Recent Developments in Nonlinear Random Matrices

Yizhe Zhu
Department of Mathematics UC Irvine

ICERM Random Matrices and Applications
May 20-22, 2024

Nonlinear matrix models

Nonlinear random matrix: an entry-wise nonlinear function applied to a given random matrix

Nonlinear matrix models

Nonlinear random matrix: an entry-wise nonlinear function applied to a given random matrix

- Kernel matrix $\boldsymbol{K}, \boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$. e.g., $\boldsymbol{K}_{i j}=f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right), f\left(\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|\right)$. Kernel PCA, kernel SVM, kernel regression.
- Kernel matrices from neural networks.
- Random graphs from nonlinear random matrices.

Random inner product matrix, proportional regime

- Random data $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$, mean zero, variance 1. $d / n \rightarrow \gamma$.
- Random inner product kernel matrix

$$
\boldsymbol{K}_{i j}= \begin{cases}\frac{1}{\sqrt{d}} f\left(\frac{1}{\sqrt{d}}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right) & i \neq j \\ 0 & i=j .\end{cases}
$$

- \boldsymbol{x}_{i} Gaussian [Cheng-Singer 13], universality [Do-Vu 13].
- $a=\mathbb{E}_{\xi \sim N(0,1)}[\xi f(\xi)], \quad \nu=\mathbb{E}\left[f(\xi)^{2}\right], \quad \mathbb{E}[f(\xi)]=0$.
- Limiting spectral distribution of \boldsymbol{K} :

$$
a\left(\mu_{\mathrm{MP}, \gamma}-1\right) \boxplus \sqrt{\gamma^{-1}\left(\nu-a^{2}\right)} \mu_{\mathrm{sc}} .
$$

- $f(x)=x, \nu=a^{2}$, Marchenko-Pastur law.
- $a=0$, semicircle.

Concentration

[Fan-Montanari 19] Hermite expansion of $f(x)$:

$$
f(x)=\sum_{i=1}^{\infty} a_{i} h_{i}(x)
$$

$h_{i}(x)$ normalized hermite polynomials. Decomposition

$$
\boldsymbol{K}=\sum_{i=1}^{\infty} a_{i} \boldsymbol{K}_{i} .
$$

$a_{1} K_{1}$ has a Marchenko-Pastur law, $\sum_{i \geq 2}^{\infty} a_{i} K_{i}$ has a semicircle law.

- \boldsymbol{x}_{i} Gaussian, f is odd, $f(x)=-f(x)$. $\|\boldsymbol{K}\|$ converges to the edge of the limiting spectrum.
- Non-asymptotic bound on $\|\boldsymbol{K}\|$.
- General distribution \boldsymbol{x}_{i}, possible outliers depending on $\mathbb{E}\left[\mathbf{x}_{i j}^{4}\right]$ and a_{2}.

A different scaling, proportional regime

$$
\boldsymbol{K}_{i j}=f\left(\frac{1}{d}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right) .
$$

A different scaling, proportional regime

$$
K_{i j}=f\left(\frac{1}{d}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right) .
$$

Theorem (Operator norm approximation, El Karoui 10)

Let $\boldsymbol{\Sigma}=\mathbb{E} \boldsymbol{x} \boldsymbol{x}^{\top}$. Assume $\boldsymbol{z}=\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{x}$ has independent entries with zero mean and unit variance, where $\mathbb{E}\left|z_{i}\right|^{4+\eta} \leq M,\|\boldsymbol{\Sigma}\| \leq M, \frac{\operatorname{Tr} \boldsymbol{\Sigma}}{d} \rightarrow \tau$. With high probability, when $n, d \rightarrow \infty$ proportionally,

$$
\begin{gathered}
\left\|\boldsymbol{K}-c_{0} \mathbf{1 1} \mathbf{1}^{\top}-c_{1} \frac{\boldsymbol{X} \boldsymbol{X}^{\top}}{d}-c_{2} \mathbf{I}_{n}\right\|=o(1), \quad \text { where } \\
c_{0}=f(0)+\frac{f^{\prime \prime}(0)}{2} \frac{\operatorname{Tr}\left(\boldsymbol{\Sigma}^{2}\right)}{d^{2}}, \quad c_{1}=f^{\prime}(0), \quad c_{2}=f\left(\frac{\operatorname{Tr}(\boldsymbol{\Sigma})}{d}\right)-f(0)-f^{\prime}(0) \frac{\operatorname{Tr}(\boldsymbol{\Sigma})}{d} .
\end{gathered}
$$

\Longrightarrow Marchenko-Pastur law for \boldsymbol{K}.

[El Karoui 10]: Taylor expansion

$$
\boldsymbol{K}_{i j}=f\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right)
$$

When $n \asymp d$,

- Off-diagonal: $\frac{\left\langle x_{i}, x_{j}\right\rangle}{d} \approx 0$. Taylor expansion at 0 ,

$$
f\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right) \approx f(0)+f^{\prime}(0) \frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}+\frac{f^{\prime \prime}(0)}{2}\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right)^{2}+\frac{f^{\prime \prime \prime}\left(\zeta_{i j}\right)}{6}\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right)^{3}
$$

- Diagonal: $\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right\rangle}{d} \approx \frac{\operatorname{tr} \boldsymbol{\Sigma}}{d} \approx \tau$. Taylor expansion at τ,

$$
f\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right\rangle}{d}\right) \approx f(\tau)+f^{\prime}\left(\zeta_{i i}\right)\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right\rangle}{d}-\tau\right)
$$

- Control error terms: $\left\|\boldsymbol{K}-c_{0} \mathbf{1 1}^{\top}+c_{1} \frac{\boldsymbol{x} \boldsymbol{X}^{\top}}{d}+c_{2} \mathbf{I}_{n}\right\|=o(1)$.

