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Nonlinear matrix models

Nonlinear random matrix: an entry-wise nonlinear function applied to a given
random matrix
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Nonlinear matrix models

Nonlinear random matrix: an entry-wise nonlinear function applied to a given
random matrix

o Kernel matrix K, K(x;, x;) = k(x;, x;). e.g., Kij = f({x;, x;)), f(||xi — x;||).
Kernel PCA, kernel SVM, kernel regression.

@ Kernel matrices from neural networks.

@ Random graphs from nonlinear random matrices.
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Random inner product matrix, proportional regime

Random data xy,...,x, € R, mean zero, variance 1. d/n— .

Random inner product kernel matrix

K___{}f(ﬂxnxﬁ) i#]
o i=j.

x; Gaussian [Cheng-Singer 13], universality [Do-Vu 13].

a=Econonléf(€)], v=E[f(§)’. E[f(§)]=0.
Limiting spectral distribution of K:

a(pmpy — 1) By H v — %) pisc.

f(x) = x, v = a?, Marchenko-Pastur law.

a = 0, semicircle.

May 28, 2024
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Concentration

[Fan-Montanari 19] Hermite expansion of f(x):
o0
F(x) =Y aihi(x),
i=1

hi(x) normalized hermite polynomials. Decomposition

o
K= Z a;K;.
i=1

a1 Ki has a Marchenko-Pastur law, 2722 a;K; has a semicircle law.

@ x; Gaussian, f is odd, f(x) = —f(x). ||K]|| converges to the edge of the
limiting spectrum.

@ Non-asymptotic bound on ||K||.

@ General distribution x;, possible outliers depending on E[x}] and a,.
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A different scaling, proportional regime

Kj="f (%(x;,xJ?) :



A different scaling, proportional regime

Theorem (Operator norm approximation, El Karoui 10)

Let ¥ = Exx . Assume z = X~Y/2x has independent entries with zero mean
and unit variance, where E |z;|*"" < M, || Z|| < M, ™= — 7. With high
probability, when n,d — oo proportionally,

T

HK — Co].].—r —C XX — C2|,-,

=o0(1), where

11 2
o =F(0)+ CQTED o =F(0), o =r(TE)-r(0)-r(0)R.

— Marchenko-Pastur law for K.
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[El Karoui 10]: Taylor expansion
_ o X X))
o (),

~ 0. Taylor expansion at 0,

When n =< d,

(xi 7xj>

o Off-diagonal:

(29 ~ royer) s B (<X’;1"f>)2+f"’é<"f) (<""&XJ‘>)3.

@ Diagonal: % & % = 7. Taylor expansion at 7,
f <<Xi;/Xi>> ~ (1) + (i) <(x,-(,1x,-> - 7') .
@ Control error terms: ||K — 11T + ¢; XX~ 4 alp|l = o(1).

e 4 44 May 28, 2024 6/ 24



[El Karoui 10]: Taylor expansion
_ o X X))
o (),

~ 0. Taylor expansion at 0,

(29 ~ royer) s B (<x’;1"f>)2+f"’é<"f) (<""&XJ‘>)3.

When n =< d,

(xi 7xj>

o Off-diagonal:

e Diagonal: % ~ % ~ 7. Taylor expansion at T,

, (<x;;/Xi>> ~ (1) + ' (Gi) <<Xi:in> - T) '

@ Control error terms: ||K — 11T + ¢; XX~ 4 alp|l = o(1).

@ K has a “low-rank+ bulk + regularizer” structure.
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Fully-connected neural network
Function fy : R® — R, x — fy(x), defined by

o W, e Rhxd W, e Rex4 | W, € RAxd-1 and w € R%. Training
parameters: 6 = (W, ..., W, w).

@ Training samples in a matrix: X = (xq,...,X,) € Rox".
@ o: activation function, e.g. % (Sigmoid), |x|, max(0,x) (ReLU).

o X, = ﬁa’(WeXe_l) S Rdexn' for1 <0< L.
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Conjugate kernel

K = X, X, e R™"

@ KK governs the properties of random feature regression or network with
only the output layer trained.

