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SPECTRAL OPTIMIZATION
▪ Represent data using vectors and matrices. 

▪ Study the spectral properties of natural matrices associated with combinations of data.

▪ Determinant, maximum or minimum eigenvalue etc.

▪ Spectral Sparsifiers and Cut sparsifiers [Spielman, Teng’08].

▪ This talk will be about optimizing the spectral function: determinant.

▪ Close relationship to matroid intersection. 



OUTLINE
▪ Introduction

▪ Problem Statement
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▪ Open Questions



PROBLEM STATEMENT
▪ Given 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑑, approximate

OPT(𝑣1, … , 𝑣𝑛; 𝒰𝑘) = max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ≤ 𝑘

▪ and more generally,

OPT(𝑣1, … , 𝑣𝑛; ℬ) = max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ∈ ℬ

where ℬ = bases of a matroid of rank 𝑘 ≥ 𝑑 over 𝑛

▪ Examples:

▪ Uniform matroid: ℬ = {𝑆 ⊆ 𝑛 : 𝑆 = 𝑘}

▪ Partition matroid: ℬ = {𝑆 ⊆ 𝑛 : ∀𝑖 𝑆 ∩ 𝑃𝑖 = 1}, where 𝑛 = 𝑃1 ྣ… ྣ𝑃𝑘
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EXPERIMENTAL DESIGN
▪ Unknown 𝜃∗ ∈ ℝ𝑑.

▪ Obtain linear measurements         𝑦𝑖 = 𝑣𝑖 ⋅ 𝜃∗ + 𝜂𝑖

  for some 𝑣𝑖 ∈  {𝑣1, … , 𝑣𝑛} and  noise 𝜂𝑖 = 𝑁 0, 𝜎 .

▪ Feasible sets of measurements: 𝑆 ∈ ℬ, where ℬ ⊆ [𝑛]
𝑘

▪ E.g., ℬ = 𝑆: 𝑆 = 𝑘  : can only make 𝑘 measurements

▪ Goal: choose 𝑆 ∈ ℬ so that the MLE    

መ𝜃 = arg min 

𝑖∈𝑆

𝑦𝑖 − 𝑣𝑖 ⋅ 𝜃 2 : 𝜃 ∈ ℝ𝑑

  is as accurate as possible



EXPERIMENTAL DESIGN: OBJECTIVES
▪ መ𝜃 = arg min σ𝑖∈𝑆 𝑦𝑖 − 𝑣𝑖 ⋅ 𝜃 2 : 𝜃 ∈ ℝ𝑑

▪ መ𝜃 − 𝜃∗~ 𝑁 0, 𝜎 ⋅ Σ , where Σ = σ𝑖∈𝑆 𝑣𝑖𝑣𝑖
𝑇 −1

▪ Confidence ellipsoid : 𝐸 = መ𝜃 + O d 𝜎 ⋅ Σ1/2 ⋅ 𝐵2
𝑑

▪ 𝐸 contains 𝜃∗ with 95% probability

▪ D-optimal design:

max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ∈ ℬ

▪ Equivalent to minimizing the volume of 𝐸

▪ Other objectives: minimize 𝑡𝑟 Σ /d, Σ 𝑜𝑝, … 

Confidence 

ellipsoid

𝜃

[Kiefer ‘59, Fedorov ’72, Kiefer ‘75, Atkinson and Donev ‘92, 

Miller and Nguyen ‘94, Pukelsheim ‘06, Avron and Boutsidis 

‘13,  Allen-Zhu, Li, Singh and Wang ‘17, Singh and Xie ’18, 

Atkinson, Nikolov, Singh, and Tantipongpipat ’19…..]



CONVEX GEOMETRY
▪ Given a set of n vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑑, pick (d+1) vectors to maximize the volume of the simplex 

formed by them.

▪ Given a set of n vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑑, pick d vectors to maximize the volume of the parallelopiped 
formed by them. 

▪ Volume of parallelopiped formed by {𝑣𝑖: 𝑖 ∈ 𝑆} is exactly det 𝑉𝑆
𝑇𝑉𝑆  .

▪ Can be reduced to Determinant maximization.

▪ Khachiyan[1995],  Di Summa, Eisenbrand, Faenza, Moldenhauer[2014], Nikolov[2016].

▪ Closely related to Determinantal Point Processes [Kulesza,Taskar’2012] arriving in probability 
theory and machine learning.



MAXIMUM ENTROPY SAMPLING

A closely related cousin of determinant maximization is the maximum entropy 

sampling problem [Fampa, Lee ‘23].