[El Karoui 10]: Taylor expansion

$$
\boldsymbol{K}_{i j}=f\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right)
$$

When $n \asymp d$,

- Off-diagonal: $\frac{\left\langle x_{i}, x_{j}\right\rangle}{d} \approx 0$. Taylor expansion at 0 ,

$$
f\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right) \approx f(0)+f^{\prime}(0) \frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}+\frac{f^{\prime \prime}(0)}{2}\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right)^{2}+\frac{f^{\prime \prime \prime}\left(\zeta_{i j}\right)}{6}\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle}{d}\right)^{3}
$$

- Diagonal: $\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right\rangle}{d} \approx \frac{\operatorname{tr} \boldsymbol{\Sigma}}{d} \approx \tau$. Taylor expansion at τ,

$$
f\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right\rangle}{d}\right) \approx f(\tau)+f^{\prime}\left(\zeta_{i i}\right)\left(\frac{\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right\rangle}{d}-\tau\right)
$$

- Control error terms: $\left\|\boldsymbol{K}-c_{0} \mathbf{1 1}^{\top}+c_{1} \frac{\boldsymbol{x} \boldsymbol{X}^{\top}}{d}+c_{2} \mathbf{I}_{n}\right\|=o(1)$.
- K has a "low-rank+ bulk + regularizer" structure.

Fully-connected neural network

Function $f_{\theta}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}, \mathbf{x} \mapsto f_{\theta}(\mathbf{x})$, defined by

$$
f_{\theta}(\mathbf{x})=\mathbf{w}^{\top} \frac{1}{\sqrt{d_{L}}} \sigma\left(\boldsymbol{W}_{L} \frac{1}{\sqrt{d_{L-1}}} \sigma\left(\ldots \frac{1}{\sqrt{d_{2}}} \sigma\left(\boldsymbol{W}_{2} \frac{1}{\sqrt{d_{1}}} \sigma\left(\boldsymbol{W}_{1} \mathbf{x}\right)\right)\right)\right)
$$

- $\boldsymbol{W}_{1} \in \mathbb{R}^{d_{1} \times d_{0}}, \boldsymbol{W}_{2} \in \mathbb{R}^{d_{2} \times d_{1}}, \ldots, \boldsymbol{W}_{L} \in \mathbb{R}^{d_{L} \times d_{L-1}}$, and $\boldsymbol{w} \in \mathbb{R}^{d_{L}}$. Training parameters: $\theta=\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{L}, \mathbf{w}\right)$.
- Training samples in a matrix: $\boldsymbol{X}_{0}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{d_{0} \times n}$.
- σ : activation function, e.g. $\frac{e^{\alpha x}}{1+e^{\alpha x}}$ (Sigmoid), $|x|, \max (0, x)$ (ReLU).
- $\boldsymbol{X}_{\ell}=\frac{1}{\sqrt{d_{\ell}}} \sigma\left(\boldsymbol{W}_{\ell} \boldsymbol{X}_{\ell-1}\right) \in \mathbb{R}^{d_{\ell} \times n}$, for $1 \leq \ell \leq L$.

Conjugate kernel

$$
\boldsymbol{K}_{\ell}^{\mathrm{cK}}=\boldsymbol{X}_{\ell}^{\top} \boldsymbol{X}_{\ell} \in \mathbb{R}^{n \times n}
$$

- $\boldsymbol{K}_{\ell}^{\mathrm{CK}}$ governs the properties of random feature regression or network with only the output layer trained.
- At random initialization, its limiting spectrum was studied when all d_{i} / d_{i-1} and d_{0} / n are proportional. [Pennington-Worah 17], [Benigni-Péché 19], [Louart-Liao-Couillet 18], [Fan-Wang 20]

Spectrum of conjugate kernels: deterministic data

$$
L=1, \quad \boldsymbol{Y}=\frac{1}{N} \sigma(\boldsymbol{W} \boldsymbol{X})^{\top} \sigma(\boldsymbol{W} \boldsymbol{X})
$$

$\boldsymbol{W} \in \mathbb{R}^{N \times d}, \boldsymbol{X} \in \mathbb{R}^{d \times n} . N / d \rightarrow \alpha_{1}, n / d \rightarrow \alpha_{2}, N / n \rightarrow \gamma$.

- Deterministic data $\boldsymbol{X}, \boldsymbol{W}$ Gaussian, Lipschitz activation σ. Row vectors of $\sigma(\boldsymbol{W} \boldsymbol{X})$ are independent. [Louart-Liao-Couillet 18]
- Limiting spectral distribution of \boldsymbol{Y} is $\mu_{M P} \boxtimes \mu_{\Phi}$, where μ_{Φ} is the limiting spectral distribution of

$$
\boldsymbol{\Phi}=\mathbb{E}_{\boldsymbol{w}}[\boldsymbol{Y}]=\mathbb{E}_{\boldsymbol{w}}\left[\sigma\left(\boldsymbol{w}^{\top} \boldsymbol{X}\right)^{\top} \sigma\left(\boldsymbol{w}^{\top} \boldsymbol{X}\right)\right] \in \mathbb{R}^{n \times n} .
$$

- Same limiting ESD as a linear model $\frac{1}{N} \boldsymbol{P}^{\top} \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{P}$ with $\boldsymbol{P}^{\top} \boldsymbol{P}=\boldsymbol{\Phi}$, $\boldsymbol{P} \in \mathbb{R}^{d \times n}$.
- Key step: concentration of random quadratic forms $\sigma\left(\boldsymbol{w}^{\top} \boldsymbol{X}\right) \boldsymbol{A} \sigma\left(\boldsymbol{w}^{\top} \boldsymbol{X}\right)^{\top}$ for deterministic \boldsymbol{A}.

