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My Goals for the talk

Tell you about ...

New “asymmetric eiqg” method that works when SVD fails

(very sparse regime)
Have you actively wonder (before | tell you )

What theory <& computational simulation gave (crazy) idea?



Setup: (Very Sparse) Matrix Completion

- Latent (or true) low-rank r rectangular m x n matrix

"

_ H

A= E o U;V;
i=1

- Uniformly random missing entries w/ probability p = d/n

Ali, j] = A[i, j] with probability p,

~

Ali, j| =7 with probabilityl — p.

- Goal: Reconstruct A “as accurately as possible” (knowing r)




Application: Recommender systems & Netflix

User-rankings matrix
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Extreme sparsity ubiquitous



Same setup — different domain :)
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METHOD AND SYSTEM FOR IDENTIFYING
PEOPLE WHO ARE LIKELY TO HAVE A
SUCCESSFUL RELATIONSHIP

Inventors: J. Galen Buckwalter, Pasadena, CA
(US); Steven R. Carter, Los Angeles,
CA (US); Gregory T. Forgatch, San
Marino, CA (US); Thomas D. Parsons,

Pasadena, CA (US); Neil Clark Warren,

Pasadena, CA (US)

Assignee: eHarmony, Inc., Santa Monica, CA
(US)
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Extreme sparsity in ChatGPT like models

ChatGPT learns word embeddings from massive amounts of data

One-hot encoding
A 4-dimensional embedding
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Extreme Sparsity in learning contexts

e.g Predict word from context of 4

P(uproblems v'nto) P(ucrisis |vinto)

P(utuning | 17into) P(ubanking |vinto)

problems  turning banking crises  as

L ) \ J
Y Y \ Y J

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

=> Context Embedding Matrix is very sparse => Opportunity for understanding
# rows = # words

Sparsity = (random) length of context



&he New Hork Times Magazine

If You Liked This, You're Sure to Love
That

The first major breakthrough came less than a month into the
competition. A team named Simon Funk vaulted from nowhere into
the No. 4 position, improving upon Cinematch by 3.88 percent in
one fell swoop. Its secret was a mathematical technique called
singular value decomposition. It isn’t new; mathematicians have
used it for years to make sense of prodigious chunks of
information. But Netflix never thought to try it on movies.

Singular value decomposition works by uncovering “factors” that
Netflix customers like or don’t like. Say, for example, that



Example: Single entry missing in rank one matrix

Claim: Missing entry = 2 (unique). Any single entry missing is fine



Example: Single entry missing in rank one matrix

Claim: Missing entry = 2 (unique). Any single entry missing is fine

Counter Claim: If A=[1 0 ; 0 0] then one entry missing could mean failure

Delocalization Assumption: Singular vectors are incoherent (or spread out)



When/why do we expect matrix completion to work?

An m x n matrix with incoherent s. vectors & rankd @ O(m+n+1)r)

- # free parameters = O(r (m+n+1) ) = O(r m) << mn entries in matrix
Observe each element with probability p = d/n
- # elements observed = O(d m)

Regimes of difficulty:

- “Easy” & d=0(n) & p=0(1)
- < d=0(rlogn) © p=0(rlogn/n)
- “Fun” & Challenging ©® d=0(r) ® p=0(r/n)



Some numerical experiments
I I I I

Algorithm: Fill in missing entry with zero, compute closest rank 1 matrix via
truncated SVD

Rank = 4

Assume: 1 entry missing

Claim: Frobenius Norm of Error <= Norm of removed entry



Now assume 70% entries observed

- Fill in missing entry with zero and do rank 4 truncated SVD
-  Key Question: What does one expect? How does one reason about it?



Fill in missing entries with zeros and do rank 4 tSVD

Error = 0.30578
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Fill in known entries and repeat rank 4 tSVD

Error = 0.11052
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After 10 iterations ...

Error = 0.00037

Error tends to O



Inner product with true “U” w/ iterations
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Key insight: “some” noisy information @ iteration 1 & hope!




What is we make it sparser? p = 0.5

Ahat0 Ahat, Error = 0497534
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What if even sparser?

AhatO Ahat, Error = 0.764179




Even sparser

Ahat0 - Ahat, Error = 0.906713

p=0.01
Expectation: “no” noisy information @ iteration 1 < failure ?