@ At random initialization, its limiting spectrum was studied when all d;/d;_1
and dy/n are proportional. [Pennington-Worah 17], [Benigni-Péché 19],
[Louart-Liao-Couillet 18], [Fan-Wang 20]
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Spectrum of conjugate kernels: deterministic data
L=1, Y= %U(WX)TO'(WX),
W e RV*d X e R>*". N/d — ai,n/d = az, N/n— 7.

@ Deterministic data X, W Gaussian, Lipschitz activation o. Row vectors of
o(WX) are independent. [Louart-Liao-Couillet 18]

@ Limiting spectral distribution of Y is pupp X pe, where g is the limiting
spectral distribution of

®=Ew[Y]=Eu[o(w'X) o(w'X)] € R™".

@ Same limiting ESD as a linear model +PTW ™ WP with PTP = @,
P c R*n,

@ Key step: concentration of random quadratic forms o(w' X)A o(w ™ X)"
for deterministic A.
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Conjugate kernel, approximately orthonormal data

@ When columns of X are approximately orthonormal [Fang-Wang 20],
= PQAP X ((1 - b))+ bi':uXTX)7

where by = E¢.nop)[o’(€)l,  El[o(§)] =0, E[o(£)?] = 1.
@ From [LLC 18] and a first order approximation ® ~ (1 — b2)l + b2XX .
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Conjugate kernel, approximately orthonormal data

@ When columns of X are approximately orthonormal [Fang-Wang 20],
= PMP X ((1 - b))+ bi'ﬂxTx)7

where b, = E¢no,)[0’(€)],  E[0(§)] =0, E[o(£)*] = 1.
@ From [LLC 18] and a first order approximation ® ~ (1 — b2)l + b2XX .
@ Can be extended to L layers. Approximate orthogonality propagates through

the nonlinear map Xy,_; — X, = ﬁU(WXE_l).
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Conjugate kernel, approximately orthonormal data

@ When columns of X are approximately orthonormal [Fang-Wang 20],
= PMP X ((1 - b2)+ bi'ﬂxTx),

where by = B¢ nio,p)[o’ ()], E[o(¢)] =0, E[o(§)°] = 1.
@ From [LLC 18] and a first order approximation ® = (1 — b2)I + b2 XX .

@ Can be extended to L layers. Approximate orthogonality propagates through

the nonlinear map X;,_1 — X, = ﬁU(WXE_l).

@ L =1, N> n, deformed semicircle law for Y [Wang-Z. 24]. Training and
generalization error with deterministic data [Wang-Z. 23, Latourelle-Vigeant
Paquette 23].
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Spectrum of conjugate kernels: random data

@ Universality [Benigni—Péché 19], i.i.d. entries in X, W with mean zero, variance 1,
general distributions, o analytic.

@ The limiting spectral distribution depends on
2
01(0) = Eeunon[0®(€)],  02(0) = (Bemnon[o’(€)])" -

@ Same as the limiting ESD of an information-plus-noise matrix:

M= % (\/—\/?WXJM/HZ) (‘/—\/?WXJF\/WZ)T,

where W, X, Z are Gaussian with i.i.d. entries. (Gaussian Equivalence)
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Spectrum of conjugate kernels: random data

@ Universality [Benigni—Péché 19], i.i.d. entries in X, W with mean zero, variance 1,
general distributions, o analytic.

@ The limiting spectral distribution depends on
01(0) = Eeanon[o*(©)],  02(0) = (Bemniomlo’(€)])"

@ Same as the limiting ESD of an information-plus-noise matrix:

M — % (\%Wx+mz) <\/\/§WX+mZ)T,

where W, X, Z are Gaussian with i.i.d. entries. (Gaussian Equivalence)
@ Outliers depending on Hermite coefficients similar to [Fan-Montanari 19].

@ Extension to L layers: when 6,(c) =0, p. is Marchenko-Pastur.
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Spectrum of conjugate kernels: random data

@ Universality [Benigni—Péché 19], i.i.d. entries in X, W with mean zero, variance 1,
general distributions, ¢ analytic.