Conjugate kernel, approximately orthonormal data

- When columns of \boldsymbol{X} are approximately orthonormal [Fang-Wang 20],

$$
\mu=\rho_{\gamma}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\boldsymbol{X}^{\top} \boldsymbol{X}}\right),
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathbb{N}(0,1)}\left[\sigma^{\prime}(\xi)\right], \quad \mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

- From [LLC 18] and a first order approximation $\boldsymbol{\Phi} \approx\left(1-b_{\sigma}^{2}\right) \mathbf{I}+b_{\sigma}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}$.

Conjugate kernel, approximately orthonormal data

- When columns of \boldsymbol{X} are approximately orthonormal [Fang-Wang 20],

$$
\mu=\rho_{\gamma}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\boldsymbol{X}^{\top} \boldsymbol{X}}\right),
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathbb{N}(0,1)}\left[\sigma^{\prime}(\xi)\right], \quad \mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

- From [LLC 18] and a first order approximation $\boldsymbol{\Phi} \approx\left(1-b_{\sigma}^{2}\right) \mathbf{I}+b_{\sigma}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}$.

Conjugate kernel, approximately orthonormal data

- When columns of \boldsymbol{X} are approximately orthonormal [Fang-Wang 20],

$$
\mu=\rho_{\gamma}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\boldsymbol{X}^{\top} \boldsymbol{X}}\right),
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathbb{N}(0,1)}\left[\sigma^{\prime}(\xi)\right], \quad \mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

- From [LLC 18] and a first order approximation $\boldsymbol{\Phi} \approx\left(1-b_{\sigma}^{2}\right) \mathbf{I}+b_{\sigma}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}$.
- Can be extended to L layers. Approximate orthogonality propagates through the nonlinear map $\boldsymbol{X}_{\ell-1} \rightarrow \boldsymbol{X}_{\ell}=\frac{1}{\sqrt{d_{\ell}}} \sigma\left(\boldsymbol{W} \boldsymbol{X}_{\ell-1}\right)$.

Conjugate kernel, approximately orthonormal data

- When columns of \boldsymbol{X} are approximately orthonormal [Fang-Wang 20],

$$
\mu=\rho_{\gamma}^{\mathrm{MP}} \boxtimes\left(\left(1-b_{\sigma}^{2}\right)+b_{\sigma}^{2} \cdot \mu_{\boldsymbol{X}^{\top} \boldsymbol{X}}\right),
$$

where $b_{\sigma}=\mathbb{E}_{\xi \sim \mathbb{N}(0,1)}\left[\sigma^{\prime}(\xi)\right], \quad \mathbb{E}[\sigma(\xi)]=0, \mathbb{E}\left[\sigma(\xi)^{2}\right]=1$.

- From [LLC 18] and a first order approximation $\boldsymbol{\Phi} \approx\left(1-b_{\sigma}^{2}\right) \mathbf{I}+b_{\sigma}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}$.
- Can be extended to L layers. Approximate orthogonality propagates through the nonlinear map $\boldsymbol{X}_{\ell-1} \rightarrow \boldsymbol{X}_{\ell}=\frac{1}{\sqrt{d_{\ell}}} \sigma\left(\boldsymbol{W} \boldsymbol{X}_{\ell-1}\right)$.
- $L=1, N \gg n$, deformed semicircle law for \boldsymbol{Y} [Wang-Z. 24]. Training and generalization error with deterministic data [Wang-Z. 23, Latourelle-Vigeant Paquette 23].

Spectrum of conjugate kernels: random data

- Universality [Benigni-Péché 19], i.i.d. entries in $\boldsymbol{X}, \boldsymbol{W}$ with mean zero, variance 1 , general distributions, σ analytic.
- The limiting spectral distribution depends on

$$
\theta_{1}(\sigma)=\mathbb{E}_{\xi \sim N(0,1)}\left[\sigma^{2}(\xi)\right], \quad \theta_{2}(\sigma)=\left(\mathbb{E}_{\xi \sim N(0,1)}\left[\sigma^{\prime}(\xi)\right]\right)^{2} .
$$

- Same as the limiting ESD of an information-plus-noise matrix:

$$
\boldsymbol{M}=\frac{1}{N}\left(\frac{\sqrt{\theta_{2}}}{\sqrt{d}} \boldsymbol{W} \boldsymbol{X}+\sqrt{\theta_{1}-\theta_{2}} \boldsymbol{z}\right)\left(\frac{\sqrt{\theta_{2}}}{\sqrt{d}} \boldsymbol{W} \boldsymbol{X}+\sqrt{\theta_{1}-\theta_{2}} \boldsymbol{z}\right)^{\top}
$$

where $\boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Z}$ are Gaussian with i.i.d. entries. (Gaussian Equivalence)

Spectrum of conjugate kernels: random data

- Universality [Benigni-Péché 19], i.i.d. entries in $\boldsymbol{X}, \boldsymbol{W}$ with mean zero, variance 1 , general distributions, σ analytic.
- The limiting spectral distribution depends on

$$
\theta_{1}(\sigma)=\mathbb{E}_{\xi \sim N(0,1)}\left[\sigma^{2}(\xi)\right], \quad \theta_{2}(\sigma)=\left(\mathbb{E}_{\xi \sim N(0,1)}\left[\sigma^{\prime}(\xi)\right]\right)^{2} .
$$

- Same as the limiting ESD of an information-plus-noise matrix:

$$
\boldsymbol{M}=\frac{1}{N}\left(\frac{\sqrt{\theta_{2}}}{\sqrt{d}} \boldsymbol{W} \boldsymbol{X}+\sqrt{\theta_{1}-\theta_{2}} \boldsymbol{z}\right)\left(\frac{\sqrt{\theta_{2}}}{\sqrt{d}} \boldsymbol{W} \boldsymbol{X}+\sqrt{\theta_{1}-\theta_{2}} \boldsymbol{z}\right)^{\top}
$$

where $\boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Z}$ are Gaussian with i.i.d. entries. (Gaussian Equivalence)

- Outliers depending on Hermite coefficients similar to [Fan-Montanari 19].
- Extension to L layers: when $\theta_{2}(\sigma)=0, \mu_{L}$ is Marchenko-Pastur.

