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I Se�ing: The Schrödinger equation for one particle:

i∂tψ =
[
−∆x + V0(x)︸ ︷︷ ︸

H0

+V1(x)F (eiωt)︸ ︷︷ ︸
external field

]
ψ, x ∈ Rd , t > 0; ψ(x, 0) = ψ0

where H0 = −∆x + V0 is the time-independent part of the Hamiltonian.

I E.g., for a Coulomb system, V0(x) = a/|x|, x ∈ R3 V1(x)F (eiωt) = A(x) cosωt
describes a monochromatic laser field, A(x) is the laser amplitude in space (say
E · x in a common approximation, where E is the electric field).

I ψ is the wave function; |ψ|2 is the probability density of find the particle at x ,
at time t .

I �estion: behavior of ψ for large t in nonperturbative se�ings, i.e., when V1

is not necessarily small or large,

I Particularly important problem: ionization defined by the condition
∫
K |ψ|

2 →
0 as t →∞ for any compact set K ∈ R3.
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I With the advent of lasers, going beyond perturbation theory into fields which
are moderate to large is theoretically and experimentally very important,

I and also mathematically very di�icult. There is a vast theoretical and exper-
imental literature. Significant rigorous results in such se�ings were obtained
starting in the 80s, among others, by B. Simon, K. Yajima, So�er, Weinstein us-
ing the limit absorption principle and related methods.

I These results are typically conditional. I.e., they consist of decay estimates
contingent on a condition le� open, that of absence of discrete spectrum of an
associated quasi-energy (Floquet) operator.

I We use techniques based on resurgence theory (Borel plane analysis), the an-
alytic Fredholm alternative and asymptotics of systems of PDEs to verify the
above condition and,

I In a number of models, we furthermore provide a convergent representation of
the wave function as a transseries, Borel summed series plus typically infinitely
many exponential corrections (encoding the generalized Fermi Golden Rule in
a nonperturbative se�ing).
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The Schrödinger equation

i∂tψ =
[
−∆x + V0(x)︸ ︷︷ ︸

H0

+V1(x)F (eiωt)︸ ︷︷ ︸
external field

]
ψ, x ∈ Rd , t > 0; ψ(x, 0) = ψ0

I Starting around 2000 analyzed a variety of one particle nonrelativistic models
of ionization with various types of potentials, including 3d Coulomb, with
a parametric spherically symmetric forcing and a model of photoionization
common in physics

i∂tψ(x, t) = −1
2

∆ψ(x, t) + Θ(x)(U − Ex cos(ωt))ψ(x, t) (1)

where Θ(x) is the Heaviside function. The last two are especially challeng-
ing due to slow decay of the potential (Coulomb) and unboundedness in both
physical and Fourier space in the case of (1).

Bibliography at the end of the slides.
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Advantages of a Laplace-Borel approach

I Asymptotic questions in t become, in Borel plane, analyticity ones which are
easier to address.

Transformed problem
I The periodic potential in Laplace space: Multiplication by eiωt becomes shi� by

iω and the Schrödinger equation becomes an infinite nonhomogeneous system
of elliptic PDEs, coupled by this shi�.

I Absence of quasi-energy discrete spectrum is (proved using the analytic Fred-
holm alternative), equivalent to the absence of nonzero solutions to the homo-
geneous system subjected to bothDirichlet andNeumann conditions. Typically
solutions of such systems develop caustics.

I We e�ectively decide whether this happens by rigorous WKB analysis of the
system.
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Beyond perturbation theory, new phenomena. A simple
example (from CMP 2018, [18a])

I Our the simplest model [2000], revisited in [18a], is

iψt = −∆ψ − 2(1 + α cosωt)δ(x)ψ; ψ(0, x) = ψ0(x) (∗)

α is the amplitude of the parametric perturbation, and ψ0 = ψb = e−|x| is the
unique bound state of H0 = −∆− 2δ.