Given a 𝑑 × 𝑑 P.S.D. matrix C and integer 𝑘 ≤ 𝑑, find a principal submatrix B of C 

of maximum determinant.

-Work on stronger upper and lower bounds. [Ko, Lee, Wayne’98, Fampa, Lee’22]

-Branch and bound methods.[Ko, Lee, Queryanne’95][Lee’98]

Lots of this work also applies to determinant maximization.



NETWORK DESIGN
▪ Given a graph 𝐺 = 𝑉, 𝐸 , find a spanning subgraph 𝐻 = (𝑉, 𝐹) that is 

▪ well connected. 

▪ 𝐻 = (𝑉, 𝐹) is chosen such that F satisfies certain combinatorial constraints, for 
example,

▪ 𝐹 ≤ 𝑘, or

▪ Given a coloring of E, pick at most 1 edge of each color in F.

▪ Well connected=> maximize number of spanning trees in 𝐻
[Li, Patterson, Yi, Zhang 19]

▪ Graph 𝐺 = (𝑉, 𝐸). For an edge 𝑒 = 𝑎𝑏 ∈ 𝐸, let 𝑣𝑒 = 1𝑎 − 1𝑏 ∈ 𝑅𝑉

▪ Laplacian: 𝐿𝐺 = σ𝑒∈𝐸 𝑣𝑒𝑣𝑒
𝑇

▪ [Kirchoff 1847] #{spanning trees of 𝐺} = det 𝐿𝐺 +
1

𝑉 2 11𝑇



ALLOCATION OF GOODS

▪ 𝑚 goods, 𝑑 agents; agent 𝑖 has utility 𝑢𝑖(𝑗) for good 𝑗, and 𝑢𝑖 𝑆 = σ𝑗∈𝑆 𝑢𝑖(𝑗)

▪ Goal: find allocation 𝜎: 𝑚 → 𝑑 to maximize welfare

▪ Nash Social Welfare: maximize geometric mean of agent utilities

           max ς𝑖=1
𝑑 σ𝑗:𝜎 𝑗 =𝑖 𝑢𝑖 𝑗

1

𝑑 : 𝜎: 𝑚 → [𝑑]

▪ Interpolates between total utility and min utility

▪ Can be modeled as determinant maximization s.t. partition constraints [Anari, OveisGharan, Saberi, Singh 17].  e-
approximation.

▪ Approximation for Nash Social Welfare: [Cole, Gkatzelis’16],  [Barman, Krishnamurthy, Vaish’18] 1.45-approximation.

▪ Recent works generalize the models [Anari, Mai, Oveis-Gharan, Vazirani’18], [Garg, Vegh, Husic’ 20], [Barman, Krishna, 
Kulkarni, Narang’21], [Barman, Verma’ 21], [Li, Vondrak’21]
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PROBLEM STATEMENT
▪ Given 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑑, approximate

OPT(𝑣1, … , 𝑣𝑛; ℬ) = max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ∈ ℬ

▪ ℬ = bases of a matroid of rank 𝑘 ≥ 𝑑 over 𝑛

▪ Examples:

▪ Uniform matroid: ℬ = {𝑆 ⊆ 𝑛 : 𝑆 = 𝑘}

▪ Partition matroid: ℬ = {𝑆 ⊆ 𝑛 : ∀𝑖 𝑆 ∩ 𝑃𝑖 = 1}, where 𝑛 = 𝑃1 ྣ… ྣ𝑃𝑘
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RESULTS AND TECHNIQUES

Convex Programming Based Methods Combinatorial Methods

Cardinality Constraints

(Pick k vectors)

General Matroid 

Constraint

(Pick k vectors that form 

a basis)

OPT(𝑣1, … , 𝑣𝑛; ℬ) = max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ∈ ℬ

Randomized Rounding: e-approximation 
[Nikolov’15, S’ Xie’18]

Spectral Sparsification: (1+𝜖)-approximation 

when 𝑘 ≥ 𝑑/𝜖2 [ALSW’17] 

Volume Sampling: (1+𝜖)-approximation when 

𝑘 ≥ 𝑂
𝑑

𝜖
 [Nikolov, S’,Tantipongpipat’18] 

Stable Polynomials and Strongly log-concave 

polynomials:  e-approximate estimation  and 

𝑒𝑑-approximation
[Nikolov, S’ 16, Anari, Oveis-Gharan’17, Anari, Oveis-

Gharan, Vinzant’19] (when k≤d)