Spectrum of conjugate kernels: random data

- Universality [Benigni-Péché 19], i.i.d. entries in $\boldsymbol{X}, \boldsymbol{W}$ with mean zero, variance 1 , general distributions, σ analytic.
- The limiting spectral distribution depends on

$$
\theta_{1}(\sigma)=\mathbb{E}_{\xi \sim N(0,1)}\left[\sigma^{2}(\xi)\right], \quad \theta_{2}(\sigma)=\left(\mathbb{E}_{\xi \sim N(0,1)}\left[\sigma^{\prime}(\xi)\right]\right)^{2} .
$$

- Same as the limiting ESD of an information-plus-noise matrix:

$$
\boldsymbol{M}=\frac{1}{N}\left(\frac{\sqrt{\theta_{2}}}{\sqrt{d}} \boldsymbol{W} \boldsymbol{X}+\sqrt{\theta_{1}-\theta_{2}} \boldsymbol{z}\right)\left(\frac{\sqrt{\theta_{2}}}{\sqrt{d}} \boldsymbol{W} \boldsymbol{X}+\sqrt{\theta_{1}-\theta_{2}} \boldsymbol{Z}\right)^{\top}
$$

where $\boldsymbol{W}, \boldsymbol{X}, \boldsymbol{Z}$ are Gaussian with i.i.d. entries. (Gaussian Equivalence)

- Outliers depending on Hermite coefficients similar to [Fan-Montanari 19].
- Extension to L layers: when $\theta_{2}(\sigma)=0, \mu_{L}$ is Marchenko-Pastur.
- Matched with [Fan-Wang 20] if $\boldsymbol{X} \boldsymbol{X}^{\top}$ has a Marchenko-Pastur distribution.

Question: a unified proof for two types of conditions on σ and W ?

Spectrum of conjugate kernels, random data

Figure: [Benigni-Péché 21]

Neural tangent kernel

$$
\begin{aligned}
K^{\mathrm{NTK}} & :=\left(\nabla_{\theta} f_{\theta}(X)\right)^{\top}\left(\nabla_{\theta} f_{\theta}(X)\right) \in \mathbb{R}^{n \times n} \\
& =X_{L}^{\top} X_{L}+\sum_{\ell=1}^{L}\left(S_{\ell}^{\top} S_{\ell}\right) \odot\left(X_{\ell-1}^{\top} X_{\ell-1}\right)
\end{aligned}
$$

When $L=1$,

$$
K^{\mathrm{NTK}}=X_{1}^{\top} X_{1}+X^{\top} X \odot\left(\frac{1}{d_{1}} \sigma^{\prime}(W X)^{\top} \operatorname{diag}(\mathbf{w})^{2} \sigma^{\prime}(W X)\right)
$$

- Training errors evolved during gradient descent is governed by $K^{\text {NTK }}$. For $d_{1} \rightarrow \infty$ and fixed $n, K^{\text {NTK }}$ converges to its expectation and is fixed over training in the infinite width limit.
- The smallest singular value of K^{NTK} controls the global convergence of gradient descent.
[Jacot, Gabriel, Hongler 18], [Chizat et al 18], [Du et al 19], [Allen-Zhu et al 19], [Lee et al 19], [Arora et al 19],
[Oymak-Soltanolkotabi 20], [Adlam et al 20], [Fan, Wang 20], [Montanari Zhong 22], [Bombari-Amani-Mondelli 22] ...

Random feature regression

A two-layer neural network $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at random initialization

$$
f(\boldsymbol{x})=\frac{1}{\sqrt{n}} \boldsymbol{\theta}^{\top} \sigma(\boldsymbol{W} \boldsymbol{x})=\frac{1}{\sqrt{n}} \sum_{i=1}^{N} \boldsymbol{\theta}_{i} \sigma\left(\boldsymbol{w}_{i}^{\top} \boldsymbol{x}\right)
$$

$\boldsymbol{W}=\left[\begin{array}{c}\boldsymbol{w}_{1}^{\top} \\ \vdots \\ \boldsymbol{w}_{N}^{\top}\end{array}\right] \in \mathbb{R}^{N \times d}:$ weight matrix with i.i.d. $N(0,1)$ entries.

- Training the output layer weight= linear regression with respect to random features $\phi\left(\boldsymbol{x}_{i}\right)=\sigma\left(\boldsymbol{W}_{\boldsymbol{x}_{i}}\right) \in \mathbb{R}^{N}$.
[Ghorbani-Mei-Misiakiewicz-Montanari 21, Mei-Montanari 22, Misiakiewicz 22, Hu-Lu 22, Montanari-Zhong 22],...

Random feature ridge regression (RFRR)

Training data $\left(\boldsymbol{x}_{i}, y_{i}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right), y_{i}=f_{*}\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}$.

- The loss function is defined by

$$
L(\boldsymbol{\theta})=\frac{1}{n}\|f(\boldsymbol{X})-\boldsymbol{y}\|^{2}+\frac{\lambda}{n}\|\boldsymbol{\theta}\|^{2}
$$

- Then the optimal predictor for RFRR is given by

$$
\hat{f}_{\lambda}^{(\mathrm{RF})}(\boldsymbol{x})=\boldsymbol{K}_{N}(\boldsymbol{x}, \boldsymbol{X})\left(\boldsymbol{K}_{N}+\lambda \mathrm{Id}\right)^{-1} \boldsymbol{y}
$$

where K_{N} is the empirical conjugate kernel matrix:

$$
\boldsymbol{K}_{N}=\frac{1}{N} \sigma(\boldsymbol{W} \boldsymbol{X})^{\top} \sigma(\boldsymbol{W} \boldsymbol{X}) \in \mathbb{R}^{n \times n}
$$

Random feature ridge regression (RFRR)

Training data $\left(\boldsymbol{x}_{i}, y_{i}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right), y_{i}=f_{*}\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}$.