I Due an underlying universality, this simplemodel is “generic”, illustratingmany
of the phenomena of realistic models, sometimes numerically quite accurately.
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The survival probabilities and energies of particles

iψt = −∆ψ − 2(1 + α cosωt)δ(x)ψ; ψ(0, x) = ψ0(x) (∗)

I At α = 0 there is a unique bound state of energy 1, e−|x| and quasi-free states,
√
2πu(k, x) =

(
eikx − (1 + i|k|)−1ei|kx|

)
, k ∈ R

I To calculate the ionization probability, and energies of the “ejected particles”,
we decompose ψ(x, t) as

ψ(x, t) = θ(t)e−|x|eit +

∫ ∞
−∞

Θ(k, t)u(k, x)e−ik
2tdk (t ≥ 0) (2)

|Θ(k, t)|2dk is the fraction of ejected particles with (quasi-) momentum in the
interval (k, k + dk) and |θ(t)|2, is the survival probability of the particle in
the bound state. Both θ and Θ are given by rapidly convergent Borel summed
transseries 1

1Rapidly converging expansions in exponentials and Borel summed series.
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The formula for the survival amplitude

I θ, is given by a transseries representation is

θ(t) = 2i
∑
n∈Z

Rne−γt+inωt

−γ + inω
+
∑
n∈Z

e−i(1+nω)tθn(t) (∗)

I – convergent for t > 0, α, ω, rapidly so a�er just a few oscillations.

I – Here γ = γ(α, ω), Re γ > 0 is a Fermi Golden Rule (FGR) exponent, Rn =
O(|n|!−1/2)2, and θn(t) = O(|n|!−1/2) have pure power3 series decay, O(t−3/2).

I – If α� 1, we have Re γ = O(α2), Rn = O(α2|n|) and θn = O(α2+|n|).

I – Hence, for t . O(α−5), FGR is valid to leading order in α.

I An exponential behavior is still visible initially, even when α = O(1).

I The coe�icients in the expansion have explicit continued fraction expressions.
Θ(k, t) has a similar formula.

I Next: pictures.
2In the complex energy plane they are residues at poles at nω − iγ.
3In a precise sense. They are O(t−3/2) Borel summed series
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Fermi Golden Rule, α ranging from o(1) to O(1)

I

Figure: FGR: Log-plots of survival probability |θ(t)|2 (le�) at ω = 1.007071....
Energy spectrum at ω = 1; α is the forcing amplitude.

We see nearly near perfect exponential decay for all amplitudes, and an outlier
for some (very!) special amplitude, 0.10025... (the yellow curve has power law
behavior at all times).
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FGR for some α = O(1)

θ(t) = 2i
∑
n∈Z

Rne−γt+inωt

−γ + inω
+
∑
n∈Z

e−i(1+nω)tθn(t)

I

Figure: Log-plot of survival probability |θ(t)|2, at ω = 1.51, α = O(1).

I Note: (1) the initial FGR-like decay (for α 6= 0.98) (2) the t−3/2 behavior, with
oscillations, later; (3) non-FGR behavior and slower ionization at α = 0.98.

I The “wild behavior” before the breakdown of FGR is due to interferences be-
tween exponential and non-exponential terms. This shape is quite universal.

I For any α (even� 1) there is a (finely) tuned ω suppressing FGR.R.Costin,Jauslin,Lebowitz The time-periodic Schrödinger equation 10 / 27



Energy spectrum of emi�ed particles

I Log plots: Energy spectrum of emi�ed particles, for ω = 0.4 and α = 1/2, 1, 2
(le�) and α = 1 and ω = 0.51 (right). We see:

• multiphoton e�ects;

• the “spectral lines” are very sharp for small α;

• they become weaker and fla�er at larger α;

• non-monotonicity in α; dips and noise at higher α. (These, too, originate in
interferences between exponential and power-law terms.)
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The spectral lines growing with time

Figure: Time evolution of (momentum, k) spectrum, from short time until onset of
asymptotics. (In k2, it would be energy spectrum.) Plot of |Θ(k, t)|2 at ω = 1.51,
α = 0.5 and t = 5T (yellow) 10T (green),∞ (blue), T := 2π

ω .
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The probability density |ψ(x, t)|2

I A�er a short time we see creases forming, the semiclassical trajectories. (Due
to multiphoton interactions, there are several, with di�erent velocities.)

I Let v = x/t As t →∞, with v = O(1),

ψ(x, t) ∼ ei
x2
4t

2
√
iπ

|v|√
t

(
ψ̂
(
0, v2/4

)
− i

1 + v2/4

)
(3)

where ψ̂(x, E) = Lψ(x, t) =
∫∞
0 eiEtψ(x, t)dt .
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Borel-Laplace vs. Laplace-Borel

I Mathematically we are relying on a Borel plane analysis (inverse-Laplace space
analysis). Counterintuitively perhaps, in linear problems we are free to inter-
change the order Laplace-inverse-Laplace.

