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Polarizability

Permanent dipole

Dipole induced by a field



Static response
Physical systems are characterized by their response properties

Mathematically: perturbation theory for F (X , ε) around equilibrium

F (X∗, 0) = 0

Equilibrium perturbation:

F (X (ε), ε) = 0.

Implicit function theorem:

X (ε) = X∗ − ε(∂X F )−1∂εF + O(ε2)

derivatives evaluated at (X∗, 0).

▶ Expansion of observables to first order provide response coefficients (mechanical,
electrical, thermal, magnetic, optical...)

▶ ∂X F also determines the mathematical structure (error control, sensitivity, convergence of
numerical methods...)



Dynamical response
Time-dependent:

Ẋ = F (X , εf (t)), X (0) = X∗

Ẋ ≈ ∂X F (X − X∗) + εf (t)∂εF

Duhamel formula: (Dyson/variation of constant/interaction picture/perturbation theory/...)

X (ε, t) = X∗ + ε

ˆ t

0
e∂X F (t−t′)(∂εF )︸ ︷︷ ︸

K(t−t′)

f (t ′)dt ′ + Ot(ε2)

= X∗ + ε(K ∗ f )(t) + Ot(ε2)

by extending K and f to zero for negative times (causal functions).
▶ For physically stable systems (eg damped oscillator), e∂X Ft → 0

▶ Validity of linear response clear (O independent on time)
▶ K̂(ω) well-defined (AC response)

▶ Quantum mechanics is purely oscillatory: e∂X Ft unitary
▶ Validity of linear response much more subtle
▶ K does not decay: K̂(ω)?



Dynamical polarizability
Consider a single electron in a localized potential (e.g. hydrogen atom)

H = − 1
2 ∆ + V

σ(H) = {λ0, λ1, . . . } ∪ R+

Start in ground state:

ψ(0) = ψ0, Hψ0 = λ0ψ0

turn on a small dynamical electric field

i∂tψ = Hψ + εf (t)VPψ

and observe the result

⟨VO⟩(t) = ⟨ψ(t),VOψ(t)⟩.

Eg dynamical polarizability

VO = xα, VP = xβ

Directly observable experimentally by light absorption (dipole approximation)



Linear response theory
Duhamel:

i∂tψ = Hψ + εf (t)VPψ

ψ(t) = e−iHtψ0 − εi
ˆ t

0
U(t, t ′)f (t ′)VPe−iHt′

ψ0dt ′

and therefore linear response: (Kubo, Green-Kubo...)

⟨VO⟩(t) = ⟨ψ0,VOψ0⟩ + ε

ˆ ∞

0
K (t − t ′)f (t ′)dt ′ + Ot(ε2)

K (τ) = −iθ(τ)
〈

VOψ0︸ ︷︷ ︸
observe

, e−i(H−λ0)τ︸ ︷︷ ︸
propagate

VPψ0︸ ︷︷ ︸
perturb

〉
+ c.c.,

θ the Heaviside function

Response is dictated by correlations/fluctuations



K (τ) and K̂ (ω)

K (τ) = −iθ(τ)
〈

VOψ0, e−i(H−λ0)τVPψ0

〉
+ c.c.,

K does not decay, but Fourier transform defined in the distributional sense

K (τ) = 0 for τ < 0: K is causal, Fourier transform can be computed as a limit:

K̂ (ω) = lim
η→0+

ˆ ∞

0
e i(ω+iη)τK (τ)dτ

= lim
η→0+

〈
ψ0,VO

(
ω + iη − (H − λ0)

)−1
VPψ0

〉
−

〈
ψ0,VP

(
ω + iη + (H − λ0)

)−1
VOψ0

〉
,

in the sense of distributions.
(unusual sign of Fourier transform, to match Schrödinger’s e−iEt )



The response function
K̂ (ω) = lim

η→0+

〈
ψ0,VO

(
ω + iη − (H − λ0)

)−1
VPψ0

〉
−

〈
ψ0,VP

(
ω + iη + (H − λ0)

)−1
VOψ0

〉
▶ At pole at each excitation energy λn − λ0, with λn eigenvalues of H, n > 0
▶ Nothing at ω = 0 (transition ψ0 → ψ0 corresponds to a gauge mode ψ0e−iα(t))
▶ Plemelj formula

lim
η→0+

1
ω + iη − λ

= p.v. 1
ω − λ

− iπδ(ω − λ)

When ω > −λ0, ImK̂ (ω) is continuous: ionization cross-section



Several non-interacting electrons

Start with N eigenfunctions ψ1(0), . . . , ψN(0) of H, and solve

i∂tψn = Hψn + εf (t)VPψn

⟨VO⟩(t) =
N∑

n=1

⟨ψn(t),VOψn(t)⟩.