What happens to the SVD in (very) sparse regime

True Sub-Matrix

SVD: nMSE = 1.0

(
- H
A= E O U;V;
i=1

Entries observed with probability p =
d/n

When d = O(log n), perfect
reconstruction

When d = O(1), can’t expect perfect
SVD breaks down completely

Singular vectors are localized




RMT Reasoning about difficulty of different regimes

Each matrix element observed with probability p :

Observed A=E[A] + (A-E[A])=pA+ A

Error in singular vectors of low-rank A + A < C(A) - 01(A),

Ex ion:
pectation Well known!

- Perfect reconstruction if vanishing perturbation < d = O(n log n)
- if bounded perturbation & d=0(1) ? <=

- Junk reconstruction if unbounded perturbation < d =0O(1) ? <{—=




(Classical) Matrix Completion Strategies

A e (%)P@M,

- Nuclear norm regularization
- Find matrix with smallest nuclear norm that matches revealed entries
- lterative algorithm involving truncated SVD in first step
- Alternating minimization
- Replace missing entries of A with zeros, do SVD
- Truncate to rank-r
- Replace (known) revealed entries, repeat



Questions motivating this talk

(
A= E aiuz—viH
i=1

Questions: When A entries observed with p = d/n withd = O(1):

- Possible to reconstruct reliably with error (i.e. not perfectly)?
- Polynomial time algorithm(s)?
- Fundamental limit(s) of reliable reconstruction?



Improved Very Sparse Matrix Completion

L

SVD: nMSE = 1.0 o aSVD: nMSE = 0.54

True Sub-Matrix
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Questions answered in this talk

.

- H

A= E O U;V;
i=1

Questions answered: When d = O(1):

- Possible to reconstruct reliably with error (i.e. not perfectly)? YES!
Keshavan, Montanari and Oh (2009) proved reliable matrix completion possible in this
regime by pruning rows/columns with large degree
This work - no thresholding or pruning

- Polynomial time algorithm(s)? Two new algorithms
- Fundamental limit(s) of reliable reconstruction? Two new limits



Improved Very Sparse Matrix Completion

True Sub-Matrix . SVD: nMSE = 1.0 o VO aSVD: nMSE = 0.67 — wnb. SVD: nMSE = 0.51
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(B) Hyperbolic secant distributed singular vectors.



Core idea behind the algorithm

(Related) Setup: Low rank square symmetric matrix with symmetric masking

= i HEPkPr :> A= (%)P@M,
-

- (Symmetric) Eig breaks down in the very sparse regime
- Our idea: Intentionally asymmetrize A
- With probability 2 take elements either above or below the diagonal



Power of random asymmetrization + (asym) eig.

Incomplete Matrix = Sym. P * Sym. Mask
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Randomly Assymetrized Matrix
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Theorem (BCN’20): Above explicit threshold:

1)
2)

Eigenvectors of rand. asym. matrix are reliably estimated
Best estimator averages left and right eigenvectors



Theory: Detection threshold in very sparse regime

Detection threshold ¥: any number ¥ such that
9 > max{d,d2},

where the ‘theta parameters’ are defined by

ﬁgz\/g and Y1 =

Amplitude parameter L:

s

Variance matrix Q):

Qo = 1|Pry|” p= QI

L = nimax | P, ;|.
z,y

Equivalently, it is the scaled L' to L* norm of P.



Theory: Overlap between eigenvectors

Inner product between true and estimated i-th evector

we 5 () - e



Theory: Det. Threshold & Overlap in rank 1 setting

1 _ §2(+1)

1
B = \/”|§|4 and = — 2

Non-universal dependence on kurtosis!



Emergence of real eigs above det. threshold

] |
Vvp/dwithd =5

Rank 3 latent matrix — 1 eigenvalue above phase transition
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~

Rank 3 latent matrix — now 2 eigenvalues above phase transition



Sims vs. Theory: Prob. observed = d/n

inner product
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Sims vs. Theory: Prob. observed = d/n
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Averaging left + right evecs improves accuracy, inner product between left and
right provides estimate of evec overlap



Sims vs. Theory: Prob. observed = d/n

inner product
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Very Sparse Matrix Completion w/ asym. eig

Latent (or true) low-rank r rectangular m x n matrix

- Z e > A
k=1

Z)ron

- Fact:

SVD of A can be obtained from eig of embedding (3 /(1) )

“Asymmetric SVD” : Embed A + randomly asymmetrize + (asym) eigs




The randomized "asymmetric SVD”
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Improved Very Sparse Matrix Completion

True Sub-Matrix . SVD: nMSE = 1.0 o VO aSVD: nMSE = 0.67 — wnb. SVD: nMSE = 0.51
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(B) Hyperbolic secant distributed singular vectors.



