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General Nonlinear Schrödinger and other type Equations

Scattering!!

The beginning: Leonardo Da Vinci extensively examined the
phenomenon of wave scattering off objects. In his summation of
observations, he wrote:
”The air that is between bodies is full of the intersections
formed by the radiating images of these bodies.”
Remarkably, this statement encapsulates the essence of the two
fundamental meta-theorems of scattering theory.



Firstly, there is direct scattering: systems, however complicated,
break into subsystems with simpler and independent dynamics as
time approaches infinity. Secondly, all the information about the
system is carried into the asymptotic states. Consider light arriving
without any prior information from infinity. It interacts with the
painting of the Mona Lisa. As time approaches positive infinity,
the light becomes free, and the painting returns to a static state.
The reflected light contains all the information about the painting
extending to positive infinity in space.



Nonlinear Equations-New Beginning

Past works, see e.g. the detailed review to appear. Here we focus
on large/general data Scattering. The state of a physical system at
time t is given by:

ψ(t) ≡ U(t)ψ(0), ψ(0) ∈ H Hilbert space.

U(t) is assumed to be a unitary operator for simplicity, but NOT
LINEAR in general.
Asymptotic behavior: Either blows up in finite time, or converges
to independent channels:
(F) Free waves with dynamics U0(t).
(S) Solitons and other coherent Structures.
(W) Weakly localized waves, like self-similar sub-ballistic spread.
(C) Chaos ???



Nonlinear Equations- Large Data

NLS: Tao (2004-2014)

i
∂ψ

∂t
= −∆ψ(t)− |ψ|mψ, (4/n) < m < 4/(n − 2).

|ψ(t)|H1 ≲ 1, uniformly in t; spherically symmetric data.

Then,ψ(t)− e i∆tψ+ − ψWL(t) → 0 inH1(Rn), n ≥ 3.

ψWL is smooth for cubic NLS, n = 3,

ψWL = localized+ o(Ḣ1).

NLW:Collot-Duyckaert-Kenig-Merle (2014-2023), The critical case
dimension 6 (2024).

utt −∆u = |u|4/(n−2)u, data spherical symmetric, bounded energy,

u(t)− U0(t)u+ −
∑
j

λj(t)
−n/2+1S(x/λj(t)) + o(Ḣ1) → 0.

n ≥ 3. S is the unique ground state solution.



New Results

Time dependent interactions in any dimension

i
∂ψ

∂t
= H0ψ +N (|ψ|, x , t)ψ,

H0 = ω(p), v = −∇pω(p), p = −i∇x .

sup
t

|ψ(t)|H1
x
≲ 1.

∥Jf (x , t, p)e−iH0tNψ(t)∥2 ∈ L1(dt),

Then, ψ(t)− e iω(p)tψ+ − ψWL(t) → 0 inH1
x .

In the case where the Interaction is localized in space, we also have that

ψWL(t) ∈ Hs
x for large s, depending on regularity and decay of N .

ψWL(t) = ψL(t) + ψSS(t), i.e. localized plus ”self similar”.



In three or more dimensions, we do not need
localization of the interaction:

The main condition for the existence of the free channel is

sup
t

∥ψ(t)∥H1
x
≲ 1. sup

t
|N (|ψ|, x , t)ψ| ∈ Lax .

Here a should be small enough, so that

∥Jf (x , p)e+iH0tu∥La′ ≲ t−1−0∥u∥La .

We know less about the weakly localized part in the non-radial
case.



It’s All About The Jf For The Free Channel

Let
JC ≡ e−iH0tJf e

+iH0t

be a projection (smooth) on the Propagation Set of the Free
Channel in the extended phase-space and time. Then the existence
of the Free Channel Wave Operator follows if the following strong
limit exists:

Ω+
f ψ(0) ≡ lim

t→∞
U0(−t)JCU(t)ψ(0).