- The loss function is defined by

$$
L(\boldsymbol{\theta})=\frac{1}{n}\|f(\boldsymbol{X})-\boldsymbol{y}\|^{2}+\frac{\lambda}{n}\|\boldsymbol{\theta}\|^{2}
$$

- Then the optimal predictor for RFRR is given by

$$
\hat{f}_{\lambda}^{(\mathrm{RF})}(\boldsymbol{x})=\boldsymbol{K}_{N}(\boldsymbol{x}, \boldsymbol{X})\left(\boldsymbol{K}_{N}+\lambda \mathrm{ld}\right)^{-1} \boldsymbol{y}
$$

where K_{N} is the empirical conjugate kernel matrix:

$$
\boldsymbol{K}_{N}=\frac{1}{N} \sigma(\boldsymbol{W} \boldsymbol{X})^{\top} \sigma(\boldsymbol{W} \boldsymbol{X}) \in \mathbb{R}^{n \times n}
$$

- Training error:

$$
E_{\mathrm{train}}^{(R F, \lambda)}:=\frac{1}{n}\left\|\hat{f}_{\lambda}^{(R F)}(\boldsymbol{X})-\mathbf{y}\right\|_{2}^{2}=\frac{\lambda^{2}}{n}\left\|\left(\boldsymbol{K}_{N}+\lambda \mathrm{Id}\right)^{-1} \mathbf{y}\right\|^{2}
$$

- Test/ generalization error: \boldsymbol{x} sampled from the same distribution as training data,

$$
\mathcal{R}(\hat{f}):=\mathbb{E}_{\mathbf{x}}\left[\left|\hat{f}(\mathbf{x})-f^{*}(\mathbf{x})\right|^{2}\right] .
$$

Double descent for generalization error

[Mei-Montanari 22] (informal):

- Assume $\boldsymbol{w}_{i}, \boldsymbol{x}_{i}$ are i.i.d. uniformly distributed on $\mathbb{S}^{d-1}, y_{i}=\left\langle\boldsymbol{\beta}, \boldsymbol{x}_{i}\right\rangle+\varepsilon_{i}$.
- $N / d \rightarrow \psi_{1}, n / d \rightarrow \psi_{2}, \lim _{n} \mathcal{R}(\hat{f})$ is a function of $\lambda, \psi_{1}, \psi_{2}$ and other model parameters.

Question: Universality for general weights/data distributions?

Kernel ridge regression

- Consider the empirical Risk Minimization (ERM)

$$
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{H}}
$$

where $\lambda \geq 0$ and \mathcal{H} is the Reproducing Kernel Hilbert Space for $k(\cdot, \cdot)$.

- Kernel ridge regression's predictor:

$$
\hat{f}_{\lambda}^{(\mathrm{K})}(\boldsymbol{x})=\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{X})(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X})+\lambda \mathrm{ld})^{-1} \boldsymbol{y}
$$

where $\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{X})=\left[k\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right), \ldots, k\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right)\right]$ and $(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}))_{i, j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ for $1 \leq i, j \leq n$ and $\boldsymbol{x}, \boldsymbol{x}_{i} \in \mathbb{R}^{d}$.

Kernel ridge regression

- Consider the empirical Risk Minimization (ERM)

$$
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{H}}
$$

where $\lambda \geq 0$ and \mathcal{H} is the Reproducing Kernel Hilbert Space for $k(\cdot, \cdot)$.

- Kernel ridge regression's predictor:

$$
\hat{f}_{\lambda}^{(K)}(\boldsymbol{x})=\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{X})(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X})+\lambda \mathrm{ld})^{-1} \boldsymbol{y}
$$

where $\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{X})=\left[k\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right), \ldots, k\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right)\right]$ and $(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}))_{i, j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ for $1 \leq i, j \leq n$ and $\boldsymbol{x}, \boldsymbol{x}_{i} \in \mathbb{R}^{d}$.

- When $N \gg n$, random feature regression can be approximated by KRR.

Kernel ridge regression

- Consider the empirical Risk Minimization (ERM)

$$
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{H}}
$$

where $\lambda \geq 0$ and \mathcal{H} is the Reproducing Kernel Hilbert Space for $k(\cdot, \cdot)$.

- Kernel ridge regression's predictor:

$$
\hat{f}_{\lambda}^{(K)}(\boldsymbol{x})=\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{X})(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X})+\lambda \mathrm{ld})^{-1} \boldsymbol{y}
$$

where $\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{X})=\left[k\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right), \ldots, k\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right)\right]$ and $(\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}))_{i, j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ for $1 \leq i, j \leq n$ and $\boldsymbol{x}, \boldsymbol{x}_{i} \in \mathbb{R}^{d}$.

- When $N \gg n$, random feature regression can be approximated by KRR.
[Bartlett-Montanari-Rakhlin 21]: For $\boldsymbol{K}_{i j}=f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{j}}\right\rangle / d\right), n \asymp d, \mathrm{KRR}$ is asymptotically equivalent to linear ridge regression with a different ridge parameter.
proved for subgaussian data \boldsymbol{x}_{i} with general covariance $\boldsymbol{\Sigma}$.