Sparsity of Convex Programs: d-approximate 

estimation and 𝑑𝑑-approximation [Madan, 

Nikolov, S’, Tantipongpipat’19] (when k>d)

Local Search/Greedy: (1+𝜖)-

approximation when 𝑘 ≥ 𝑑/𝜖  
[Madan, S’,Tantipongpipat, Xie’19, Lau 

Zhou’22] 

(Widely implemented in SAS and 

other softwares)

Matroid Intersection Based Methods:

𝑑-approximation algorithm 
[Brown, Laddha, Pittu, S’, Tetali’22, ‘23]



MAIN RESULT FOR THE TALK
▪ Given 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑑, approximate

OPT(𝑣1, … , 𝑣𝑛; ℬ) = max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ∈ ℬ

▪ ℬ =  bases of a matroid of rank 𝑘 ≥ 𝑑 over 𝑛

▪ Theorem [Brown, Laddha, Pittu, S’, Tetali ’22,’23] : There exists a polynomial time algorithm for the 
determinant maximization problem under a matroid constraint that returns a solution S such that 

 det 𝑉𝑠𝑉𝑆
𝑇 ≥

1

𝑑𝑑 det 𝑉𝑇𝑉𝑇
𝑇  where T is the optimal solution.



FEASIBILITY?
▪ Given 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑑, approximate

OPT(𝑣1, … , 𝑣𝑛; ℬ) = max det 

𝑖∈𝑆

𝑣𝑖𝑣𝑖
𝑇

1
𝑑

: 𝑆 ∈ ℬ

▪ ℬ = bases of a matroid of rank 𝑘 ≥ 𝑑 over 𝑛

▪ Examples:

▪ Partition matroid: ℬ = {𝑆 ⊆ 𝑛 : ∀𝑖 𝑆 ∩ 𝑃𝑖 = 1}, where 𝑛 = 𝑃1 ྣ… ྣ𝑃𝑘.

How do we even know there is a feasible solution with non-zero objective?

For ease of exposition, we assume k=d. Then det 𝑉𝑆𝑉𝑆
𝑇 = det 𝑉𝑆 det 𝑉𝑆

𝑇 = det 𝑉𝑆
2 = 𝑣𝑜𝑙 𝑆 2.
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MATROID INTERSECTION

▪ Consider two matroid over the set of vectors.
▪ Partition constraints 𝑀1 = (𝑉, 𝐼1): Pick at most 1 vector from each 𝑃𝑖, i.e. 𝐴 ∈ 𝐼1 if 𝐴 ∩ 𝑃𝑖 ≤ 1 for 

each i.

▪ Linear Independence 𝑀2 = (𝑉, 𝐼2): :  Independent set form a linearly independent set of vectors, 
i.e. 𝐴 ∈ 𝐼2 if  vectors in A are linearly independent. 

Lemma: The objective of max-determinant is non-zero iff there is a common basis of two matroid.

Theorem[Edmonds’71]: One can find a common basis of two matroids in polynomial time.

Lemma: The objective of max determinant problem is non-zero iff there exists a feasible set S of 

vectors such that they form a basis 𝑅𝑑.

Matroid: 𝑀 = 𝑉, 𝐼  is a matroid for some 𝐼 ⊆ 2𝑉 if we have the following two axioms.

𝐴 ∈ 𝐼 and 𝐵 ⊆ 𝐴 implies 𝐵 ∈ 𝐼.

𝐴, 𝐵 ∈ 𝐼 s.t. 𝐴 > |𝐵| then there exists 𝑒 ∈ 𝐴 ∖ 𝐵 such that 𝐵 ∪ 𝑒 ∈ 𝐼.

Basis: size of the maximal set in I. 



WEIGHTED MATROID INTERSECTION
▪ We are interested in the weighted problem where if we pick a set S, the weight is given by 

det σ𝑖∈𝑆 𝑣𝑖𝑣𝑖
𝑇

1

𝑑 .

▪ Classically additive weight functions are studied. 

▪ Given  weights 𝑤𝑖 for each vector 𝑣𝑖. The weight of a subset 𝑆 is 𝑤 𝑆 = σ𝑣𝑖∈𝑆 𝑤𝑖.

▪ Problem: Given two matroids, find a common basis 𝑆 of maximum weight 𝑤(𝑆). 

▪ Theorem[Edmonds’71]: Maximum weight common basis problem is solvable in polynomial time. 

The problem and algorithm generalizes maximum weight matching problem in bipartite graphs.