This result is very general. In three or more dimensions, it covers a
large class of scattering problems, linear and nonlinear. Here are
some examples: We get that all global solutions are asymptotic to
a free wave plus a weakly localized part. In 5 or more
dimensions, the WL part is in fact localized, for V decaying
fast enough in x . No conditions on the t dependence.
The localized part maybe time-dependent, yet it is probably the
best result has in this generality.
More subtle result is that for interactions which are quasi-periodic
in time, with sufficient decay of the eigenstates of the Floquet
operator, we have that Local Decay estimates hold on the
subspace of scattering states. (ω = p2).



The linear Schrödinger type equations of the form

i
∂ψ

∂t
= (ω(p) + V (x , t))ψ.



The time dependent Charge Transfer Potentials In this case
the hamiltonian describes a Quantum particle interacting with a
set of moving potentials at non collisional velocities. The
potentials are localized but can be time dependent:
Charge transfer Hamiltonians: Let Assumption of global existence
hold. When the space dimension n ≥ 3, the charge transfer

interaction N (x , t, ψ) =
N∑
j=1

Vj(x − tvj , t), where

Vj(x , t) ∈ L∞t L2x(Rn+1), j = 1, · · · ,N, with vj ̸= vl if j ̸= l ,
satisfies our conditions.

Proposition

Let assumptions above be satisfied. Then for every j = 1, · · · ,N,
ϵ ∈ (0, 1/2) and α ∈ (0, 1− 2/n), n ≥ 5, it follows that:



In the strong limit sense, and for allα, α′ ∈ (0, 1− 2/n),

1.

ψj ,+(x) := lim
t→∞

e itH0Fc(
|x − 2tP|

tα
≤ 1)ψj(t)exists inL

2
x(Rn)

(1)

ψj ,+(x) = lim
t→∞

e itH0Fc(
|x − 2tP|

tα′ ≤ 1)ψj(t); (2)

2. there exist N moving weakly localized parts,
ψwl ,j(t) ≡ ψwl ,j ,ϵ(t) such that the equation

lim
t→∞

∥ψj(t)− e−itH0ψj ,+(x)− ψwl ,j(t)∥L2x (Rn) = 0 (3)

holds true, and ψwl ,j(t), j = 1, · · · ,N, are moving weakly
localized parts around tvj satisfying

(e itP·vjψwl ,j(t), |x |e itP·vjψwl ,j(t))L2x (Rn) ≲ϵ t
1/2+ϵ, t ≥ 1.

(4)



Asymptotic Completeness for 3-body Quasi-particles
In this case, the hamiltonian is of the following form:

H0 = ω(p1) + ω(p2) + ω(p3).

H = H0 +
∑
i<j

Vij(xi − xj)

Asymptotic Completeness in this case means that the asymptotic
states converge (strongly) to a linear combination of all possible
channels of scattering. The possibilities are
(1)(2)(3); (12)(3); (13)(2); (1)(23). The asymptotic Hamiltonian
for the first channel is H0, the Free Channel. For the two cluster
decompositions the limiting hamiltonian is a bound state of the
pair moving with a constant speed, and the third particle is moving
away with a constant speed.



Self Similar Potentials

We start with a linear model{
i∂tψ = H0ψ + g(t)−2V ( x

g(t))ψ

ψ(x , g(t0)) = e−iA ln g(t0)ψb(x) ∈ L2x(Rn)
, n ≥ 3 (5)

for some t0 > 0 (t0 will be chosen later), g(t) ∈ C 2(R) satisfying
that there exists two positive constants cg ∈ (0, 1), ϵ ∈ (0, 1/2)
such that 

inf
t∈R

g(t) ≳ 1,

g(t) ∼ ⟨t⟩ϵ as t → ∞
g(t) ∼ tg ′(t) ∼ t2g ′′(t) as t → ∞
lim
t→∞

g(t)−2tg ′(t)
g(t) = cg

.



V (x) and H := H0 + V (x) satisfying that H has a unique
normalized eigenstate ψb(x) with an eigenvalue λ < 0 and

0 is regular for H

⟨x⟩Aψb(x) ∈ L2x
⟨x⟩V (x) ∈ L∞x ,V (x) ∈ L2x

where Px := −i∇x , A := 1
2(x · Px + Px · x) and Pc denotes the

projection on the continuous spectrum of H. We refer to the
system (5) as mass critical system(MCS).