@ The limiting spectral distribution depends on
01(0) = Eeanonlo*(©)],  02(0) = (Bemniolo'(€)])"

@ Same as the limiting ESD of an information-plus-noise matrix:

M — % (\%Wx+mz) <\/\/§WX+mZ)T,

where W, X, Z are Gaussian with i.i.d. entries. (Gaussian Equivalence)
@ Outliers depending on Hermite coefficients similar to [Fan-Montanari 19].
@ Extension to L layers: when 6,(c) =0, p. is Marchenko-Pastur.

@ Matched with [Fan-Wang 20] if XX has a Marchenko-Pastur distribution.

Question: a unified proof for two types of conditions on o and W ? }
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Spectrum of conjugate kernels, random data

(a) f(z)=tanh(z) (b) f(z)=max(z,0)

(¢) f(w)=cos(z) (@) f(z)=2" -3z

Figure: [Benigni-Péché 21]
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Neural tangent kernel

KNTK . —=(Vafy(X)) T (Vafa(X)) € R™"

L
=X Xe+ Y (S50 ® (XL Xem1)
(=1

When L =1,

1
KNTK =X"X + XTX © (d—o' (WX) " diag(w)2o’ (WX)) .
1
@ Training errors evolved during gradient descent is governed by KNTK. For
d1 — oo and fixed n, KNTK converges to its expectation and is fixed over
training in the infinite width limit.

@ The smallest singular value of KNTK

gradient descent.

controls the global convergence of

[Jacot, Gabriel, Hongler 18], [Chizat et al 18], [Du et al 19], [Allen-Zhu et al 19], [Lee et al 19], [Arora et al 19],
[Oymak-Soltanolkotabi 20], [Adlam et al 20], [Fan, Wang 20], [Montanari Zhong 22], [Bombari-Amani-Mondelli 22] ...
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Random feature regression

A two-layer neural network f : RY — R at random initialization

1
f(x):ﬁe o(Wx) = ZBJW x)
wy'
o W= | : | € RV*9: weight matrix with i.i.d. N(0,1) entries.
T
Wi

@ Training the output layer weight= linear regression with respect to random
features ¢(x;) = o(Wx;) € RV.

[Ghorbani-Mei-Misiakiewicz-Montanari 21, Mei-Montanari 22, Misiakiewicz 22, Hu-Lu
22, Montanari-Zhong 22],. ..
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Random feature ridge regression (RFRR)
Training data (x;, ¥i), ..., (Xn, ¥n), ¥i = fiu(x;) + €.

@ The loss function is defined by
1 A
L(6) = T 1F(X) ~ yI?+ 2 ll0]1
@ Then the optimal predictor for RFRR is given by
() = Ku(x, X)(Ky + Xid) 1y,

where Ky is the empirical conjugate kernel matrix:

1
Ky = NU(WX)T o (WX) € R™",

L ) 25, 2
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Random feature ridge regression (RFRR)
Training data (x;, ¥i), ..., (Xn, ¥n), ¥i = fiu(x;) + €.
@ The loss function is defined by

1 A
L(8) = ~IF(X) — yI + 2101
@ Then the optimal predictor for RFRR is given by
FRF) (x) = Kn(x, X)(Kn + Ald) 1y,

where Ky is the empirical conjugate kernel matrix:

1
Ky = NU(WX)T o (WX) € R™",

@ Training error:

A

RF A 1, ~rF 2 _
= IR0 — vl = T (K + Ald) My

train n

® Test/ generalization error: x sampled from the same distribution as training
data,

R(F) = Ex[|F(x) = F*(x)].
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Double descent for generalization error

[Mei-Montanari 22] (informal):
@ Assume w;, x; are i.i.d. uniformly distributed on S771, y; = (B, x;) + €.

® N/d — y1,n/d — iy, lim, R(F) is a function of X, 11,1, and other model
parameters.

o
== logy(A) = o0

Test error
o
@

Question: Universality for general weights/data distributions? J
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Kernel ridge regression

@ Consider the empirical Risk Minimization (ERM)

n

1

in — i — F(xi))? fll
min £ S (0~ ()2 + A 7

i=1
where A > 0 and H is the Reproducing Kernel Hilbert Space for k(,-).
@ Kernel ridge regression’s predictor:
O (x) = K(x, X)(K(X, X) + Ald) "y,

where K(x, X) = [k(x,x1),...,k(x,x1)] and (K(X, X)) ; = k(xi, x;) for
1<i,j<nandx,x;cR9
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Kernel ridge regression
@ Consider the empirical Risk Minimization (ERM)

1 n
in — i — F(xi))? fll
min > (v = F(x))* + Allfll

i=1
where A > 0 and H is the Reproducing Kernel Hilbert Space for k(,-).