Beyond $n \asymp d$, polynomial regime $n \asymp d^{k}$

Beyond $n \asymp d$, polynomial regime $n \asymp d^{k}$

- A simple example: when $f(x)=x^{k}, \boldsymbol{K}\left(x_{i}, x_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle^{k}=\left\langle\boldsymbol{x}_{i}^{\otimes k}, \boldsymbol{x}_{j}^{\otimes k}\right\rangle$.
- Let $\boldsymbol{Y}=\left[\boldsymbol{x}_{1}^{\otimes k}, \cdots, \boldsymbol{x}_{n}^{\otimes k}\right] \in \mathbb{R}^{d^{k} \times n}$. Then $\boldsymbol{K}=\boldsymbol{Y}^{\top} \boldsymbol{Y}$ has a Marchenko-Pastur law when $n \asymp d^{k}$ [Yaskov 23]. Connection to random tensor models [Bryson-Vershynin-Zhao 21].

Beyond $n \asymp d$, polynomial regime $n \asymp d^{k}$

- A simple example: when $f(x)=x^{k}, \boldsymbol{K}\left(x_{i}, x_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle^{k}=\left\langle\boldsymbol{x}_{i}^{\otimes k}, \boldsymbol{x}_{j}^{\otimes k}\right\rangle$.
- Let $\boldsymbol{Y}=\left[\boldsymbol{x}_{1}^{\otimes k}, \cdots, \boldsymbol{x}_{n}^{\otimes k}\right] \in \mathbb{R}^{d^{k} \times n}$. Then $\boldsymbol{K}=\boldsymbol{Y}^{\top} \boldsymbol{Y}$ has a Marchenko-Pastur law when $n \asymp d^{k}$ [Yaskov 23]. Connection to random tensor models [Bryson-Vershynin-Zhao 21].

Universality [Lu-Yau 22, Dubova-Lu-McKenna-Yau 23]

$f(x)=\sum_{k=0}^{L} c_{k} h_{k}(x) . \boldsymbol{K}_{i j}=\frac{1}{\sqrt{n}} f\left(\frac{1}{\sqrt{d}}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right) \mathbf{1}\{i \neq j\} . \frac{n}{d^{\ell}} \rightarrow \kappa>0 . \boldsymbol{x}_{i}$ has i.i.d. entries with all finite moments.

- When ℓ is an integer, the limiting law is the free convolution of the semicirle law and Marchenko-Pastur law.
- When ℓ is not an integer, the limiting law is semicircle.

Beyond $n \asymp d$, polynomial regime $n \asymp d^{k}$

- A simple example: when $f(x)=x^{k}, \boldsymbol{K}\left(x_{i}, x_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle^{k}=\left\langle\boldsymbol{x}_{i}^{\otimes k}, \boldsymbol{x}_{j}^{\otimes k}\right\rangle$.
- Let $\boldsymbol{Y}=\left[\boldsymbol{x}_{1}^{\otimes k}, \cdots, \boldsymbol{x}_{n}^{\otimes k}\right] \in \mathbb{R}^{d^{k} \times n}$. Then $\boldsymbol{K}=\boldsymbol{Y}^{\top} \boldsymbol{Y}$ has a Marchenko-Pastur law when $n \asymp d^{k}$ [Yaskov 23]. Connection to random tensor models [Bryson-Vershynin-Zhao 21].

Universality [Lu-Yau 22, Dubova-Lu-McKenna-Yau 23]

$f(x)=\sum_{k=0}^{L} c_{k} h_{k}(x) . \boldsymbol{K}_{i j}=\frac{1}{\sqrt{n}} f\left(\frac{1}{\sqrt{d}}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right) \mathbf{1}\{i \neq j\} . \frac{n}{d^{\ell}} \rightarrow \kappa>0 . \boldsymbol{x}_{i}$ has i.i.d. entries with all finite moments.

- When ℓ is an integer, the limiting law is the free convolution of the semicirle law and Marchenko-Pastur law.
- When ℓ is not an integer, the limiting law is semicircle.

Beyond $n \asymp d$, polynomial regime $n \asymp d^{k}$

- A simple example: when $f(x)=x^{k}, \boldsymbol{K}\left(x_{i}, x_{j}\right)=\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle^{k}=\left\langle\boldsymbol{x}_{i}^{\otimes k}, \boldsymbol{x}_{j}^{\otimes k}\right\rangle$.
- Let $\boldsymbol{Y}=\left[\boldsymbol{x}_{1}^{\otimes k}, \cdots, \boldsymbol{x}_{n}^{\otimes k}\right] \in \mathbb{R}^{d^{k} \times n}$. Then $\boldsymbol{K}=\boldsymbol{Y}^{\top} \boldsymbol{Y}$ has a Marchenko-Pastur law when $n \asymp d^{k}$ [Yaskov 23]. Connection to random tensor models [Bryson-Vershynin-Zhao 21].

Universality [Lu-Yau 22, Dubova-Lu-McKenna-Yau 23]

$f(x)=\sum_{k=0}^{L} c_{k} h_{k}(x) . \boldsymbol{K}_{i j}=\frac{1}{\sqrt{n}} f\left(\frac{1}{\sqrt{d}}\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right) \mathbf{1}\{i \neq j\} . \frac{n}{d^{\ell}} \rightarrow \kappa>0 . \boldsymbol{x}_{i}$ has i.i.d. entries with all finite moments.

- When ℓ is an integer, the limiting law is the free convolution of the semicirle law and Marchenko-Pastur law.
- When ℓ is not an integer, the limiting law is semicircle.
heuristics: When $\ell \in \mathbb{Z}, \boldsymbol{K}=\sum_{i=1}^{L} a_{i} \boldsymbol{K}_{i}$, each \boldsymbol{K}_{i} approximately independent. $\sum_{i=1}^{\ell-1} \boldsymbol{K}_{i}$ is low-rank, \boldsymbol{K}_{ℓ} has a Marchenko-Pastur law, $\sum_{i=\ell+1}^{L} a_{i} \boldsymbol{K}_{i}$ has a semicircle law.