RMT Reasoning about difficulty of different regimes

Each matrix element observed with probability p :

Observed A=E[A] + (A-E[A])=pA+ A

Error in singular vectors of low-rank A + A < C(A) - 01(A),

Expectation:

- Perfect reconstruction if vanishing perturbation < d = O(n log n)
- if bounded perturbation < d = O(1)

- Junk reconstruction if unbounded perturbation < d = O(1) ?




So far ..

Told you about ...

New “asymmetric eiq” method that works when SVD fails

(very sparse regime)

Have you actively wonder (before | tell you )

What theory & computational simulation gave (crazy)
idea?



The simulation that led to the idea
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The simulation that led to the idea

10.0

----- v/ p/2d with d = 50

Singular values of A
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- Singular values are spread out (grey lines)
-  RMT insight (Chafai and others): Asymptotically for Erdos-Renyi (ER) graph

- undirected E-R operator norm unbounded
- BUT
- directed E-R spectral radius is bounded



Weighted non-backtracking based matrix completion

Definition:

The weighted non-backtracking matrix B € .#r(R) is the non-symmetric matrix indexed
by E with entries, for e = (x,y) € F and f = (a,b) € E (those are directed edges):

n
Be,f = E—la=y1m¢bpa,b-

- |E| x |E| sized matrix
- Eigenvectors need to be ‘lowered’ by summing over edge/vertex pairs (see

paper)
- Theorem [BCN’20]: Lower threshold by L (uses all info)
2



Asvd (left) vs Non-backtracking (right) spectrum
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Weighted non-backtracking vs Asym eigs.
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- Lower limit
- Computationally more expensive by O(d?)



Proof -- arxiv.org/pdf/2005.06062.pdf

Relies on understanding of eigenvectors of rooted Galton-Watson trees
Deeply understanding spectrum non-backtracking operator

Hoffman-Wielandt identity plays critical role in bounding perturbation

(Charles Bordenave + Simon Coste are masters of this)



Summary: Very sparse matrix completion

True Sub-Matrix SVD: nMSE = 1.0 avg. aSVD: nMSE = 0.54 wnb. SVD: nMSE = 0.39
00015 00015 . 00015 00015

A = (%)P@M,

-00010

-00015 -00015 -00015

Questions answered: When d = O(1):

(A) Normally distributed singular vectors.

- Possible to reconstruct reliably with error (i.e. not perfectly) and no
thresholding/pruning (ala Keshavan, Montanari, Oh - 2009) ? Yes
- Polynomial time algorithm(s)? Two algorithms

- Fundamental limit(s) of reliable reconstruction? Two limits
- Non-universal limit(s) depend on fourth moment of elements of the singular vectors
- More powerful algorithm is O(d? ) more computationally expensive

-00005

~00010

-00015



Math + RMT opportunities in Emergent Al systems

e.g Predict word from context of d words

P(uproblems v'nto) P(ucrisis |vinto)

P(utuning | Vinto) P(ubanking |vinto)

problems  turning banking crises  as

L ) \ J
Y Y \ Y J

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

=> Context Embedding Matrix is d sparse
Application Goal: How to select d?

Creative Math opportunity: How to infuse RMT insights into modern Al systems?



Summary: Very sparse matrix completion

True Sub-Matrix SVD: nMSE = 1.0 avg. aSVD: nMSE = 0.! wnb. SVD: nMSE = 0.39
00015 00015 . 00015 00015

A = (E)P@M,

S®

Questions answered: When d = O(1):

(A) Normally distributed singular vectors.

- Possible to reconstruct reliably with error (i.e. not perfectly)? YES!
- Polynomial time algorithm(s)? Two algorithms!

- Fundamental limit(s) of reliable reconstruction? Two limits!
- Non-universal limit(s) depend on fourth moment of elements of the singular
vectors
- More powerful alaorithm is O(d?2 ) more combputationallv expensive