@ Kernel ridge regression’s predictor:
P9 (x) = K(x, X)(K(X, X) + Ald) 1y

where K(x, X) = [k(x, x1) k(x,x1)] and (K(X, X)) = k(xi, x;) for
lgi,jgnandxx,eR

@ When N > n, random feature regression can be approximated by KRR.
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Kernel ridge regression

@ Consider the empirical Risk Minimization (ERM)

n

o1
min — Z(y,- —f(x:))* + A 11l

feEH n <

i=1
where A > 0 and H is the Reproducing Kernel Hilbert Space for k(,-).
@ Kernel ridge regression’s predictor:
79 (x) = K(x, X)(K(X, X) + Ald) "y

where K(x, X) = [k(x, xl),... k(x,x1)] and (K(X, X))ij = k(xi, x;) for
lgi,jgnandxx,eR

@ When N > n, random feature regression can be approximated by KRR.
[Bartlett-Montanari-Rakhlin 21]: For Kjj = f({xi, x;)/d), n < d, KRR is

asymptotically equivalent to linear ridge regression with a different ridge
parameter.

proved for subgaussian data x; with general covariance X.
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Beyond n = d, polynomial regime n = d*

@ A simple example: when f(x) = x*, K(x;, %) = (x;,x;)¥ = (x®¥, x2k).

o Let Y = [xZK ... x| cR¥*" Then K =YY hasa
Marchenko-Pastur law when n =< d* [Yaskov 23]. Connection to random
tensor models [Bryson-Vershynin-Zhao 21].
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Beyond n = d, polynomial regime n =< d*

@ A simple example: when f(x) = x*, K(x;, %) = (x;,x;)¥ = (x®¥, x2k).

o Let Y = [xZK ... x®K cR¥*" Then K =YY hasa
Marchenko-Pastur law when n =< d* [Yaskov 23]. Connection to random
tensor models [Bryson-Vershynin-Zhao 21].

Universality [Lu-Yau 22, Dubova-Lu-McKenna-Yau 23]

F(x) = o chu(x). Kij = = (J5 (i )i # j}. 4 — 5 > 0. x; has i.id.
entries with all finite moments.

@ When ¢ is an integer, the limiting law is the free convolution of the semicirle
law and Marchenko-Pastur law.

@ When / is not an integer, the limiting law is semicircle.
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Beyond n = d, polynomial regime n =< d*

@ A simple example: when f(x) = x*, K(x;, %) = (x;,x;)¥ = (x®¥, x2k).

o Let Y = [xZK ... x®K cR¥*" Then K =YY hasa
Marchenko-Pastur law when n =< d* [Yaskov 23]. Connection to random
tensor models [Bryson-Vershynin-Zhao 21].

Universality [Lu-Yau 22, Dubova-Lu-McKenna-Yau 23]

F(x) = o chu(x). Kij = = (J5 (i )i # j}. 4 — 5 > 0. x; has i.id.
entries with all finite moments.

@ When ¢ is an integer, the limiting law is the free convolution of the semicirle
law and Marchenko-Pastur law.

@ When / is not an integer, the limiting law is semicircle.

heuristics: When £ € Z, K = Z,’L:1 a;K;, each K; approximately independent.
Zf;ll K; is low-rank, K; has a Marchenko-Pastur law, E,'L:eﬂ a;K; has a
semicircle law.
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Kernel regression in the polynomial regime
[Xiao-Hu-Misiakiewicz-Lu-Pennington 22]
@ When n=xd*. ¢ €Z, xi,...,x,iid. uniformly on S9~1.

e Kj = f((x;, x;)). Different scaling compared to [LY22, DLMY23]. K has a
Marchenko-Pastur law. Generalization of [El Karoui 10].
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Kernel regression in the polynomial regime
[Xiao-Hu-Misiakiewicz-Lu-Pennington 22]

@ When n=xd*. ¢ €Z, xi,...,x,iid. uniformly on S9~1.

e Kj = f((x;, x;)). Different scaling compared to [LY22, DLMY23]. K has a
Marchenko-Pastur law. Generalization of [El Karoui 10].

