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Static response
Physical systems are characterized by their response properties

Mathematically: perturbation theory for F(X,¢) around equilibrium
F(X.,0)=0
Equilibrium perturbation:
F(X(e),e) =0.
Implicit function theorem:
X(e) = Xy — e(0xF) 0. F + O(£?)
derivatives evaluated at (X,,0).

» Expansion of observables to first order provide response coefficients (mechanical,
electrical, thermal, magnetic, optical...)

» OxF also determines the mathematical structure (error control, sensitivity, convergence of
numerical methods...)



Dynamical response
Time-dependent:

X = F(X,ef(t)), X(0) =X,
X =~ OxF(X — X,) + ef(t)0.F

Duhamel formula: (Dyson /variation of constant/interaction picture/perturbation theory/...)

t

X(g, t) — X* + 6/ eﬁxF(t—t’)(aEF) f(tl)dt/ + Ot(€2)

—_——
0 K(t—t')

= X, + (K * f)(t) + O(e?)
by extending K and f to zero for negative times (causal functions).

» For physically stable systems (eg damped oscillator), e?<t — 0
» Validity of linear response clear (O independent on time)
> R(w) well-defined (AC response)

» Quantum mechanics is purely oscillatory: e

> Validity of linear response much more subtle
» K does not decay: K(w)?

OxFt ynitary



Dynamical polarizability
Consider a single electron in a localized potential (e.g. hydrogen atom)

H=-IA+V
U(H):{Ao,kl,...}UR+

Start in ground state:

P(0) = vho, Hipo = Aotho

turn on a small dynamical electric field

0w = HY + ef (£) Vpy |

and observe the result

[(Vo)(t) = (1), Vou(t)). |

Eg dynamical polarizability
VO = Xas Vp = Xz

Directly observable experimentally by light absorption (dipole approximation)



Linear response theory
Duhamel:

i0p = HY + ef (t) Vpi

Y(t) = e Hiapy — si/t U(t, £')F(t') Vpe ™M yodt’
0

and therefore linear response: (kubo, Green-Kubo..)

(Vo) () = (o, Vo) +< / T Kt E)F(E)dE 4 O

K(T) = 7/9(7’) <V(’ﬂ/10, eii(HiAO)T Vp1/)o> + c.c.,

observe ~ Propagate  nertyrh

6 the Heaviside function

Response is dictated by correlations/fluctuations



K(7) and K(w)

K(r) = —io(r) (Vouo, e 2" Vpuip) + c.c.,

K does not decay, but Fourier transform defined in the distributional sense

K(7) =0 for 7 < 0: K is causal, Fourier transform can be computed as a limit:

K(w) = Iim/ e @M K (1)dr
0

n—0+

~1
= |lm <¢07 Vo(w-i- in—(H - Ao)) V7>1/Jo>
- <¢0, Vp (w +in+(H - /\o)>1V0¢o> ;

in the sense of distributions.

(unusual sign of Fourier transform, to match Schrédinger's ef"Et)



The response function

R(w) = lim <wo, Vo (i +in - (H - )\o))_IVP1/J0>

n—0+
-1
- <1/Jo, Vp (w +in+(H — /\o)> V0¢o>

> At pole at each excitation energy A, — Ao, with A\, eigenvalues of H, n > 0
> Nothing at w = 0 (transition 1)y — 1 corresponds to a gauge mode )pe~"*(*)
» Plemelj formula
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lim ——— =pv.—— —imd(w — A
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When w > —Xg, ImK(w) is continuous: ionization cross-section
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Several non-interacting electrons

Start with N eigenfunctions 1(0), ..., ¥n(0) of H, and solve

Energy
iatwn = Hwn + 8F(t)v?;"l/)n

ionized states

N (free electrons)
(Vo) (t) = E (¥n(t), Vouun(t)). o A\
ionization N+2
=1 energy AN+1) excitation
N 1 energies
~ . . o AN A s
K(w) = E lim ( ¥n, Vo w+in—(H=2X)) Vpin a—X
n=1 n—0 occupied orbitals | ® .

(bound states)

—1 o /.\2
- <wn» Vp (w +in+ (H - )\n)) V(91/}n> ° N

» Pole at each transition energy A\; — A;, i < N, a> N
» Occupied-occupied transitions ; — 1, i, < N don't count (gauge modes)
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Electron interaction: Kohn-Sham density functional (DFT)

Quantum N-body problem intractable, replace with mean-field model.