Since g(t)−2V ( x
g(t)) ∈ L∞t L2x(R3 × R) when inf

t
g(t) > 0, due to

(SW20221), the channel wave operator

Ω∗
α := s- lim

t→∞
e itH0Fc(

|x − 2tPx |
tα

≤ 1)U(t, 0) (6)

exists from L2x(R3) to L2x(R3) for all α ∈ (0, 1/3), where Fc
denotes a smooth characteristic function.
Based on (5), we also consider a class of mixture models
i∂tψ = H0ψ +W (x)ψ + g(t)−2V ( x

g(t))ψ

ψ(x , t0) = ψd(x) + e−iA ln(g(t0))ψb(x) ∈ H1
x(Rn)

sup
t∈R

∥ψ(t)∥H1
x
≲ 1

(x , t) ∈ Rn×R.

(7)
W (x) satisfies that{
H0 +W (x) has a normalized eigenvector ψd(x) with an eigenvalue λ0 < 0

W (x) ∈ L2x(Rn)
.

(8)



We showed in (Sof-W3) that the weakly localized part,
asymptotically, has at least two bubbles: a non-trivial self-similar
part and a non-trivial localized part near the origin.



1. Let
ã(t) := (ψb(x), e

iA ln(g(t))ψ(t))L2x . (9)

Ã(∞) := lim
t→∞

e iλT (t)ã(t) (10)

exists.

2. Furthermore, there exists t0 > 0 such that with an initial
condition

ψ(t0) = e−iA ln(g(t0))ψb(x), (11)

|Ã(∞)| > 0 (12)

which implies
lim inf
t→∞

|c(t)| ≳ 1. (13)

Theorem
Let ã(t) be as in (9). If W (x),V (x),H satisfy (7) and g(t)
satisfies (6), then when n ≥ 5, ϵ ∈ (2/n, 1/2),

Ã(∞) := lim
t→∞

e iλT (t)ã(t) (14)

exists.



Furthermore,

ψw ,l(x , t) = c(t)e−iA ln(g(t))ψb(x)⊕ ψc(x , t) (15)

c(t) := (e−iA ln(g(t))ψb(x), ψw ,l(x , t))L2x , (16)

(e−iD ln(g(t))ψb(x), ψc(x , t))L2x = 0, (17)

where |c(t)| ≳ 1 and there exists M > 1 such that

lim inf
t→∞

|(ψc(x , t), ψd(x))L2x | ≥ c . (18)

Moreover, the g(t)-self-similar channel wave operator

Ω∗
gψ(0) := w - lim

s→∞
e isHe iA ln(g(T−1(s)))ψ(T−1(s)) (19)

exists in L2x and
Ω∗
gψ(0) = Ã(∞)ψb(x). (20)

These results extend to nonlinear perturbations (mass
super-critical) of the model above.



Nonlinear Examples

Nonlinear Schrödinger Equations- Free Channel WO and weak
localization in Radial case

N (x , t, ψ) = V (x , t) + G (x , t)|ψ|m +
|ψ|m′

1 + |ψ|n
, d ≥ 3,

with e.g. m = 1, or m large, and for a solution that is global and
uniformly bounded in H1.

N (x , t, ψ) = V (x , t) + G (x , t)|ψ|m, d = 1, 2.

In this case we need V ,G to have some decay in x .
The same is true for the NLKG equation.



Nonlinear Schrödinger Equations- Properties of Weakly
Localized part

For Localized in space Interactions (including radial symmetric
Nonlinear terms):
We have, quite generally that < |x | >t≲ t1/2+0 and the part of
the solution that spreads is self-similar( NLS).
Depending on the regularity of the potential, and analyticity of the
purely nonlinear term, in 3 or higher dimensions, the localized part
has high regularity.
The localized solutions are ”Mikhlin” type functions for the above
type Interactions: Quite Generally Aψ is uniformly bounded in L2x .
Here 2A = x · p + p · x is the generator of Dilations. In many cases
this holds for all powers of A.
In 5 or more dimensions, we have the strongest result: In this case
the solutions of NLS type equations, with interactions that decay
fast enough in x , the weakly localized part of the solution is
localized. The proof of this estimate is involved.