K̂(ω) =
N∑

n=1

lim
η→0+

〈
ψn,VO

(
ω + iη − (H − λn)

)−1
VPψn

〉
−

〈
ψn,VP

(
ω + iη + (H − λn)

)−1
VOψn

〉
λ1

λ2

...

λN

λN+1

{
λN+2

occupied orbitals
(bound states)

ionization
energy

ionized states
(free electrons)

Energy

excitation
energies
λa − λi

▶ Pole at each transition energy λa − λi , i ≤ N, a > N
▶ Occupied-occupied transitions ψi → ψj , i , j ′ ≤ N don’t count (gauge modes)
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Electron interaction: Kohn-Sham density functional (DFT)
Quantum N-body problem intractable, replace with mean-field model.
Static problem (ground state)

Hρψn = λnψn, ⟨ψm, ψn⟩ = δmn

Hρ = − 1
2 ∆ + Vnuclei(x) +

ˆ
R3

ρ(y)
|x − y |

dy + vxc[ρ](x)

ρ(x) =
N∑

n=1
|ψn(x)|2

▶ vxc[ρ] exchange-correlation potential, e.g. Local Density Approximation
vxc[ρ](x) = vxc(ρ(x))

▶ Also admits a variational formulation

min
⟨ψm|ψn⟩=δmn

E (Ψ)

with λn as Lagrange multipliers
▶ E (ΨR) = E (Ψ) if R is unitary: U(N) symmetry group of the equation



Assumptions
d = 3. Assumptions:

1. Vnuclei is L2 + L∞
ε

2. LDA, vxc = e′
xc, exc C2, exc(0) = e′

xc(0) = 0
3. There is Ψ0 ∈ (H2)N , ⟨ψ0

m|ψ0
n⟩ = δmn, non-degenerate local minimizer up to rotation, in

the sense that, for all Ψ ∈ (H2)N with ⟨ψm|ψn⟩ = δmn,

E (Ψ) − E (Ψ0) ≥ γ min
R∈U(N)

∥Ψ − Ψ0R∥2

(independent of Aufbau principle)

▶ Existence of (possibly degenerate) minimizer from [Anantharaman-Cancès ’09] (under
additional hypotheses on exc)

▶ Restriction to particular model for the functional analysis, but method general:
▶ Works for magnetic fields (does not use specific real structure)
▶ Works for Hartree-Fock exchange (does not use the fact that H depends only on ρ, unlike

Dyson methods)



The Stiefel manifold

MN = {Ψ ∈ (L2)N , ⟨ψm|ψn⟩ = δmn}

Tangent space:

TΨMN = {U ∈ (L2)N , ⟨ψm|un⟩ + ⟨um|ψn⟩ = 0}
(L2)N = (Ran(Ψ)⊥)N︸ ︷︷ ︸

excitations

+ ΨA︸︷︷︸
gauge modes︸ ︷︷ ︸

TΨMN

+ ΨS︸︷︷︸
growth modes

with S and A the set of Hermitian and skew-Hermitian matrices (N = 1 ⇒ Rψ and iRψ)

E (Ψ) − E (Ψ0) ≥ γ min
R∈U(N)

∥Ψ − Ψ0R∥2

for all Ψ ∈ (H2)N ∩ MN implies that the hessian M of the energy is positive on (Ran(Ψ0)⊥)N



Time-dependent density functional theory (TDDFT)
Adiabatic TDDFT:

i∂tψn = Hρψn + εVP f (t)ψn

Linearize near equilibrium:

ψn = e−iλnt(ψ0
n + εun(t))

i∂tun = (Hρ0 − λn)un +
(

dH
dρ

dρ
dΨU

)
ψ0

n︸ ︷︷ ︸
(MdynU)n

+εf (t)VPψ
0
n + O(U2 + εU)

(
dρ
dΨU

)
(x) =

N∑
n=1

ψ0
n(x)un(x) + ψ0

n(x)un(x)

Mdyn is not C-linear; iMdyn ̸= Mdyni



Time-dependent density functional theory (TDDFT)
Adiabatic TDDFT:

J∂tψn = Hρψn + εVP f (t)ψn

Linearize near equilibrium:

ψn = e−Jλnt(ψ0
n + εun(t))

J∂tun = (Hρ0 − λn)un +
(

dH
dρ

dρ
dΨU

)
ψ0

n︸ ︷︷ ︸
(MdynU)n

+εf (t)VPψ
0
n + O(U2 + εU)

(
dρ
dΨU

)
(x) =

N∑
n=1

ψ0
n(x)un(x) + ψ0

n(x)un(x)

Mdyn is not C-linear; JMdyn ̸= MdynJ



Well-posedness
Theorem (DLL ’24)
Assume that f is continuous, and VP ∈ H2. Then, for any T > 0, there is ε0 > 0 such that,
for all ε ≤ ε0,

