda_k = \operatorname{diag}(0, \lambda_2, \dots, \lambda_k) \in \mathbb{R}^{k \times k}.$ Then the set of Laplacians of all k-isospectral subgraphs of G is $\operatorname{Sp}_{G}(k) = \left\{ L = \underbrace{\Phi_{k} \Lambda_{k} \Phi_{k}^{\top} + \lambda_{k} \Phi_{>k} \Phi_{>k}^{\top}}_{F} + \Phi_{>k} Y \Phi_{>k}^{\top} : \begin{array}{c} Y \in \mathcal{S}_{+}^{n-k} \\ L_{st} \leq 0 \ \forall \ (s,t) \in E \\ L_{st} = 0 \ \forall \ s \neq t, \ (s,t) \notin E \end{array} \right\}.$

Spectrahedra

Polyhedron = cone of nonnegative vectors intersected with an affine space

= feasible set of a linear program

 $= \frac{3}{2} \times A \times = 63$ R'+ = Z x ER: x > 0 3

Spectrahedra

Polyhedron = cone of nonnegative vectors intersected with an affine space = feasible set of a linear program Spectrahedron = cone of positive semidefinite matrices intersected with an affine space = feasible set of a semi-definite program

2X: Tr(A!X)=b: 3

S_= Z X G R^* : X > 0 Z = SXERNXA: VTXV707 VVERAS

Spectrahedra

- Polyhedron = cone of nonnegative vectors intersected with an affine space
 - = feasible set of a linear program
- Spectrahedron = cone of positive semidefinite matrices intersected with an affine space
 - = feasible set of a semi-definite program

L-& X: Tr(A!X) = b: 3

 $S_{+}^{n} = \underbrace{\underbrace{}_{z} X \in \mathbb{R}^{n \times n} : X \not> 0}_{z}$ $= \underbrace{\underbrace{}_{z} X \in \mathbb{R}^{n \times n} : v^{T} X v^{2} v^{2}}_{V \in \mathbb{R}^{n}} \underbrace{\underbrace{}_{z} V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}} \underbrace{\underbrace{}_{z} V \in \mathbb{R}^{n \times n}}_{V \in \mathbb{R}^{n}} \underbrace{\underbrace{}_{z} V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}} \underbrace{\underbrace{}_{z} V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}} \underbrace{\underbrace{}_{z} V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n}}_{V \in \mathbb{R}^{n$

Q: Why not just preserve the quadratic form?

A: We tried that, and got absolute garbage

3-cube

eigenvalues: $0^{(1)}, 2^{(3)}, 4^{(3)}, 6^{(1)}$

"4-sparsifier"

eigenvalues: 0, 0.3677, 0.6383, 1.3889,2.4974, 3.6368, 4.3896, 11.0814

B., Steinerberger, Thomas '23

Sparsity Structure

polyhedron
$$P_G(k) := \left\{ (y_{ij}) \in \mathbf{R}^{\binom{n-k+1}{2}} : L_{st} \leq 0 \forall (s,t) \in E \right\}$$

spectrahedron $S_G(k) := \left\{ (y_{ij}) \in \mathbf{R}^{\binom{n-k+1}{2}} : \begin{array}{c} L_{st} = 0 \forall (s,t) \notin E, s \neq t, \\ Y \succeq 0 \end{array} \right\}$
 $\operatorname{Sp}_G(k) = P_G(k) \cap S_G(k) \quad \text{convex}$
 $\operatorname{Sp}_G(k) \subseteq \operatorname{Sp}_G(k-1) \quad \text{nested}$
sparsity patterns $\leftrightarrow \quad \text{faces of } P_G(k) \text{ in } \operatorname{Sp}_G(k)$

 $K_{5} \quad {k=3 \atop {
m preserve} \ (0,\phi_{1}), (5,\phi_{2}), (5,\phi_{3})}}$

$$\left(0,\phi_{1}=\frac{1}{\sqrt{5}}\begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}\right), \left(5,\phi_{2}=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\\0\\0\\0\end{bmatrix}\right),\phi_{3}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\0\\1\\-1\\0\end{bmatrix},\phi_{4}=\frac{1}{2}\begin{bmatrix}1\\1\\-1\\-1\\0\end{bmatrix},\phi_{5}=\frac{1}{2\sqrt{5}}\begin{bmatrix}1\\1\\1\\1\\-4\end{bmatrix}\right)$$