In one dimension, we cannot prove the existence of the free
channel, except in one very recent work, where the nonlinear terms
are defocusing, and of the right powers. In these cases the weakly
localized part can be shown to spread slower than t1/2 under
further conditions. This proof is much more complicated than the
standard situation.
Wave Equation In this case we can show the existence of the free
channel wave operator for localized interactions, and furthermore
the complete localization of the the weakly localized part.
The non-radial case is more complicated in three dimensions or
less. For the WE, we have no boundedness of the L2 norm. The
proof of localization requires d ≥ 4 and extra conditions on the
structure of the nonlinear terms. Localized metric perturbations
are allowed.



Existence of the free Channel decomposition Let us then
consider a system with dynamics U(t) which may be linear or not,
acting on initial data ψ(0), which leads to a global solution
ψ(t) = U(t)ψ(0).
In order to construct the free part of the solution at infinity, we
now introduce the free channel wave operator

Ω∗
F±ψ(0) = s − lim

t→±∞
e iH0tJfreeU(t)ψ(0). (21)

The key new idea is now to choose Jfree the ”right way”. We
would like to choose Jfree as a smooth projection on the region of
phase-space where the free solution concentrates.



A classical particle moves under the free flow according to

x(t) = x(0) + vt.

So, we are led to use |x − v(k)t| ≤ tα. Then, we choose

Jfree = Fc(
|x − 2pt|

tα
≤ 1). (22)

ω(k) = k2, v(k) = 2k , v(p) = −2i∇x , (23)

0 < α < 1. (24)

In the short-range scattering problems α can be chosen small. But
it is not possible in general; in particular in the long-range
scattering case, α cannot be small
(ifrim2022testing,lindblad2021asymptotics,lindblad2023modified,LS2015,LS2021).



Next, to prove the limit above exists, we use Cook’s argument:
Writing (Ω∗

F+
− I )ψ(0) = −

∫∞
0 e iH0t [FcN + F̃ ′]U(t)ψ(0),

then, we need to prove that the integral converges absolutely.
Now notice that by the Heisenberg formulation of QM, we have
that:

e i∆txe−i∆t = x + 2pt; ∂t{e i∆t(x − 2pt)e−i∆t} = 0.

Therefore,

DHG (x − 2pt) = i [−∆,G ] + ∂tG = 0,G arbitrary, (25)

e−i∆tG (x)e+i∆t = G (x − 2pt), (26)

e−i∆tG (x − 2pt)U(t) = G (x)e−i∆tU(t) (27)

From these identities, we derive

e−iH0t [FcN+F̃ ′]U(t)ψ(0) = F1(
|x |
tα

≤ 1)e+iH0t [N−α
t
F ′
1]U(t)ψ(0).

(28)



Therefore we need to prove the integrability (in norm) of the above
expression. It consists of two terms. The first one, coming from
the interaction term, is bounded by

∥F1∥L2x∥e
+iH0tNU(t)ψ(0)∥L∞x ≲ tnα/2t−n/2∥NU(t)ψ(0)∥L1,s .

(29)
This estimate gives the main condition on the interaction N . In its
abstract form it is: (t ≥ 1)

∥F1(
|x |
tα

≤ 1)F2(
∑
j

|p − τj | > t−β)U0(−t)Nψ(t)∥L2x ≲ t−1−ϵ.

Here the free dynamics is generated by H0 = ω(p), with thresholds
at τj . In three or more dimensions, with the standard Laplacian
generating the free flow, we do not need to localize away from the
thresholds. If the interaction term in localized in space (with
sufficient decay), then one can get the needed estimate also in 1
and 2 dimensions. Moreover, since we assume the solution is
uniformly bounded in H1, we can allow one derivative in the
interaction, on each side. Therefore terms like −∇igij(x , t)∇j can
also be incorporated with a suitable martix gij .