J∂tψn = Hρψn + εVP f (t)ψn, ψn(0) = ψ0
n

is well-posed in (H2(R3,C))N for times ≤ T.
▶ Suboptimal both in regularity and in existence time, but sufficient to define and study

linear response
▶ Strategy of proof: fixed-point in the Duhamel form of

J∂tun = (MdynU)n + εf (t)VPψ
0
n + O(U2 + εU)

in H2.
▶ Sufficient to study the linear equation

J∂tU = MdynU
and prove bounds like

∥U(t)∥H2 ≤ C(t)∥U(0)∥H2



The linearized equation

J∂tU = MdynU

▶ Mdyn is not C-linear (let alone skew-adjoint), so this is non-trivial
▶ “Realify” the space: ((L2)N ,CJ) → ((L2)N ,R)
▶ But we need complex vector space structure to do spectral theory, so complexify:

((L2)N ,R) → (((L2)N)2,Ci), introducing new imaginary unit i
▶ Different possible explicit representation of vectors and operators in (((L2)N)2,Ci);

splitting real and imaginary parts not necessarily best one, especially when Ψ0 is not real
▶ In quantum chemistry, Casida representation mostly used

Casida representation Real/imaginary representation

U + iV for U,V ∈ (L2(R3,C))N
(U + iV

U + iV

)
∈ (L2(R3,C))2N

(
Ur + iVr
Uj + iVj

)
∈ (L2(R3,C))2N

J
(

i 0
0 −i

) (
0 −1
1 0

)
U 7→ AU + BU

(A B
B A

) (
Ar + Br −Aj + Bj
Aj + Bj Ar − Br

)
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The linearized equation

J∂tU = MdynU

Mdyn C-linear on (L2)2N

▶ Still not a Schrödinger structure, but now a Hamiltonian structure
▶ Stability depends on positive definiteness of Mdyn (like in classical mechanics)
▶ If Mdyn is positive definite, then

e−JMdynt = M−1/2
dyn e−M1/2

dyn J M1/2
dynt M1/2

dyn

with M1/2
dyn J M1/2

dyn skew-adjoint
▶ Mdyn is not positive definite on L2 (only on (Ran(Ψ0)⊥)N), but the non-positive-definite

part is in (Ran(Ψ0))N , finite-dimensional
▶ Conclude using standard functional analysis tools (norm equivalences, interpolation)

∥U(t)∥H2 ≤ C(t)∥U(0)∥H2

with C polynomial (needed for distributional Fourier transforms)



Linear response

Refining the proof,

ρ(t) = ρΨ0(t)+εU(t) = ρ0 + ε

ˆ t

0
χ(t − t ′)VP f (t ′)dt ′ + Ot(ε2)

χ(t)VP = −θ(t) dρ
dΨ

(
e−tJMJ(1 − P0)VPΨ0)

with P0 projector on (Ran(Ψ0)), and M = (1 − P0)Mdyn(1 − P0).

Frequency response:

χ̂(ω)VP = lim
η→0+

− dρ
dΨ

(
1

M + i(ω + iη)J (1 − P0)VPΨ0
)
.

Excitation energies are poles of (M + i(ω + iη)J)−1 (spectrum of −JM)



Back to independent electrons

χ̂(ω)VP = lim
η→0+

− dρ
dΨ

(
1

M + i(ω + iη)J (1 − P0)VPΨ0
)
.

When independent electrons, in the Casida representation,

J Casida≃
(

i 0
0 −i

)
, M Casida≃

(
Ω 0
0 Ω

)
, (ΩU)n = Hρ0un − λnun

λ1

λ2

...

λN

λN+1

{
λN+2

occupied orbitals
(bound states)

ionization
energy

ionized states
(free electrons)

Energy

excitation
energies
λa − λi



Accuracy of TDDFT

Absorption spectrum of benzene (C6H6)and chlorophyll (C55H72O5N4Mg), D. Rocca ’07; Solid Argon, F. Sottile et al (2007)
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Beryllium
Be 1s22s2: two electrons in ψ1s , two in ψ2s .
▶ λ1s , λ2s , λ2p < 0
▶ λ2p − λ1s = λscatt − λ2s , λscatt > 0
▶ Eigenvalue i(λ2p − λ1s) embedded in continuous spectrum of non-interacting −JM
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Fermi’s golden rule: example
Generically, eigenvalue embedded in continuous spectrum turn into resonances upon
perturbation: Feshbach resonances ( ̸= shape resonances)

Elementary example

E0

ε t t · · ·
E0 /∈ [−2t, 2t] ⇒ bound state
E0 ∈ [−2t, 2t] ⇒ resonance

▶ The bound state at ε = 0 pumps energy to the propagating waves through resonant
coupling

▶ Mathematically nontrivial phenomenon, derivations in the physical literature often
“incomplete”

▶ In time, exponential decay of ⟨ψ0|e−iHt |ψ0⟩ in a special regime (Davies, Orth,
Sofer-Weinstein, . . . )

▶ In frequency, pole in the analytic continuation of the resolvent (Simon, . . . )



Fermi’s golden rule: assumptions

Let H = H0 + εH1, H0 with simple eigenvalue at E0:

H0 = E0|ψ0⟩⟨ψ0| +
ˆ
R
λdPλ.