 $K_{5} \quad k=3 \ {
m preserve} \ (0,\phi_{1}), (5,\phi_{2}), (5,\phi_{3})$

$5a + b + 2\sqrt{5}c$	≤ 20
$5a+b-2\sqrt{5}c$	≤ 20
-5a+b	≤ 20
$-b - \sqrt{5}c$	≤ 5
$-b + \sqrt{5}c$	≤ 5

(1, 2)(3, 4)(1, 3), (1, 4), (2, 3), (2, 4)(1, 5), (2, 5)(3, 5), (4, 5)

 $P_{K_{5}}(3)$

 $K_{5} \stackrel{k=3}{_{\mathrm{preserve}}(0,\phi_{1}),(5,\phi_{2}),(5,\phi_{3})}$

$5a + b + 2\sqrt{5}c$	≤ 20
$5a+b-2\sqrt{5}c$	≤ 20
-5a+b	≤ 20
$-b - \sqrt{5}c$	≤ 5
$-b + \sqrt{5}c$	≤ 5

(1, 2)(3, 4)(1, 3), (1, 4), (2, 3), (2, 4)(1, 5), (2, 5)(3, 5), (4, 5)

 K_5 k=3 preserv

preserve $(0, \phi_1), (5, \phi_2), (5, \phi_3)$

$5a + b + 2\sqrt{5}c$	≤ 20
$5a+b-2\sqrt{5}c$	≤ 20
-5a + b	≤ 20
$-b - \sqrt{5}c$	≤ 5
$-b + \sqrt{5}c$	≤ 5

(1,2)(3,4) (1,3), (1,4), (2,3), (2,4)(1,5), (2,5)(3,5), (4,5)

 $K_5 \quad k=4$

$$\left(0,\phi_{1}=\frac{1}{\sqrt{5}}\begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}\right),\left(5,\phi_{2}=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\\0\\0\\0\end{bmatrix}\right),\phi_{3}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\0\\1\\-1\\0\end{bmatrix},\phi_{4}=\frac{1}{2}\begin{bmatrix}1\\1\\-1\\-1\\0\end{bmatrix},\phi_{5}=\frac{1}{2\sqrt{5}}\begin{bmatrix}1\\1\\1\\-1\\-4\end{bmatrix}\right)$$

Does the choice of basis matter?

 $K_5 \quad k=4$

$$\begin{pmatrix} 0, \phi_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} 5, \phi_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0\\0\\0 \end{bmatrix}, \phi_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\1\\-1\\0 \end{bmatrix}, \phi_4 = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1\\0 \end{bmatrix}, \phi_5 = \frac{1}{2\sqrt{5}} \begin{bmatrix} 1\\1\\1\\-4 \end{bmatrix} \end{pmatrix}$$

$$\Phi_{>}4 = \phi_5 \qquad \text{Sp}_4(K_5) = \begin{bmatrix} 0, 20 \end{bmatrix} \qquad \text{Spanning tree rooted at}$$

$$\Phi_{>}4 = \phi_4 \qquad \text{Sp}_4(K_5) = \begin{bmatrix} 0, 4 \end{bmatrix} \qquad \text{Missing (1,2), (3,4)}$$

$$\Phi_{>}4 = \phi_2 \qquad \text{Sp}_4(K_5) = \begin{bmatrix} 0, \infty \end{bmatrix} \qquad \text{No sparsifiers}$$

Thm: There is a choice of eigenbasis so that K_n has a spanning tree sparsifier for all k < n

Does the choice of basis matter?