This expression is integrable in time if α is sufficiently small, and
the dimension n ≥ 3. The number of derivatives s depends on
dimension for the Wave equations of the Hyperbolic type, but is
zero for the Schroëdinger type. Also note that the effective
dimension n for some Hyperbolic equations is n − 1.
For this to hold we only need to know that NU(t)ψ(0) is uniformly
(in time) bounded in L1, and in fact a weaker condition is sufficient
for integrability. This estimate is very general, and it only uses
Lpx estimates on the solution and interaction terms, but not
point-wise decay of the interaction at infinity. Therefore it
does not require the assumption of spherical symmetry.



In fact, it is here that we need an a-priory estimate w.r.t. the full,
interacting flow. This is now done by using the method described
before, of proving Propagation Estimates by an appropriate
choice/s of Propagation Observables. In this case the answer is
very simple, we use as Propagation Observable the operator
Fc(

|x−2pt|
tα ≤ 1) itself.

To this end we compute:

∂t(U(t)ψ(0), e+i∆tF1(
|x |
tα

≤ 1)e−i∆tU(t)ψ(0)) = (30)

− (Ω∗(t)ψ(0),
α

t
F ′
1Ω

∗(t)ψ(0))+ (31)

2ℜ(Ω∗(t)ψ(0),F1e
−i∆tNψ(t)). (32)

Ω∗(t) ≡ e−i∆tU(t). (33)

The first term on the RHS is positive. The second term is
integrable as we showed in the previous step. Since the integral of
the LHS is uniformly bounded (by L2 norms), it follows that the F ′

1

term is also integrable. This is then used to control the term we
need for proving the existence of the free channel wave operator.



Weak Localization of the Non-Radiative Part

The key is to prove that outgoing waves, far away, can only be free
waves! The fact that the incoming waves far away vanish is easier
to verify.

∥e−itH0Ω∗
α,βψ(0)− Fc(

|x |
(t + 1)1/2+ϵ

≥ 1)P+F1(
√
t + 1|P| ≥ 1)

(34)

e−itH0Ω∗
α,βψ(0)∥L2x (Rn)

≤∥Fc(
|x |

(t + 1)1/2+ϵ
≥ 1)P+F1(

√
t + 1|P| < 1)e−itH0Ω∗

α,βψ(0)∥L2x (Rn)

+ ∥Fc(
|x |

(t + 1)1/2+ϵ
< 1)P+e−itH0Ω∗

α,βψ(0)∥L2x (Rn) (35)

+ ∥P−e−itH0Ω∗
α,βψ(0)∥L2x (Rn)



≤∥F1(
√
t + 1|P| < 1)e−itH0Ω∗

α,βψ(0)∥L2x (Rn)+

∥Fc(
|x |

(t + 1)1/2+ϵ
< 1)P+e−itH0Ω∗

α,βψ(0)∥L2x (Rn)

+ ∥P−e−itH0Ω∗
α,βψ(0)∥L2x (Rn) → 0

as t → ∞.



We arrive at (as t → ∞,

∥ψ(t)− ψwl(t)− e−itH0Ω∗
α,βψ(0)∥L2x (Rn)

=∥ψ(t)− Fc(
|x |

(t + 1)1/2+ϵ
< 1)ψ(t)− e−itH0Ω∗

α,βψ(0)∥L2x (Rn)

≤∥Fc(
|x |

(t + 1)1/2+ϵ
≥ 1)ψ(t)− e−itH0Ω∗

α,βψ(0)∥L2x (Rn)

≤∥ψ1(t)− Fc(
|x |

(t + 1)1/2+ϵ
≥ 1)P+F1(

√
t + 1|P| ≥ 1)e−itH0Ω∗

α,βψ(0)∥L2x (Rn)

