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My Goals for the talk
Tell you about … 

New “asymmetric eig” method that works when SVD fails 

(very sparse regime)

Have you actively wonder (before I tell you )

What theory ⇔ computational simulation gave (crazy) idea?



Setup: (Very Sparse) Matrix Completion 
- Latent (or true) low-rank r  rectangular m x n matrix

- Uniformly random missing entries w/ probability p = d/n 

- Goal: Reconstruct A  “as accurately as possible” (knowing r)



Application: Recommender systems & Netflix

Extreme sparsity ubiquitous



Same setup – different domain :) 



Extreme sparsity in ChatGPT like models
ChatGPT learns word embeddings from massive amounts of data



Extreme Sparsity in learning contexts 
e.g Predict word from context of 4

=> Context Embedding Matrix is very sparse => Opportunity for understanding 

# rows = # words

Sparsity = (random) length of context 





Example: Single entry missing in rank one matrix

Claim: Missing entry = 2  (unique). Any single entry missing is fine



Example: Single entry missing in rank one matrix

Claim: Missing entry = 2  (unique). Any single entry missing is fine

Counter Claim: If A = [1 0 ; 0 0] then one entry missing could mean failure

Delocalization Assumption: Singular vectors are incoherent (or spread out)



When/why do we expect matrix completion to work?
An m x n matrix  with incoherent s. vectors & rank d ⇔ O((m + n + 1) r )  

- # free parameters = O(r (m+n+1) ) = O(r m) << mn entries in matrix 

Observe each element with probability p  = d/n 

- # elements observed = O(d m )

Regimes of difficulty:

- “Easy” ⇔ d = O(n) ⇔ p = O(1)
- “Less easy” ⇔ d = O( r log n ) ⇔ p = O(r log n / n) 
- “Fun” & Challenging ⇔ d = O(r) ⇔ p = O( r / n)



Some numerical experiments 

Rank = 4

Assume: 1 entry missing

Algorithm: Fill in missing entry with zero, compute closest rank 1 matrix  via 
truncated SVD

Claim: Frobenius Norm of  Error <=  Norm of removed entry

 



Now assume 70% entries observed

- Fill in missing entry with zero and do rank 4 truncated SVD 
- Key Question: What does one expect? How does one reason about it?



Fill in missing entries with zeros and do rank 4 tSVD

“Not  perfect” - but clear information is retained



Fill in known entries and repeat rank 4 tSVD



After 10 iterations …

Error tends to 0 



Inner product with true “U” w/ iterations

Key insight: “some” noisy information @ iteration 1 ⇔ hope!



What is we make it sparser? p = 0.5



What if even sparser?

p = 0.2



Even sparser

p = 0.01 
Expectation: “no” noisy information @ iteration 1 ⇔ failure  ?



What happens to the SVD in (very) sparse regime
-

- Entries observed with probability p = 
d/n 

- When  d = O(log n), perfect 
reconstruction 

- When d = O(1), can’t expect perfect
- SVD breaks down completely

- Singular vectors are localized

- 



RMT Reasoning about difficulty of different regimes
Each matrix element observed with probability p :

Observed A = E[A] + (A - E[A]) = p A +  Δ 

Expectation:

- Perfect reconstruction if vanishing perturbation ⇔ d = O(n log n)
- Imperfect/Noisy reconstruction if bounded perturbation  ⇔ d = O(1) ?
- Junk reconstruction if unbounded perturbation ⇔ d = O(1) ? 

Well known!

This talk



(Classical) Matrix Completion Strategies

- Nuclear norm regularization
- Find matrix with smallest nuclear norm that matches revealed entries
- Iterative algorithm involving truncated SVD in first step 

- Alternating minimization
- Replace missing entries of A with zeros, do SVD
- Truncate to rank-r
-  Replace (known) revealed entries, repeat



Questions motivating this talk

Questions: When A  entries observed with p = d/n  with d  = O(1):

- Possible to reconstruct reliably with error (i.e. not perfectly)?
- Polynomial time algorithm(s)? 
- Fundamental limit(s) of reliable reconstruction?



Improved Very Sparse Matrix Completion



Questions answered in this talk

Questions answered: When d = O(1):

- Possible to reconstruct reliably with error (i.e. not perfectly)? YES!
- Keshavan, Montanari and Oh  (2009)  proved reliable matrix completion possible in this 

regime by pruning rows/columns with large degree 
- This work - no thresholding or pruning

- Polynomial time algorithm(s)? Two new algorithms
- Fundamental limit(s) of reliable reconstruction? Two new limits 



Improved Very Sparse Matrix Completion



Core idea behind the algorithm
(Related) Setup: Low rank square symmetric matrix with symmetric masking

- (Symmetric) Eig breaks down in the very sparse regime 
- Our idea: Intentionally asymmetrize A

- With probability ½ take elements either above or below the diagonal



Power of random asymmetrization + (asym) eig.