I Let me illustrate this on Borel summing the prototypical series
∑∞

k=0
k!

xk+1 , a
formal solution of xy ′ + xy = 1 which we Laplace transform. The result is the
equation

(1 + p)Y ′ + Y = −p−1 with solution Y(p) = − ln p
1 + p

+
C

1 + p
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Y(p) = − ln p
1+p + C

1+p

I Take now the inverse Laplace transform, y(x) = (2πi)−1
∫ i∞

−i∞
Y(p)epxdp.

I Bending the contour into the le� half plane we collect the residue Ce−x and
the branch jump across the cut of the log. The change of variable p = −q leads
to

y(x) = PV
∫ ∞
0

(1− q)−1e−qxdq + Ce−x︸ ︷︷ ︸
Borel summed transseries
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Figure: Laplace plane of θ = 〈ψ,ψb〉.

I iψt = −∆ψ − 2(1 + α cosωt)δ(x)ψ; ψ(0, x) = ψ0(x) (∗)
Once we have obtained the analytic structure of Lθ, plots above, a similar con-
tour deformation gives

θ(t) = 2i
∑
n∈Z

Rne−γt+inωt

−γ + inω
+
∑
n∈Z

e−i(1+nω)tθn(t) (4)

Here θn(t) are Borel summed series and Rn are residues.
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I For a more general Hamiltonian, the picture is similar, except that typically
there are resonances (a.k.a. Gamow vectors, dressed states), poles in in
the LHP. All poles move le� when the external field is turned on, and we show
the imaginary line is pole-free by showing that the spectrum of the quasi-
energy operator has no discrete component, usually the more di�icult part of
the proof. (There are exceptions, see [01], when the quasienergy operator does
have bound states.)
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Mathematical underpinnings
I The Schrödinger equation with time-periodic potential has the form

i
∂ψ

∂t
= −∆ψ + (V (x) + Ω(x, t))ψ; x ∈ R3

where Ω(x, t + T ) = Ω(x, t).
Existence of a strongly di�erentiable unitary propagator implies that for ψ0 ∈
H2(Rd), the Laplace transform

i ∂ψ∂t = −∆ψ + (V (x) + Ω(x, t))ψ ψ̂(·, p) :=

∫ ∞
0

ψ(·, t)e−ptdt

exists for Re (p) > 0. It satisfies the equation (∂t 7→ −p; eiωtψ 7→ ψ(p− iω)).

−∆ψ + (V (x)− ip)ψ̂(x, p) = −iψ0 −
∑
j∈Z

Ωj(x)ψ̂(x, p− ijω) (5)

I Set −ip = nω + σ with Im σ ∈ [0, ω)ψ(x, p) = yn(x;σ);

(−∆ + V (x) + σ + nω)yn = −iψ0 −
∑
j∈Z

Ωj(x)yn−j(∗) (6)

�estion: find the analytic structure of ψ̂ w.r.t. p, poles and branch points.
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I We are now dealing with an infinite system of elliptic PDEs:

(−∆ + V (x) + σ + nω)yn = −iψ0 −
∑
j∈Z

Ωj(x)yn−j(∗) (7)

I The transformed problem looks more involved and harder to tackle. This is
not a serious issue, since solving the original problem in any closed form is not
hopeful anyway. On the other hand the transformed question, analyticity, is
simpler. As in one-d problems, Borel-Laplace transforms questions of asymp-
totics into questions of analyticity.

I In questions of regularity, it is natural to rewrite the system in integral form
(which needs care: the di�erential operators on le� side are not invertible as
such, in general) as

yn = −ignψ0 − gn
∑
j∈Z

Ωj(x)yn−j

or with Y = (yn)n,Cσ = (gn)n, Y = Y0 + CσY
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I Y = Y0 + CσY

I Crucially,Cσ is (can be arranged to be, by suitable choices of spaces) a compact
operator, ramified-analytic in p. By the Fredholm alternative, Y exists and
is ramified-analytic in p i� Y = CσY has no nonzero solution (the kernel is
empty). L−1Y is then deformable into the LHP, collecting the transseries. The
resurgent singularities are the aforementioned branch points and poles.

I Generically, the kernel is trivial, since the infinite system of PDEs cannot have
a solution. Indeed, it can be verified that each equation is an elliptic PDE with
both Dirichlet and Neumann conditions– and generically caustics form.

