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SPECTRAL OPTIMIZATION

= Represent data using vectors and matrices.

= Study the spectral properties of natural matrices associated with combinations of data.
= Determinant, maximum or minimum eigenvalue etc.

= Spectral Sparsifiers and Cut sparsifiers [Spielman, Teng’08].

= This talk will be about optimizing the spectral function: determinant.
= Close relationship to matroid intersection.




OUTLINE

= Introduction
= Problem Statement

= Applications




PROBLEM STATEMENT

= Given v, ..., v, € R%, approximate
1 n

1
d
OPT(v4, ..., v5; Ug) = max ) det (Z vivér> S| <k
(€S

= and more generally, )

d
OPT(vy, ..., v,,; B) = max ) det (Z vivl-T> :SEB
i€S

where B = bases of a matroid of rank k > d over [n]

A A A
= Examples: | Y : |
= Uniform matroid: B = {S € [n]: |S| = k} uﬂﬂnﬂﬂﬂuﬂm

= Partition matroid: B = {S € [n]: Vi |S n P;| = 1}, where [n] = P; U...UP,

€



EXPERIMENTAL DESIGN

» Unknown 8* € R,
= Obtain linear measurements Yi=v;- 0" +n;
for some v; € {v4,...,v,} and noise n; = N(0, o).

= Feasible sets of measurements: S € B, where B C ([’]:])
= E.g.,B = {S:|S| = k} : can only make k measurements

= Goal: choose S € B so that the MLE
6 = argmin Z(yi —v;-0)%:0 € R?
(€S
i1s as accurate as possible




EXPERIMENTAL DESIGN: OBJECTIVES

6 —0*~N(0,0-%),where X = (ZiesviviT)_l

» Confidence ellipsoid : E = § + 0(Vd o) - 21/2 - B

= F contains 6* with 95% probability Confidence

ellipsoid

= D-optimal design:

1
a -----------------------
max det(é viviT> :SEB

= Equivalent to minimizing the volume of E

= Other objectives: minimize tr(2)/d, [|X|l,p, ...

[Kiefer ‘59, Fedorov ’72, Kiefer ‘75, Atkinson and Donev ‘92,
Miller and Nguyen ‘94, Pukelsheim ‘06, Avron and Boutsidis
‘13, Allen-Zhu, Li, Singh and Wang ‘17, Singh and Xie ’18,
Atkinson, Nikolov, Singh, and Tantipongpipat ’19.....]

€



CONVEX GEOMETRY

= Given a set of n vectors vy, ..., v,, € R%, pick (d+1) vectors to maximize the volume of the simplex
formed by them.

« Given a set of n vectors vy, ..., v, € R%, pick d vectors to maximize the volume of the parallelopiped
formed by them.

= Volume of parallelopiped formed by {v;: i € S} is exactly J det(VIVs) .

= Can be reduced to Determinant maximization.

= Khachiyan[1995], Di Summa, Eisenbrand, Faenza, Moldenhauer[2014], Nikolov[2016].

= Closely related to Determinantal Point Processes [Kulesza,Taskar’2012] arriving in probability
theory and machine learning.

e



MAXIMUM ENTROPY SAMPLING

Springer Series in Operations Research
and Financial Engineering

A closely related cousin of determinant maximization is the maximum entropy Marcia Fampa
sampling problem [Fampa, Lee ‘23]. Jon Lee

Maximum-Entropy
Sampling

Algorithms and Application

Given a d X d P.S.D. matrix C and integer k < d, find a principal submatrix B of C
of maximum determinant.

-Work on stronger upper and lower bounds. [Ko, Lee, Wayne’98, Fampa, Lee’22]
-Branch and bound methods.[Ko, Lee, Queryanne’95][Lee’98]

Lots of this work also applies to determinant maximization. 9 springer

e



NETWORK DESIGN

= Given a graph ¢ = (V, E), find a spanning subgraph H = (V, F) that is
= well connected.

= H = (V,F) is chosen such that F satisfies certain combinatorial constraints, for
example,

= |F| < k,or
= Given a coloring of E, pick at most 1 edge of each color in F.

= Well connected=> maximize number of spanning trees in H
[Li, Patterson, Y1, Zhang 19]

» Graph G = (V,E).Foranedgee =ab € E,letv, =1, — 1, € RV

» Laplacian: Lg = Y .cp VoV

= [Kirchoff 1847] #{spanning trees of (¢} = det (LG + # 11T)




ALLOCATION OF GOODS

m goods, d agents; agent i has utility u;(j) for good j, and u;(S) = ), jesui(j)

Goal: find allocation o: [m] — [d] to maximize welfare

Nash Social Welfare: maximize geometric mean of agent utilities

max {H?=1(Zj:a(j):i ui(p)?: oz [m] - [d]}

= Interpolates between total utility and min utility

Can be modeled as determinant maximization s.t. partition constraints [Anari, OveisGharan, Saberi, Singh 17]. e-
approximation.