EXCHANGE GRAPH 
▪ Given a feasible common basis S of two matroids, consider the directed bipartite graph D(S) with 

bipartition  𝑉 ∖ 𝑆, 𝑆 .

▪ Add arc 𝑦, 𝑥  where y ∈ 𝑆 and 𝑥 ∉ 𝑆 if 𝑆 − 𝑦 + 𝑥 ∈ 𝐼1. 

▪ Add arc 𝑥, 𝑦  where 𝑣 ∈ 𝑆 and 𝑥 ∉ 𝑆 if 𝑆 − 𝑦 + 𝑥 ∈ 𝐼2. 

▪ Let l 𝑦 = 𝑤(y) for each 𝑦 ∈ S and l x = −𝑤(𝑥) for each 𝑥 ∉ 𝑆. 

▪ Theorem: S is maximum weight basis iff there is a no negative

 length cycle C in S. 

▪ Algorithm for maximum weight common basis:
▪ Initialize with any common basis S.

▪ Define the exchange graph D(S). 

▪ If there is no negative length cycle in D(S), declare optimal. 

▪ Else, find a shortest hop negative length cycle C. Let 𝑆 ← 𝑆ΔC.



EXCHANGE GRAPH: UPDATED WEIGHTS
▪ Challenge: Recall our weight function is not additive. 

Updated weights: We place weights 𝑤𝑢𝑣 on edges of 𝐷(𝑆) and not on vertices. 

Indeed if 𝑢, 𝑣 ∈ 𝐷(𝑆) where 𝑢 ∉ 𝑆 and 𝑣 ∈ 𝑆 we place a weight of −log
𝑣𝑜𝑙 𝑆−𝑣+𝑢

𝑣𝑜𝑙 𝑆
 , i.e., change in 

volume when replacing 𝑣 by u. 

The backward edges 𝑣, 𝑢 ∈ 𝐷 𝑆  where 𝑢 ∉ 𝑆 and 𝑣 ∈ 𝑆 get weight 0. 

Let S be a current solution. It is a basis, so every u ∉ 𝑆, 
 u = σ𝑤∈𝑆 𝑎𝑢𝑤 𝑤 for some reals 𝑎𝑢𝑤.

Claim: For any u ∉ 𝑆 𝑎𝑛𝑑 𝑣 ∈ 𝑆 , 𝑤𝑒 ℎ𝑎𝑣𝑒
𝑣𝑜𝑙 𝑆−𝑣+𝑢

𝑣𝑜𝑙 𝑆
=|𝑎𝑢𝑣|.

Proof: 𝑣𝑜𝑙𝑑 𝑆 = 𝑣𝑜𝑙𝑑−1 𝑆 − 𝑣 ⋅ |𝑣⊥| where 𝑣⊥ is the component of 𝑣 

orthogonal to span 𝑆 − 𝑣 .
𝑣𝑜𝑙𝑑 𝑆 − 𝑣 + 𝑢 = 𝑣𝑜𝑙𝑑−1 𝑆 − 𝑣 ⋅ |𝑢⊥| where where 𝑢⊥ is the 

component of 𝑢 orthogonal to span 𝑆 − 𝑣 .
Since u=𝑎𝑢𝑣 𝑣 + σ 𝑤∈𝑆−𝑣 𝑎𝑢𝑤𝑤, we have 𝑢⊥ = auvv⊥



CYCLES AND DETERMINANTS
▪ Lemma[Determinant to Cycle]: Let T denote the set of 

vectors in the optimal solution. If 
𝑣𝑜𝑙 𝑇

𝑣𝑜𝑙 𝑆
> 𝑑𝑂 𝑑  then there 

exists a cycle C in D(S) such that  σ𝑒∈𝐶 𝑤𝑒 ≤ −5 𝐶 log |𝐶| . 

Lemma [Cycle to Determinant]: If C is the shortest hop length 

cycle with σ𝑒∈𝐶 𝑤𝑒 ≤ −5 𝐶 log |𝐶| then 
det 𝑆Δ𝐶

det 𝑆
≥ 2. Moreover, 

𝑆Δ𝐶 is a basis of constraint matroid. 



EXISTENCE OF CYCLES
▪ Lemma[Determinant to Cycle]: Let T denote the set of vectors in the optimal solution. If 

𝑣𝑜𝑙 𝑇

𝑣𝑜𝑙 𝑆
> 𝑑𝑂 𝑑  then there exists a cycle C in D(S) such that σ𝑒∈𝐶 𝑤𝑒 ≤ −5 𝐶 log |𝐶| . 