I Proving that the infinite system of PDEs cannot have a solution in a concrete
case is much more di�icult. We have by now developed techniques for that,
and proved that the kernel is empty in all models we analyzed, except for one
deliberately built to show that with finely tuned parameters the kernel can be
nonempty.
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Photoionization, w. RD Costin, I Jauslin, JL Lebowitz CMP
2023, [23])

Metal
E x cos(t)

I In the quasi-free model of photoemission, electrons in solids move freely. The
solid surface is described by a step potential. Placing the surface of a metal in
the yz plane, the Schrödinger equation in the electric gauge reads

i
∂ϕ

∂t
= −∆ϕ−Θ(x)(V − E(t)x)ϕ (8)

if we ignore the field inside the metal. V is the sum of the Fermi energy 4 and
the work needed to remove an electron from the metal.

4The energy di�erence between the highest and lowest occupied states by the fermions at
T = 0.
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I A non-L2 initial condition s.a. the plane wave ψ(x, 0) = eik0x simulates contin-
uous injection of energy in the system.

I In spite of its apparent simplicity, this model poses substantial mathematical
problems: the potential is an unbounded operator, with a discontinuity at x =
0, the metal interface, making it unbounded in Fourier space too.

I Beyond perturbation theory, there was only a conjectural theoretical physics
proposal for the steady state (Faisal & al, 2005). Numerical integration based
on typical Crank-Nicolson approach does not work (but fails subtly!).

I Even the existence of the unitary propagator, and of classical solutions, do not
follow from the literature and needed a proof.
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I Existence of classical solutions and unitarity are proved using one-sided Fourier
transforms in x resulting in a singular integral equation for thematching condi-
tion, which is then regularized and solved by contractive mapping arguments.

I The time Laplace transform
∫∞
0 ψ(x, t)e−ptdt = Ψp(x) is replaced with a dis-

crete one, sampled at the periods of the forcing. The fractional part of t is the
parameter relevant for regularity and evolution to the steady state conjectured
by Faisal &al, 2005. In appropriate spaces it is compact establishing the equiv-
alence of the la�er condition and absence of eigenvalues of the QE operator.

I Adiscrete Laplace transform should streamline the analysis ofmost time-periodic
models.
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Absence of discrete quasi-energy spectrum

I Since the potential is periodic in t , with period T = 2π/ω, the propagator is
periodic, with the same period. We look for eigenvalues of the quasi-energy
operator corresponding to eigenfunctions in L2(T, L2(R)) where T is the torus
R/TZ. Since the Hamiltonian (i∇ − Θ(x)At)

2 + Θ(x)V is self-adjoint, the
spectrum is real, and we look for λ ∈ R for which

i∂tψ − (−∆ + Θ(x)(V − Etx))ψ = λψ (9)

A nonzero solution, a quasi-energy eigenfunction would correspond to L2

time-periodic solutions of the problem. For x < 0 periodic solutions must be
given by a Fourier series,

ψ =
∑

k∈Z,k>λ/ω

Ck e
√
kω−λ x eikωt (10)
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Absence of discrete quasi-energy spectrum

I For x > 0 we find that the quasi-energy equation is completely integrable.
Using the Lax pairs we get, with κn =

√
nω + V + 2C2 − λ,

ψ =
∑

n∈Z,n>n0

Dn fn(t) e−κnx einωt (11)

fn(t) = e
iC2
ω sin(2ωt)−κn

4C
ω (2+cos(ωt)); n0 = (λ− V − 2C2)/ω; (12)

I Continuity of ψ(x, t) and ψx(x, t) at x = 0 imply∑
k∈Z,k>λ/ω

Ck eikωt =
∑

n∈Z,n>n0

Dn einωt fn(t) := Φ(t)

∑
k∈Z,k>λ/ω

Ck

√
kω − λ eikωt =

∑
n∈Z,n>n0

Dn einωt fn(t) (2iC sin(ωt)− κn)
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Absence of discrete quasi-energy spectrum

I Equivalently, in the variable z = eiωt , half of the Laurent coe�icients of Φ van-
ish, which means Φ extends as a meromorphic function in the open unit disk.
From its definition however, in the unit disk Φ has a convergent transseries ex-
pansion

Φ = e
C2
2ω (z2− 1

z2
)
∑

n∈Z,n>n0

Dn zne−κn
4C
ω (2+ z

2+
1
2z ) = e−

C2
2ω

1
z2
∑
n>n0

e−κn
2C
ω

1
2z gn(z)

(13)
with gn meromorphic and κn strictly increasing in n.

I When transseries representations exist, they are unique. Since Φ is also given
by a convergent one-sided Laurent expansion, we must have gn = 0∀n ∈ N
therefore Φ ≡ 0.
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