@ Multiple decents in the generalization error. (Informally) if y; = f.(x;) + €,
KRR with n =< d* many samples can learn the first /-th degree components

of f..
2.00 —_ Predicnon: Gap=128
~—— Prediction: Gap=32
175 i —— Prediction: Gap=8

—— Prediction: Gap=2
Simulation

10° 10* 10? 10° 10%
m: # Training Samples
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Kernel regression in the polynomial regime
[Xiao-Hu-Misiakiewicz-Lu-Pennington 22]

@ When n=xd*. ¢ €Z, xi,...,x,iid. uniformly on S9~1.

e Kj = f((x;, x;)). Different scaling compared to [LY22, DLMY23]. K has a
Marchenko-Pastur law. Generalization of [El Karoui 10].

@ Multiple decents in the generalization error. (Informally) if y; = f.(x;) + €,
KRR with n =< d* many samples can learn the first /-th degree components

of f..
2.00 —_ Predicnon: Gap=128
~—— Prediction: Gap=32
175 i —— Prediction: Gap=8

—— Prediction: Gap=2
Simulation

10° 10* 10? 10° 10%
m: # Training Samples

@ Random feature regression N < d"t, n < d*? [Hu-Lu-Misiakiewicz 24].
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Nonlinear spiked model

@ Spiked Wigner model Y = %A + Zxx T, BBP transition at || = 1.
[Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].
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Nonlinear spiked model

@ Spiked Wigner model Y = %A + Zxx T, BBP transition at || = 1.
[Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].

@ Nonlinear spiked Wigner model [Guionnet-Ko-Krzakala-Mergny-Zdebrova 23]

Y = \% {f <z + L\/’%)XXT> - IEf(Z)} .
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Nonlinear spiked model

@ Spiked Wigner model Y = %A + Zxx T, BBP transition at || = 1.
[Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].

@ Nonlinear spiked Wigner model [Guionnet-Ko-Krzakala-Mergny-Zdebrova 23]
1 v(n) . T
y=—|f(z ~Ef(Z)|.
(24 43e) -z
When Z is Gaussian, x is random, phase transition of spikes happens at

y(n) = n2 (5,

where k, is the degree of the first nonzero hermite polynomial in the
expansion of f. k, =1 when f is linear.
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Nonlinear spiked model

@ Spiked Wigner model Y = %A + 2xx ", BBP transition at || = 1.
[Baik-Ben Arous-Péché 05, Benaych-Georges, Nadakuditi 11].

@ Nonlinear spiked Wigner model [Guionnet-Ko-Krzakala-Mergny-Zdebrova 23]
1 v(n) . T
Y=—|f|Z —Ef(Z)] .
7l (24 3T) -m@
When Z is Gaussian, x is random, phase transition of spikes happens at

y(n) = n2 (5,

where k, is the degree of the first nonzero hermite polynomial in the
expansion of f. k, =1 when f is linear.

@ Nonlinear spiked covariance model and connection to neural networks
[Ba-Erdogdu-Suzuki-Wang-Wu 23, Wang-Wu-Fan 24].
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Other topics

@ Feature learning with gradient descent [Ba-Murat-Erdogdu-Suzuki-Wang-Wu-Yang
22]

@ Spectrum of empirical Hessian after SGD [Ben Arous-Gheissari-Huang-Jagannath
23]

@ Generalization error of SGD in high dimensions
[Paquette-Paquette-Adlam-Pennington 22]

@ Gaussian equivalence [Hu-Lu 22],
[Goldt-Loureiro-Reeves-Krzakala-Mzard-Zdeborova 21],
[Montanari-Ruan-Saeed-Sohn 23],. ..

@ Benign overfitting [Bartlett-Long-Lugosi-Tsigler 20], [Tsigler-Bartlett 23],
[Koehler-Zhou-Sutherland-Srebro 21],. ..
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Random geometric graphs G(n, d, p)

® xi,...,x, sampled i.i.d. uniformly on S91.