Kernel regression in the polynomial regime

[Xiao-Hu-Misiakiewicz-Lu-Pennington 22]

- When $n \asymp d^{\ell}, \ell \in \mathbb{Z}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ i.i.d. uniformly on \mathbb{S}^{d-1}.
- $\boldsymbol{K}_{i j}=f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right)$. Different scaling compared to [LY22, DLMY23]. \boldsymbol{K} has a Marchenko-Pastur law. Generalization of [El Karoui 10].

Kernel regression in the polynomial regime

[Xiao-Hu-Misiakiewicz-Lu-Pennington 22]

- When $n \asymp d^{\ell}, \ell \in \mathbb{Z}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ i.i.d. uniformly on \mathbb{S}^{d-1}.
- $\boldsymbol{K}_{i j}=f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right)$. Different scaling compared to [LY22, DLMY23]. \boldsymbol{K} has a Marchenko-Pastur law. Generalization of [El Karoui 10].
- Multiple decents in the generalization error. (Informally) if $y_{i}=f_{*}\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}$, KRR with $n \asymp d^{\ell}$ many samples can learn the first ℓ-th degree components of f_{*}.

Kernel regression in the polynomial regime

[Xiao-Hu-Misiakiewicz-Lu-Pennington 22]

- When $n \asymp d^{\ell}, \ell \in \mathbb{Z}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ i.i.d. uniformly on \mathbb{S}^{d-1}.
- $\boldsymbol{K}_{i j}=f\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle\right)$. Different scaling compared to [LY22, DLMY23]. \boldsymbol{K} has a Marchenko-Pastur law. Generalization of [El Karoui 10].
- Multiple decents in the generalization error. (Informally) if $y_{i}=f_{*}\left(\boldsymbol{x}_{i}\right)+\varepsilon_{i}$, KRR with $n \asymp d^{\ell}$ many samples can learn the first ℓ-th degree components of f_{*}.

- Random feature regression $N \asymp d^{\kappa_{1}}, n \asymp d^{\kappa_{2}}$ [Hu-Lu-Misiakiewicz 24].

Nonlinear spiked model

- Spiked Wigner model $\boldsymbol{Y}=\frac{1}{\sqrt{n}} \boldsymbol{A}+\frac{\gamma}{n} \boldsymbol{x x}^{\top}$, BBP transition at $|\gamma|=1$. [Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].

Nonlinear spiked model

- Spiked Wigner model $\boldsymbol{Y}=\frac{1}{\sqrt{n}} \boldsymbol{A}+\frac{\gamma}{n} \boldsymbol{x \boldsymbol { x } ^ { \top }}$, BBP transition at $|\gamma|=1$. [Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].
- Nonlinear spiked Wigner model [Guionnet-Ko-Krzakala-Mergny-Zdebrová 23]

$$
\boldsymbol{Y}=\frac{1}{\sqrt{n}}\left[f\left(\boldsymbol{Z}+\frac{\gamma(n)}{\sqrt{n}} \boldsymbol{x} \boldsymbol{x}^{\top}\right)-\mathbb{E} f(\boldsymbol{Z})\right] .
$$

Nonlinear spiked model

- Spiked Wigner model $\boldsymbol{Y}=\frac{1}{\sqrt{n}} \boldsymbol{A}+\frac{\gamma}{n} \boldsymbol{x} \boldsymbol{x}^{\top}$, BBP transition at $|\gamma|=1$. [Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].
- Nonlinear spiked Wigner model [Guionnet-Ko-Krzakala-Mergny-Zdebrová 23]

$$
\boldsymbol{Y}=\frac{1}{\sqrt{n}}\left[f\left(\boldsymbol{Z}+\frac{\gamma(n)}{\sqrt{n}} \boldsymbol{x} \boldsymbol{x}^{\top}\right)-\mathbb{E} f(\boldsymbol{Z})\right] .
$$

When \boldsymbol{Z} is Gaussian, \boldsymbol{x} is random, phase transition of spikes happens at

$$
\gamma(n) \asymp n^{\frac{1}{2}\left(1-\frac{1}{k_{*}}\right)},
$$

where k_{*} is the degree of the first nonzero hermite polynomial in the expansion of f. $k_{*}=1$ when f is linear.

Nonlinear spiked model

- Spiked Wigner model $\boldsymbol{Y}=\frac{1}{\sqrt{n}} \boldsymbol{A}+\frac{\gamma}{n} \boldsymbol{x} \boldsymbol{x}^{\top}$, BBP transition at $|\gamma|=1$. [Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].
- Nonlinear spiked Wigner model [Guionnet-Ko-Krzakala-Mergny-Zdebrová 23]

$$
\boldsymbol{Y}=\frac{1}{\sqrt{n}}\left[f\left(\boldsymbol{Z}+\frac{\gamma(n)}{\sqrt{n}} \boldsymbol{x} \boldsymbol{x}^{\top}\right)-\mathbb{E} f(\boldsymbol{Z})\right] .
$$

When \boldsymbol{Z} is Gaussian, \boldsymbol{x} is random, phase transition of spikes happens at

$$
\gamma(n) \asymp n^{\frac{1}{2}\left(1-\frac{1}{k_{*}}\right)},
$$

where k_{*} is the degree of the first nonzero hermite polynomial in the expansion of $f . k_{*}=1$ when f is linear.

- Nonlinear spiked covariance model and connection to neural networks [Ba-Erdogdu-Suzuki-Wang-Wu 23, Wang-Wu-Fan 24].