Approximation for Nash Social Welfare: [Cole, Gkatzelis’16], [Barman, Krishnamurthy, Vaish’18] 1.45-approximation.

Recent works generalize the models [Anari, Mai, Oveis-Gharan, Vazirani’18], [Garg, Vegh, Husic’ 20], [Barman, Krishna,
Kulkarni, Narang'21], [Barman, Verma’ 21], [Li, Vondrak'21] @
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PROBLEM STATEMENT

= Given v, ..., v, € R%, approximate
1 n

Q-

OPT(v4, ..., V,;; B) = max ) det (2 vivl-T> :SEB
i€S
= B = bases of a matroid of rank k > d over [n]

= Examples:
= Uniform matroid: B = {S € [n]: |S| = k}

= Partition matroid: B = {S € [n]: Vi |S n P;| = 1}, where [n] = P; U... UP;

A A A
[ / \ \

€



RESULTS AND TECHNIQUES

1
d
OPT(v4, ..., vy; B) = max )det (2 viviT> :SEB

IES

_ Convex Programming Based Methods Combinatorial Methods

Cardinality Constraints Randomized Rounding: e-approximation Local Search/Greedy: (1+¢€)-

(Pick k vectors) [Nikolov’'13, 8 Xie’138] approximation when k > d /e
Spectral Sparsification: (1+¢€)-approximation [Madan, S’,Tantipongpipat, Xie’19, Lau
when k > d/e? [ALSW’17] Zhou’22]

Volume Sampling: (1+¢€)-approximation when

k>0 (g) [Nikolov, S’ Tantipongpipat' 18] (Widely implemented in SAS and

other softwares)

General Matroid Stable Polynomials and Strongly log-concave Matroid Intersection Based Methods:
Constraint polynomials: e-approximate estimation and d-approximation algorithm

(Pick k vectors that form e?-approximation [Brown, Laddha, Pittu, S, Tetali’22, ‘23]

a basis) [Nikolov, S’ 16, Anari, Oveis-Gharan’17, Anari, Oveis-

Gharan, Vinzant’19] (when k<d)

Sparsity of Convex Programs: d-approximate

estimation and d%-approximation [Madan,
Nikolov, S’, Tantipongpipat’19] (when k>d)



MAIN RESULT FOR THE TALK

= Given v,, ..., v, € R4, approximate
1 n

Q-

OPT(v4, ..., V,;; B) = max ) det <z vivl-T> :SEB
i€S
= B = bases of a matroid of rank k > d over [n]

= Theorem [Brown, Laddha, Pittu, S’, Tetali ’22,'23] : There exists a polynomial time algorithm for the
determinant maximization problem under a matroid constraint that returns a solution S such that

det(V,VT) = d—ld det(V;V{) where T is the optimal solution.




FEASIBILITY?

= Given v, ..., v, € R%, approximate
1 n

OPT(v4, ..., ;;; B) = max det( (Y )

= B = bases of a matroid of rank k > d over [n] \ A

. Examples: ﬂﬂﬂﬂﬂﬂﬂﬂﬂm

= Partition matroid: B = {S € [n]: Vi |S n P;| = 1}, where [n] = P; U... UP.

How do we even know there is a feasible solution with non-zero objective?

For ease of exposition, we assume k=d.Then det(VSVST) = det(Vs) det(VST) = det(V5)? = vol(S)?.

€



MATROID INTERSECTION

Lemma: The objective of max determinant problem is non-zero iff there exists a feasible set S of
vectors such that they form a basis R%.

Matroid: M = (V, ) is a matroid for some I € 2" if we have the following two axioms.
A€l and B € AimpliesB € 1.
A,B €1 s.t.|A| > |B| then there exists e € A \ B such that B U {e} € I.

Basis: size of the maximal set in I.

= Consider two matroid over the set of vectors.

= Partition constraints M; = (V,I;): Pick at most 1 vector from each P;,i.e. A€ if|ANn P;| < 1 for
each 1.

= Linear Independence M, = (V,[,):: Independent set form a linearly independent set of vectors,
i.e. A € I, if vectors in A are linearly independent.

Lemma: The objective of max-determinant is non-zero iff there is a common basis of two matroid.

Theorem[Edmonds’71]: One can find a common basis of two matroids in polynomial time.




WEIGHTED MATROID INTERSECTION

= We are interesited in the weighted problem where if we pick a set S, the weight is given by
det(Xies vivi )? -
= Classically additive weight functions are studied.

= Given weights w; for each vector v;. The weight of a subset S is w(S) = X, csw;.

= Problem: Given two matroids, find a common basis S of maximum weight w(S).
= Theorem[Edmonds’71]: Maximum weight common basis problem is solvable in polynomial time.

The problem and algorithm generalizes maximum weight matching problem in bipartite graphs.

€



EXCHANGE GRAPH

= Given a feasible common basis S of two matroids, consider the directed bipartite graph D(S) with
bipartition (V '\ S,S).

= Add arc (y,x) wherey e Sandx ¢ SifS—y+ x € I;.