@ (i,j) are connected if (x;,x;) > 7. Choose T = 7(p, d) to match the edge
density of a G(n, p).
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Random geometric graphs G(n, d, p)

® xi,...,x, sampled i.i.d. uniformly on S91.

@ (i,j) are connected if (x;,x;) > 7. Choose T = 7(p, d) to match the edge
density of a G(n, p).

@ Adjacency matrix Aj = 1{(x;,x;) > 7}: random kernel matrix with
f(x)=Ux>r1}
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Random geometric graphs G(n, d, p)

@ xi,...,x, sampled i.i.d. uniformly on S9—1.

@ (i,j) are connected if (x;,x;) > 7. Choose T = 7(p, d) to match the edge
density of a G(n, p).

@ Adjacency matrix Aj = 1{(x;,x;) > 7}: random kernel matrix with
f(x)=Ux>r1}

When do random geometric graphs lose geometry? J
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Random geometric graphs G(n, d, p)

@ xi,...,x, sampled i.i.d. uniformly on S9—1.

@ (i,j) are connected if (x;,x;) > 7. Choose 7 = 7(p, d) to match the edge
density of a G(n, p).

@ Adjacency matrix Aj; = 1{(x;,x;) > 7}: random kernel matrix with
f(x)=1{x>r1}.

When do random geometric graphs lose geometry? )

Theorem (Bubeck-Ding-Eldan-Récz 16)

Let p € (0,1) be fixed.
e When d > n3, TV(G(n,p), G(n,p,d)) — 0.
@ When d < n3, TV(G(n,p), G(n,p,d)) — 1.
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Random geometric graphs G(n, d, p)

@ xi,...,x, sampled i.i.d. uniformly on S9—1.

@ (i,j) are connected if (x;,x;) > 7. Choose 7 = 7(p, d) to match the edge
density of a G(n, p).

@ Adjacency matrix Aj; = 1{(x;,x;) > 7}: random kernel matrix with
f(x)=1{x>r1}.

When do random geometric graphs lose geometry? )

Theorem (Bubeck-Ding-Eldan-Récz 16)

Let p € (0,1) be fixed.
e When d > n3, TV(G(n,p), G(n,p,d)) — 0.
@ When d < n3, TV(G(n,p), G(n,p,d)) — 1.

Connected to TV distance between GOE(n) and Wishart(n, d) [Jiang-Li 15].
Detect local dependence by counting signed triangles.
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Random geometric graphs G(n, d, p)

@ Question: Sparse regime p = €. d =< Iog3(n) is the conjectured threshold in

[BDER16). ’

@ p = ¢: distinguishable when d < log(n) [BDER 16], indistinguishable when
¢ >1,d > log*(n) [Liu-Mohanty-Schramm-Yang 22].

L iy 26 3033



Random geometric graphs G(n, d, p)

@ Question: Sparse regime p = ©. d < Iog3(n) is the conjectured threshold in
[BDER16].

@ p = ¢: distinguishable when d < log(n) [BDER 16], indistinguishable when
¢ >1,d > log*(n) [Liu-Mohanty-Schramm-Yang 22].

@ Spectral gap of A in certain regimes [Liu-Mohanty-Schramm-Yang 22,
Bagachev-Bresler 24].
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Random geometric graphs G(n, d, p)

c

Question: Sparse regime p = <. d < Iog3(n) is the conjectured threshold in
[BDER16].

@ p = ¢: distinguishable when d < log(n) [BDER 16], indistinguishable when
¢ >1,d > log*(n) [Liu-Mohanty-Schramm-Yang 22].

Spectral gap of A in certain regimes [Liu-Mohanty-Schramm-Yang 22,
Bagachev-Bresler 24].

@ Geometric block model: x;,..., x, are drawn from a Gaussian mixture
[Li-Schramm 24]. Testing geometry, community recovery/clustering.
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Conclusions

In the proportional regime n =< d, a nonlinear random matrix model behaves
like another linear random matrix model.

@ A polynomial regime n < d* appears for nonlinear models, new phenomena
in the spectrum and regression performance.

Question: Universality and structured data for generalization error.

Question: spectrum of geometric random graphs.
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