5

 $K_5 \quad k=4$

$$\begin{pmatrix} 0, \phi_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} 5, \phi_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0\\0\\0 \end{bmatrix}, \phi_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\1\\-1\\0 \end{bmatrix}, \phi_4 = \frac{1}{2} \begin{bmatrix} 1\\1\\-1\\-1\\0 \end{bmatrix}, \phi_5 = \frac{1}{2\sqrt{5}} \begin{bmatrix} 1\\1\\1\\-4 \end{bmatrix} \end{pmatrix}$$

$$\Phi_{>}4 = \phi_5 \qquad \text{Sp}_4(K_5) = \begin{bmatrix} 0, 20 \end{bmatrix} \qquad \text{Spanning tree rooted at}$$

$$\Phi_{>}4 = \phi_4 \qquad \text{Sp}_4(K_5) = \begin{bmatrix} 0, 4 \end{bmatrix} \qquad \text{Missing (1,2), (3,4)}$$

$$\Phi_{>}4 = \phi_2 \qquad \text{Sp}_4(K_5) = \begin{bmatrix} 0, \infty \end{bmatrix} \qquad \text{No sparsifiers}$$

Thm: If you preserve whole eigenspaces, $\mathrm{Sp}_G(k)$ is independent of the choice of basis

Does the choice of basis matter?

5

Principle. If G = ([n], E, w) is a 'generic' graph and |E|

B., Steinerberger, Thomas '23

$$\leq \binom{n}{2} - \binom{n-k+1}{2}$$

then, generically, the only k-isospectral subgraph of G is G itself.

Principle. If G = ([n], E, w) is a 'generic' graph and E

typically true of Erdős-Renyi random graphs in experiments

B., Steinerberger, Thomas '23

$$\leq \binom{n}{2} - \binom{n-k+1}{2}$$

then, generically, the only k-isospectral subgraph of G is G itself.

Principle. If G = ([n], E, w) is a 'generic' graph and E

typically true of Erdős-Renyi random graphs in experiments extremely not true in general

B., Steinerberger, Thomas '23

$$\leq \binom{n}{2} - \binom{n-k+1}{2}$$

then, generically, the only k-isospectral subgraph of G is G itself.

8-sparsifier, but the largest k for which the heuristic holds is 5

Principle. If G = ([n], E, w) is a 'generic' graph and E

typically true of Erdős-Renyi random graphs in experiments extremely not true in general

a family of graphs has few edges but wont sparsify

B., Steinerberger, Thomas '23

$$\leq \binom{n}{2} - \binom{n-k+1}{2}$$

then, generically, the only k-isospectral subgraph of G is G itself.

8-sparsifier, but the largest k for which the heuristic holds is 5

"The cube is already perfect just the way it is"

Theorem 4.5. There is no (d+1)-sparsifier of the d-cube graph

d-cube spectrum $(2i)^{\binom{d}{i}}$ for $i = 0, \dots, d$

B., Steinerberger, Thomas '23

These families of graphs have spanning tree sparsifiers for the following values of k

 $K_n: k = n - 1$

B., Steinerberger, Thomas '23

 $K_n: k = n - 1$

These families of graphs have spanning tree sparsifiers for the following values of k

B., Steinerberger, Thomas '23

$B_{n,n}:k=2$

B., Steinerberger, Thomas '23

Theorem 5.3. Let G = ([n], E, w) be a connected, weighted graph and let T = $([n], E_T, w|_{E_T})$ be a spanning tree of G. Let $k \in [n]$ be arbitrary and let $\varphi_1, \ldots, \varphi_k$ be eigenvectors corresponding to the k smallest eigenvalues of the spanning tree T. Suppose that for all $(u, v) \in E$ either

 $(u,v) \in E_T$ or $\varphi_i(u) = \varphi_i(v)$ for all $1 \le i \le k$,

then the spanning tree T is a k-sparsifier of G with respect to $\{\varphi_1, \ldots, \varphi_k\}$.

$B_{n,m}: k = 2$

Recap!

A new model of graph sparsification! motivated by things like...

Cheeger's Inequality!

Structural results, including... spectrahedral geometry well-posed-ness some graphs shouldn't sparsifiy (the cube 😂) A linear algebra heuristic... that's not true but often useful

Explicit families of examples

that verify our construction is behaving sensibly

almost done...