Other topics

- Feature learning with gradient descent [Ba-Murat-Erdogdu-Suzuki-Wang-Wu-Yang 22]
- Spectrum of empirical Hessian after SGD [Ben Arous-Gheissari-Huang-Jagannath 23]
- Generalization error of SGD in high dimensions
[Paquette-Paquette-Adlam-Pennington 22]
- Gaussian equivalence [Hu-Lu 22], [Goldt-Loureiro-Reeves-Krzakala-Mzard-Zdeborová 21], [Montanari-Ruan-Saeed-Sohn 23],...
- Benign overfitting [Bartlett-Long-Lugosi-Tsigler 20], [Tsigler-Bartlett 23], [Koehler-Zhou-Sutherland-Srebro 21],...

Random geometric graphs $G(n, d, p)$

- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ sampled i.i.d. uniformly on \mathbb{S}^{d-1}.
- (i, j) are connected if $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau$. Choose $\tau=\tau(p, d)$ to match the edge density of a $G(n, p)$.

Random geometric graphs $G(n, d, p)$

- $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ sampled i.i.d. uniformly on \mathbb{S}^{d-1}.
- (i, j) are connected if $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau$. Choose $\tau=\tau(p, d)$ to match the edge density of a $G(n, p)$.
- Adjacency matrix $A_{i j}=\mathbf{1}\left\{\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau\right\}$: random kernel matrix with $f(x)=\mathbf{1}\{x \geq \tau\}$.

Random geometric graphs $G(n, d, p)$

- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ sampled i.i.d. uniformly on \mathbb{S}^{d-1}.
- (i, j) are connected if $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau$. Choose $\tau=\tau(p, d)$ to match the edge density of a $G(n, p)$.
- Adjacency matrix $A_{i j}=\mathbf{1}\left\{\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau\right\}$: random kernel matrix with $f(x)=\mathbf{1}\{x \geq \tau\}$.

When do random geometric graphs lose geometry?

Random geometric graphs $G(n, d, p)$

- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ sampled i.i.d. uniformly on \mathbb{S}^{d-1}.
- (i,j) are connected if $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau$. Choose $\tau=\tau(p, d)$ to match the edge density of a $G(n, p)$.
- Adjacency matrix $A_{i j}=\mathbf{1}\left\{\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau\right\}$: random kernel matrix with $f(x)=\mathbf{1}\{x \geq \tau\}$.

When do random geometric graphs lose geometry?

Theorem (Bubeck-Ding-Eldan-Rácz 16)

Let $p \in(0,1)$ be fixed.

- When $d \gg n^{3}, \operatorname{TV}(G(n, p), G(n, p, d)) \rightarrow 0$.
- When $d \ll n^{3}, \operatorname{TV}(G(n, p), G(n, p, d)) \rightarrow 1$.

Random geometric graphs $G(n, d, p)$

- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ sampled i.i.d. uniformly on \mathbb{S}^{d-1}.
- (i, j) are connected if $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau$. Choose $\tau=\tau(p, d)$ to match the edge density of a $G(n, p)$.
- Adjacency matrix $A_{i j}=\mathbf{1}\left\{\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \geq \tau\right\}$: random kernel matrix with $f(x)=\mathbf{1}\{x \geq \tau\}$.

When do random geometric graphs lose geometry?

Theorem (Bubeck-Ding-Eldan-Rácz 16)

Let $p \in(0,1)$ be fixed.

- When $d \gg n^{3}, \operatorname{TV}(G(n, p), G(n, p, d)) \rightarrow 0$.
- When $d \ll n^{3}, \operatorname{TV}(G(n, p), G(n, p, d)) \rightarrow 1$.

Connected to TV distance between $\operatorname{GOE}(n)$ and $\operatorname{Wishart}(n, d)$ [Jiang-Li 15]. Detect local dependence by counting signed triangles.

Random geometric graphs $G(n, d, p)$

- Question: Sparse regime $p=\frac{c}{n}$. $d \asymp \log ^{3}(n)$ is the conjectured threshold in [BDER16].
- $p=\frac{c}{n}$: distinguishable when $d \ll \log ^{3}(n)$ [BDER 16], indistinguishable when $c>1, d \gg \log ^{36}(n)$ [Liu-Mohanty-Schramm-Yang 22].

Random geometric graphs $G(n, d, p)$

- Question: Sparse regime $p=\frac{c}{n}$. $d \asymp \log ^{3}(n)$ is the conjectured threshold in [BDER16].
- $p=\frac{c}{n}$: distinguishable when $d \ll \log ^{3}(n)$ [BDER 16], indistinguishable when $c>1, d \gg \log ^{36}(n)$ [Liu-Mohanty-Schramm-Yang 22].
- Spectral gap of \boldsymbol{A} in certain regimes [Liu-Mohanty-Schramm-Yang 22, Bagachev-Bresler 24].

Random geometric graphs $G(n, d, p)$

- Question: Sparse regime $p=\frac{c}{n}$. $d \asymp \log ^{3}(n)$ is the conjectured threshold in [BDER16].
- $p=\frac{c}{n}$: distinguishable when $d \ll \log ^{3}(n)$ [BDER 16], indistinguishable when $c>1, d \gg \log ^{36}(n)$ [Liu-Mohanty-Schramm-Yang 22].
- Spectral gap of \boldsymbol{A} in certain regimes [Liu-Mohanty-Schramm-Yang 22, Bagachev-Bresler 24].
- Geometric block model: $\boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{n}$ are drawn from a Gaussian mixture [Li-Schramm 24]. Testing geometry, community recovery/clustering.

Conclusions

- In the proportional regime $n \asymp d$, a nonlinear random matrix model behaves like another linear random matrix model.
- A polynomial regime $n \asymp d^{\ell}$ appears for nonlinear models, new phenomena in the spectrum and regression performance.
- Question: Universality and structured data for generalization error.
- Question: spectrum of geometric random graphs.