Theorem (BCN’20):  Above explicit threshold:

1) Eigenvectors of rand. asym. matrix are reliably estimated
2) Best estimator averages left and right eigenvectors



Theory: Detection threshold in very sparse regime 



Inner product between true and estimated i-th evector

Theory: Overlap between eigenvectors 



Theory: Det. Threshold & Overlap in rank 1 setting 

Non-universal dependence on kurtosis! 



Emergence of real eigs above det. threshold

Rank 3 latent matrix – 1 eigenvalue above phase  transition



Emergence of real eigs above det. threshold

Rank 3 latent matrix – now 2 eigenvalues  above phase  transition



Sims vs. Theory: Prob. observed = d/n

Detection threshold for Gaussian = 3.0 



Sims vs. Theory: Prob. observed = d/n

Averaging left + right evecs improves accuracy, inner product between left and 
right provides estimate of evec overlap



Sims vs. Theory: Prob. observed = d/n

- Non universal distribution dependent threshold 
& overlap



Very Sparse Matrix Completion  w/ asym. eig
- Latent (or true) low-rank r  rectangular m x n matrix

- Fact: 
- SVD of A can be obtained from eig of embedding 

-
- “Asymmetric SVD” : Embed A + randomly asymmetrize + (asym) eigs



The randomized “asymmetric SVD”



Improved Very Sparse Matrix Completion



RMT Reasoning about difficulty of different regimes
Each matrix element observed with probability p :

Observed A = E[A] + (A - E[A]) = p A +  Δ 

Expectation:

- Perfect reconstruction if vanishing perturbation ⇔ d = O(n log n)
- Imperfect/Noisy reconstruction if bounded perturbation  ⇔ d = O(1) 
- Junk reconstruction if unbounded perturbation ⇔ d = O(1) ? 



So far ..
Told you about … 

New “asymmetric eig” method that works when SVD fails 

(very sparse regime)

Have you actively wonder (before I tell you )

What theory ⇔ computational simulation gave (crazy) 
idea?



The simulation that led to the idea

- Singular values are spread out (grey lines)
- Complex eigenvalues as dots on plane
- Key question: max. singular value unbounded ⇔ max eig unbounded, too?



The simulation that led to the idea

- Singular values are spread out (grey lines)
- RMT insight (Chafai and others): Asymptotically for Erdos-Renyi  (ER) graph

- undirected E-R operator norm unbounded 
- BUT 
- directed E-R spectral radius  is bounded



Weighted non-backtracking based matrix completion
Definition:

- |E| x |E| sized matrix 
- Eigenvectors need to be ‘lowered’ by summing over edge/vertex pairs (see 

paper)
- Theorem [BCN’20]: Lower threshold by             (uses all info)



Asvd (left) vs Non-backtracking (right) spectrum



Weighted non-backtracking vs Asym eigs.

- Lower limit
- Computationally more expensive by O(d3)



Proof -- arxiv.org/pdf/2005.06062.pdf
- Relies on understanding of eigenvectors of rooted Galton-Watson trees
- Deeply understanding spectrum non-backtracking operator
-
- Hoffman-Wielandt identity plays critical role in  bounding perturbation

(Charles Bordenave + Simon Coste are masters of this)



Summary: Very sparse matrix completion

Questions answered: When d = O(1):

- Possible to reconstruct reliably with error (i.e. not perfectly) and no 
thresholding/pruning (ala Keshavan, Montanari, Oh - 2009) ? Yes

- Polynomial time algorithm(s)? Two algorithms
- Fundamental limit(s) of reliable reconstruction? Two limits

- Non-universal limit(s) depend on fourth moment of elements of the singular vectors
- More powerful algorithm is O(d2 ) more computationally expensive



Math + RMT opportunities in Emergent AI systems
e.g Predict word from context of d words 

=> Context Embedding Matrix is d sparse 

Application Goal: How to select d?  

Creative Math opportunity: How to infuse RMT insights into modern AI systems?



Summary: Very sparse matrix completion

Questions answered: When d = O(1):

- Possible to reconstruct reliably with error (i.e. not perfectly)? YES!
- Polynomial time algorithm(s)? Two algorithms! 
- Fundamental limit(s) of reliable reconstruction? Two limits! 

- Non-universal limit(s) depend on fourth moment of elements of the singular 
vectors

- More powerful algorithm is O(d2 ) more computationally expensive
- Computation + RMT + new applications => Lots of fun new problems 