Assume there is X ⊂ H sub-Hilbert such that

dPλ = p(λ)dλ

near E0, with p(λ) analytic from X to X∗. Also assume ψ0 ∈ X , H1 bounded from H to H and
from X to X∗

Exemple: X = exponentially localized functions, H0 local perturbation of Laplacian, H1
multiplication by exponentially localized function



Fermi’s golden rule: result

Theorem (Classical)
1. The Green function

G(z) = ⟨ψ0| 1
z − (H0 + εH1) |ψ0⟩

defined for Im(z) > 0 extends to a meromorphic function near E0 for ε small enough, and
has a simple pole at E (ε) = E0 + ε⟨ψ0|H1|ψ0⟩ + ε2∆E + O(ε3), with

∆E = p.v.
ˆ

⟨ψ0|H1pλH1|ψ0⟩
E0 − λ

dλ− iπ|⟨ψ0|H1pE0H1|ψ0⟩|2

2. The time evolution satisfies

⟨ψ0|e−i(H0+εH1)tψ0⟩ = e−iE(ε)t + ounif(1)
Proof: 1 by Schur complement, 2 by 1 + spectral concentration

Many applications and extensions



Fermi’s golden rule: interpretation
▶ Resonance = long-lived unbound state, with decay rate (to second order)

Γ = π|⟨ψ0|H1pE0H1|ψ0⟩|2

▶ In physics literature:

Γ = π|⟨ψ0|H1|ψf ⟩|2D(E0)

with ψf the “final states”, and D(E0) the density of such states at energy E0

▶ Correct upon proper interpretation (normalization of continuum eigenstates, average over
all possible eigenstates):

p(E0) =
ˆ

dkδ(λ(k) − E0)|ψk⟩⟨ψk | =
ˆ
λ(k)=E0

dk 1
|∇λ(k)|︸ ︷︷ ︸

D(E0)

|ψk⟩⟨ψk |

with ⟨ψk |ψk′⟩ = δ(k − k ′) (in the sense of distributions)



Application to TDDFT

χ̂(ω)VP = lim
η→0+

− dρ
dΨ

(
1

M + i(ω + iη)J (1 − P0)VPΨ0
)
.

J Casida≃
(

i 0
0 −i

)
M Casida≃

(
Ω 0
0 Ω

)
+

(
dH
dρ

dρ
dΨ ·

)
Ψ0︸ ︷︷ ︸

K

(ΩU)n = Hρ0un − λnun

Assume
1. There is a simple transition λa0 − λi0 at the same energy as a ionization λscatt − λj0 ,

i0, j0 ≤ N, λa0 eigenvalue, a0 > N, λscatt > 0
2. Total (Kohn-Sham potential) is exponentially localized (eg atoms)



Resonances in TDDFT
Theorem (DLL ’14)
χ̂(z) admits an analytic continuation in a neighborhood of λa0 − λi0 . If ∥K∥ is small enough, it
has a simple pole at distance O(∥K∥2) of λa0 − λi0 with a non-positive imaginary part given by
a Fermi golden rule expression.
(in the appropriate topologies)
Ideas of the proof:
▶ X : exponentially localized functions
▶ Need to continue (essentially) the resolvent of

M = − 1
2 ∆ + shift︸ ︷︷ ︸

M0

+ V + K︸ ︷︷ ︸
M1

▶ Resolvent of M0 extends analytically as a delocalizing operator (from X to X∗)
▶ V and the electron-electron interaction part K =

(
dH
dρ

dρ
dΨ ·

)
Ψ0 localize (map X∗ to X )

▶

(z − M)−1 = (z − M0)−1(1 − M1(z − M0)−1)−1

and 1 − M1(z − M0)−1 Fredholm on X



Extensions, perspectives

▶ Numerics
▶ What happens in a finite basis [Dupuy-Levitt ’21]
▶ How to compute resonances [Toulouse et. al. ’22, Duchemin-Levitt ’23]
▶ Periodic background [Duchemin et al. ’22]
▶ Non-perturbative dynamics

▶ Resonance structure instance of a general notion of effective dynamics of x ′ = (A + εB)x
with x(0) ∈ Null(A)

▶ Coulomb interaction (hybrids)
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