Static problem (ground state)
prn = )\nwny <'lpm7 wn> = (5mn

H, = _%A + Vnuclei(X) +/ p(y)
B X — Y

dy + vie[p](x)
N

p(x) = [n(x)?
n=1

> v..[p] exchange-correlation potential, e.g. Local Density Approximation
Vie[p](x) = vie(p(X))
» Also admits a variational formulation

min  E(W)
(Ym|Pn)=8mn

with A\, as Lagrange multipliers
> E(VR) = E(W) if R is unitary: U(N) symmetry group of the equation



Assumptions

d = 3. Assumptions:
1. Viuelei is L2 + L
2. LDA, vy = €., exc C?, eee(0) = €. . (0) =0
3. There is WO € (H2)N, (2 14)%) = §,,,, non-degenerate local minimizer up to rotation, in
the sense that, for all W € (H?)N with (¢|¢n) = Smn,

_ 0y > . _ WOPp2
E(W) — E(V) > 5 min_ [V~ VR

(independent of Aufbau principle)

> Existence of (possibly degenerate) minimizer from [Anantharaman-Cancés '09] (under

additional hypotheses on ey.)
» Restriction to particular model for the functional analysis, but method general:

> Works for magnetic fields (does not use specific real structure)
> Works for Hartree-Fock exchange (does not use the fact that H depends only on p, unlike

Dyson methods)



The Stiefel manifold

My = {V € (L)Y, (Wom|tn) = Smn}
Tangent space:
TuMy = {U € (L)Y, (m|un) + (um|tbs) = O}
(L>)N = (Ran(W)1)N + YA + V8

excitations gauge modes  growth modes

TyIMMy

with S and A the set of Hermitian and skew-Hermitian matrices (N = 1 = R and iRy))

E(V) — E(V%) > in ||W—WOR|?
(V) — E( ),ngU?N)II |

for all W € (H?)Y N My implies that the hessian M of the energy is positive on (Ran(W0)+)N



Time-dependent density functional theory (TDDFT)
Adiabatic TDDFT:
iatwn = pwn + SVPf(t)'l/}n

Linearize near equilibrium:

Yp = e—i)\,,t(wg + Eun(t))

dH dp
dp dV

(MaynU)n

idetn = (Hypo — An)un + ( ) YO +ef (t) Vpy2 + O(U? + €U)

(d" ) Zzpo %) + 00(x)n(x)

Mayy is not C-linear; iMayn 7# Mayni



Time-dependent density functional theory (TDDFT)
Adiabatic TDDFT:
Jat"/’n = pwn + SVPf(t)wn
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Well-posedness

Theorem (DLL '24)

Assume that f is continuous, and Vip € H?. Then, for any T > 0, there is g > 0 such that,
for all € < &g,

JOpn = Hythn + eVpf (),  n(0) = 4°

is well-posed in (H?(R3,C))N for times < T.
» Suboptimal both in regularity and in existence time, but sufficient to define and study
linear response
» Strategy of proof: fixed-point in the Duhamel form of

Jatun = (MdynU)n + 5f(t) VPQZ)S + O(U2 + EU)

in H?.
» Sufficient to study the linear equation

JOU = Mayn U
and prove bounds like
[U(0) [l < C(£)[[U(O) ]2



The linearized equation

10U = Mayn U

» Mgy is not C-linear (let alone skew-adjoint), so this is non-trivial

“Realify” the space: ((L2)N,C,) — ((L?)V,R)

» But we need complex vector space structure to do spectral theory, so complexify:
((L2)V,R) — (((L?)M)?,C;), introducing new imaginary unit i

> Different possible explicit representation of vectors and operators in (((L?)V)2,C;);
splitting real and imaginary parts not necessarily best one, especially when W is not real

v

» In quantum chemistry, Casida representation mostly used
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» In quantum chemistry, Casida representation mostly used

Casida representation Real /imaginary representation
. U+iv Ur + iV,
2R3 N 2(R3 2N T T 2(R3 2N
U+ iV for U,V € (L*(R>,C)) (U I.V)E(L (R%,C)) (Uj I.Vj)E(L (R%,C))

i 0 0 -1
J (o ) )
-— A B Ar+ B —Aj+ B;
U~ AU+ BU (g z) (Aj+Bj A — B




The linearized equation

10U = Mayn U

Mayn C-linear on (L2)2N
» Still not a Schrédinger structure, but now a Hamiltonian structure
> Stability depends on positive definiteness of M4y, (like in classical mechanics)
» If Mayn is positive definite, then

—IMaynt _ pg—1/2 M2 gM 2 1)2
€ v *Mdyn € a 4 Mdyn

with Mééi J l\/ljb/,fl skew-adjoint

» Mayn is not positive definite on L2 (only on (Ran(W°)+)N), but the non-positive-definite
part is in (Ran(W?))", finite-dimensional
> Conclude using standard functional analysis tools (norm equivalences, interpolation)

U0l < C(8)[[U(0) 1o

with C polynomial (needed for distributional Fourier transforms)



Linear response

Refining the proof,

t
p(t) = pwo)+eu(r) = Po + 8/ x(t = t')Vpf(t')dt' + O(c?)
0

x(t)Vp = *9(”% (e7MJ(1 — Py)VpW?)

with Py projector on (Ran(W°)), and M = (1 — Py)Mayn(1 — Py).
Frequency response:

d 1
2W)Vp = lim — 22

— — _(1—Py)VpVO).
n—0t dU (M+i(w+in)J( o) Ve >

Excitation energies are poles of (M + i(w + in)J)~! (spectrum of —JM)