▪ Proof: Order vectors in T and S appropriately. 

  Write each vector in T as a linear combination of vectors in S. 

𝑉𝑇 = 𝑉𝑆𝐴 where 𝐴 is a 𝑑 × 𝑑 matrix.

 The entries of A are also the weight on the edges. 

Now, 
𝑣𝑜𝑙 𝑇

𝑣𝑜𝑙 𝑆
=

det 𝑉𝑇

det 𝑉𝑆
= det 𝐴 .  Thus det 𝐴 > 𝑑𝑂 𝑑 . 

Thus there exists a permutation 𝜋: 𝑇 → 𝑆 such that

 ς𝑢∈𝑇 𝑎𝑢𝜋 𝑢 ≥
𝑑𝑂 𝑑

𝑑!
= 𝑑𝑂 𝑑 . 

But this permutation corresponds to a collection of cycles and therefore one of the cycles must 
have really negative length.



VOLUME CHANGE IN CYCLE EXCHANGE

▪ Claim: Let C be a cycle in D(S). Let 𝑆′ = 𝑆ΔC. Then 𝑉𝑜𝑙 𝑆′ =
𝑉𝑜𝑙 𝑆 ⋅ det(𝐵) where  𝐵 is 𝐶 × 𝐶  matrix indexed by 𝐶 ∖ 𝑆 and 
𝑆 ∖ 𝐶 and entries 𝑎𝑢𝑣. 

▪ Observe that weights on the edges of the cycle 

     are exactly the diagonal entries of this cycle. 

Lemma [Cycle to Determinant]: If C is the shortest hop length 

cycle with σ𝑒∈𝐶 𝑤𝑒 ≤ −5 𝐶 log |𝐶| then 
det 𝑆Δ𝐶

det 𝑆
≥ 2. Moreover, 

𝑆Δ𝐶 is a basis of constraint matroid. 



VOLUME CHANGE IN CYCLE EXCHANGE

▪ Claim: If C is the shortest length cycle withσ𝑒∈𝐶 𝑤𝑒 ≤ −5 𝐶 log |𝐶| 
then det(B)> 2. 

Why? Use the fact that this is the shortest cycle. This allows to bound 
non-diagonal entries of the matrix B. A technical argument then 
shows that the determinant is close to the product of diagonal 
entries. 

Lemma [Cycle to Determinant]: If C is the shortest hop length 

cycle with σ𝑒∈𝐶 𝑤𝑒 ≤ −5 𝐶 log |𝐶| then 
det 𝑆Δ𝐶

det 𝑆
≥ 2. Moreover, 

𝑆Δ𝐶 is a basis of constraint matroid. 



FINAL GUARANTEE 
▪ Theorem [Brown, Laddha, Pittu, S’, Tetali ‘22, 23] : There exists a polynomial time algorithm for the 

determinant maximization problem under a matroid constraint that returns a solution S such that 

 det 𝑉𝑠𝑉𝑆
𝑇 ≥

1

𝑑𝑂 𝑑 det 𝑉𝑇𝑉𝑇
𝑇  where T is the optimal solution.



CONCLUSION AND OPEN QUESTIONS
▪ Introduced the determinant maximization problem. 

▪ Both combinatorial and convex programming methods are applicable. 

▪ Combinatorial methods are used in practice and have provable guarantees. 

▪ Better guarantees?

▪ Here we focused on determinant objective.  Other spectral objectives?


	Slide 1: Spectral Optimization via Matroid Intersection  
	Slide 2: SPECTRAL OPTIMIZATION 
	Slide 3: Outline
	Slide 4: Problem Statement
	Slide 5: Experimental Design
	Slide 6: Experimental Design: Objectives
	Slide 7: Convex Geometry
	Slide 8: Maximum Entropy SAMPLING
	Slide 9: Network Design
	Slide 10: Allocation of GOods
	Slide 11: Problem Statement
	Slide 12: Results and Techniques
	Slide 13: Main Result For the TALK
	Slide 14: Feasibility?
	Slide 15: Matroid Intersection
	Slide 16: Weighted Matroid Intersection
	Slide 17: ExChange Graph 
	Slide 18: Exchange Graph: UPDATEd Weights
	Slide 19: Cycles and Determinants
	Slide 20: Existence of Cycles
	Slide 21: Volume Change in cycle Exchange
	Slide 22: Volume Change in cycle Exchange
	Slide 23: Final Guarantee 
	Slide 24: Conclusion and Open Questions