: U\Y
= Add arc (x,y) whereve Sandx ¢ SifS—y+ x € [,. {_:\
[ Y
= Letl(y) = w(y) foreachy € Sand 1(x) = —w(x) for each x ¢ S. [ \" ~ = M
I|| |II II,-"I - I - :"‘V'T-g
I J'"_____.. y'\
= Theorem: S is maximum weight basis iff there is a no negative rat | . '|
length cycle Cin S. . | Ty
= Algorithm for maximum weight common basis: e | \
« Initialize with any common basis S. \ o | \_/
= Define the exchange graph D(S). '\i J,f'
= If there is no negative length cycle in D(S), declare optimal. \/

= Else, find a shortest hop negative length cycle C.Let S « SAC.




EXCHANGE GRAPH: UPDATED WEIGHTS

= Challenge: Recall our weight function is not additive.

Updated weights: We place weights w,,;, on edges of D(S) and not on vertices.

vol(S—v+u)

Indeedif (u,v) € D(S) where u ¢ S and v € S we place a weight of —log ,i.e.,change in

vol(S)

volume when replacing v by u.

The backward edges (v,u) € D(S) where u € S and v € S get weight 0.

Let S be a current solution. It is a basis, so every u € S,

u =) ,esa,ww for some reals a,,,. Pi\{vi}
. vol(S—v+u) m  Partition matroid M,
Claim:For any u € S and v € S,we have =|ayy|- | _
vOl(S) m Linear matroid My
Proof: voly(S) = voly_,(S — v) - |vt| where v' is the component of v
orthogonal to span$ — v. P\ {v:)
voly(S — v +u) = voly_,(S — v) - |[ut| where where u' is the

component of u orthogonal to span § — v.

Since u=ay, v + X(yes_v) GuwW, we have ut = ay vt

=



CYCLES AND DETERMINANTS

= Lemma[Determinant to Cycle]: Let T denote the set of

vectors in the optimal solution. If voig > d%@) then there

exists a cycle C in D(S) such that ) .- w, < —5|C|log|C].

Lemma [Cycle to Determinant]: If C is the shortest hop length
cycle with ¥,e.w, < —5|C|log |C| then 24549

> 2. Moreover,
det(S)
SAC is a basis of constraint matroid.




EXISTENCE OF CYCLES

= Lemma[Determinant to Cycle]: Let T denote the set of vectors in the optimal solution. If

—’;Zig > d%(@) then there exists a cycle C in D(S) such that ¥, w, < —5|C| log|C|.

= Proof: Order vectors in T and S appropriately. T

Write each vector inT as a linear combination of vectors in S.

Vr = VsA where Ais ad X d matrix.

The entries of A are also the weight on the edges.

vol(T) _ det(Vr)

Now, & = qetwve)

= det(A4). Thus det(4) > d°@D,

Thus there exists a permutation 7: T — S such that

dO(d)

HuET Aurm(w) = dl = do(d)-

But this permutation corresponds to a collection of cycles and therefore one of the cycles must
have really negative length.

€



VOLUME CHANGE IN CYCLE EXCHANGE "

Lemma [Cycle to Determinant]: If C is the shortest hop length
—5|C| log |C| then 8529

det(S)
SAC is a basis of constraint matroid.

cycle with ) ¢ W, < > 2. Moreover,

= Claim: Let C be a cycle in D(S). Let S’ = SAC. Then Vol(S') =
Vol(S) - det(B) where B is|C| X |C| matrix indexed by C \ S and
S\ C and entries a,,,.

= Observe that weights on the edges of the cycle

are exactly the diagonal entries of this cycle.

U

u2 / 2
[_10A" g Up—1

V’_ \] V‘D
-1 —
0[10
\ ql?—




VOLUME CHANGE IN CYCLE EXCHANGE "
Lemma [Cycle to Determinant]:If C is the shortest hop length uy M o

cycle with ¥,ccw, < —5|C|log |C| the dzz(iﬁ)c) > 2. Moreover, iy .
SAC is a basis of constraint matroid. /

(/]

= Claim: If C is the shortest length cycle with), .- w, < —5|C| log |C|

V V. Vo
then det(B)> 2. " ﬂ;:! (. Vo q;

Why? Use the fact that this is the shortest cycle. This allows to bound Up | 20y 222
non-diagonal entries of the matrix B. A technical argument then S :
shows that the determinant is close to the product of diagonal
entries.




FINAL GUARANTEE

= Theorem [Brown, Laddha, Pittu, S’, Tetali ‘22, 23] : There exists a polynomial time algorithm for the
determinant maximization problem under a matroid constraint that returns a solution S such that

det(V V) = ﬁ det(V;V{) where T is the optimal solution.




CONCLUSION AND OPEN QUESTIONS

= Introduced the determinant maximization problem.

= Both combinatorial and convex programming methods are applicable.

= Combinatorial methods are used in practice and have provable guarantees.
= Better guarantees?

= Here we focused on determinant objective. Other spectral objectives?
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