Back to independent electrons

dp 1 0
K@)V = lim — v (/\/H—/(w+n7)J(l PO)VP"’>~

When independent electrons, in the Casida representation,

Casida 1 0 Casida /) 0
J T~ ((I) i)’ M =~ (O Q)’ (QU)pn = Hpoun — Aqup

Energy

ionized states
(free electrons)

ionization ‘ AN+2
o

energy AN+1) excitation
energies
AN °
N =N
occupied orbitals | ® .
(bound states) :
Ao

A1



Accuracy of TDDFT

I(w)

—— Norm-Conserving TDDFT
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Beryllium
Be 15%252: two electrons in 115, two in ¥os.
> A, )\25,)\2p <0
> )\2p - >\15 = )\scatt - )\251 )\scatt >0
> Eigenvalue i(A2, — A1s) embedded in continuous spectrum of non-interacting —JM



Beryllium
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Fermi's golden rule: example

Generically, eigenvalue embedded in continuous spectrum turn into resonances upon
perturbation: Feshbach resonances (# shape resonances)

€ t t

Eo ¢ [—2t,2t] = bound state
Ep € [-2t,2t] = resonance

» The bound state at ¢ = 0 pumps energy to the propagating waves through resonant
coupling

» Mathematically nontrivial phenomenon, derivations in the physical literature often
“incomplete”

> In time, exponential decay of (1p|e~"*|1yg) in a special regime (Davies, Orth,
Sofer-Weinstein, ...)

» In frequency, pole in the analytic continuation of the resolvent (Simon, ...)



Fermi's golden rule: assumptions

Let H = Hy + eHy, Hy with simple eigenvalue at Eq:

Ho = Eo|tbo) (Yol +/R/\dP,\-

Assume there is X C H sub-Hilbert such that
dPy = p(A\)dA

near Ey, with p()) analytic from X to X*. Also assume 9y € X, H; bounded from # to # and
from X to X*

Exemple: X = exponentially localized functions, Hy local perturbation of Laplacian, H;
multiplication by exponentially localized function



Fermi's golden rule: result

Theorem (Classical)
1. The Green function

6(2) = (ol —— = 4o}

(Ho + EHl)

defined for Im(z) > 0 extends to a meromorphic function near Ey for € small enough, and
has a simple pole at E(g) = Ey + e{1o|H1|tho) + e2AE + O(e3), with

AE :p.v,/w

oy A im| (o) Hype, Hi [to) |2

2. The time evolution satisfies

<w0|e_i(Ho+EHl)tw0> = e_iE(E)t + Ounif(l)
Proof: 1 by Schur complement, 2 by 1 + spectral concentration

Many applications and extensions



Fermi's golden rule: interpretation
» Resonance = long-lived unbound state, with decay rate (to second order)
[ = 7|(vo| Hipe, Hh [vo)

» In physics literature:

I = m|(sbo| Hi|vo¢)|* D(Eo)

with ¢ the “final states”, and D(Ep) the density of such states at energy Ey

» Correct upon proper interpretation (normalization of continuum eigenstates, average over
all possible eigenstates):

pUE) = [ koK)~ Exllpnitind = [ ey

D(Eo)

with (¥k|tg ) = 6(k — k') (in the sense of distributions)



Application to TDDFT

~ T dp 1 0
X(w)Vp = lim (I\/I—i— ot in)J(l Po) VpW ) .

Casida (2 O dH dp 0
M= T2y

(0 Q) +(dp dv )
—_——

K
(QU)H = Hpoun - >\nun

Assume

1. There is a simple transition A, — Aj, at the same energy as a ionization Agcatt — Aj.
fo,jo < N, A, eigenvalue, ag > N, Agcart > 0

2. Total (Kohn-Sham potential) is exponentially localized (eg atoms)



Resonances in TDDFT
Theorem (DLL '14)

X(z) admits an analytic continuation in a neighborhood of A, — A;,. If |K|| is small enough, it
has a simple pole at distance O(||K||?) of A\,, — \i, with a non-positive imaginary part given by
a Fermi golden rule expression.
(in the appropriate topologies)
Ideas of the proof:

> X: exponentially localized functions

> Need to continue (essentially) the resolvent of

M = —3A + shift+ V + K
—_—

Mo M
> Resolvent of My extends analytically as a delocalizing operator (from X to X*)
» V and the electron-electron interaction part K = (% 5—@ ) WO Jocalize (map X* to X)
>
(z=M)"" = (2= Mo)""(1 = Mu(z = Mo)")
and 1 — My(z — Mp)~! Fredholm on X



Extensions, perspectives

» Numerics

» What happens in a finite basis [Dupuy-Levitt '21]

> How to compute resonances [Toulouse et. al. '22, Duchemin-Levitt '23]
» Periodic background [Duchemin et al. '22]

» Non-perturbative dynamics

> Resonance structure instance of a general notion of effective dynamics of x’ = (A + ¢B)x
with x(0) € Null(A)
» Coulomb interaction (hybrids)
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