+ ∥e−itH0Ω∗
α,βψ(0)− Fc(

|x |
(t + 1)1/2+ϵ

≥ 1)P+F1(
√
t + 1|P| ≥ 1)

(36)

e−itH0Ω∗
α,βψ(0)∥L2x (Rn)

+ ∥ψ2(t)∥L2x (Rn) + ∥ψ3(t)∥L2x (Rn) → 0, (37)



Local Decay in a New Way

We can prove Local Decay using the proved AC.
By AC the subspace of scattering states is identified by the range
of the wave operators Ω±.
For U(t, 0)Ω+ϕ, using incoming/outgoing decomposition, we split
U(t, 0)Ω+ϕ into four pieces:

U(t, 0)Ω+ϕ =P+e−itH0Ω∗
+Ω+ϕ+ P−e−itH0Ω∗

−Ω+ϕ+

P+(1− Ω∗
t,+)U(t, 0)Ω+ϕ+ P−(1− Ω∗

t,−)U(t, 0)Ω+ϕ

=:ψ1(t) + ψ2(t) + C1(t)U(t, 0)Ω+ϕ+ C2(t)U(t, 0)Ω+ϕ

with

Pc(t) = s- lim
s→∞

U(t, t+s)Fc(
|x − 2sP|

sα
≤ 1)U(t+s, t), on L2x(R5),

P+Ω∗
t,+ := s- lim

a→∞
P+e iaH0U(t + a, t)Pc(t) on L2x(R5),

P−Ω∗
t,− := s- lim

a→−∞
e iaH0U(t + a, t)Pc(t) on L2x(R5)



and

C1(t) := P+(1− Ω∗
t,+), C2(t) := P−(1− Ω∗

t,−).

It is not clear here whether Ω∗
t,+ and Ω∗

t,− exist with Pc(t) defined
only in one direction(t → ∞), but with P±, P±Ω∗

t,± exist on
L2x(R5). Here we also use the following time-dependent
intertwining property

Ω∗
t,±U(t, 0) = e−itH0Ω∗

± on L2x(R5). (38)



Lemma
If V satisfies decay and regularity assumptions, then

Cj(t) = Cjm(t) + Cjr (t), j = 1, 2 (39)

for some operators Cjm(s, u) and Cjr (s, u) satisfying

sup
t∈R

∥Cjr (t)∥L2x→L2x
≤ 1/1000, (40)

sup
t∈R

∥⟨x⟩−η(1− C1r (t)− C2r (t))
−1Cjr (t)⟨x⟩σ∥L2x→L2x

≲σ 1 (41)

for all η > 5/2, σ ∈ (1, 101/100) and

∥CjmU(t, 0)Ω+ϕ(x)∥L2x,t ≲ ∥ϕ∥L2x (R5). (42)

Then according to a similar argument as what we did for the
time-independent system, we finish the proof.



The proofs of compactness and smallness are long. They are based
on applying propagation estimates to the integral representation of
the corresponding wave operators. Then, decomposition to small
and large frequencies, and applying the various Propagation
estimates for the free flow.



Soliton Resolution

It is not true that the asymptotic localized solutions are solitons,
that is, time independent solutions up to gauge and other kinetic
symmetries. However, it maybe true that solitons are the generic
solutions. Suppose the solution is time periodic. Then, in the
nonlinear case, via Floquet theory, it corresponds to an embedded
eigenvalue in the continuous spectrum. It is possible to show quite
generally, using time dependent resonance theory that such
eigenvalues are non-generic. Same is true for quasi-periodic in time
potentials, provided local decay estimates can be proven for such
hamiltonians. We proved such estimates in 5 or more dimensions.
So, one can consider solutions which are localized, smooth and are
almost periodic in time. Such potentials can be approximated by
quasi-periodic potentials, on any finite time interval. So, we are
left with time dependence that is more general than
(asymptotically) almost periodic potentials. Like Chaotic? The
Petite Conjecture is the claim that such chaotic solutions do not
exist for dispersive/hyperbolic equations on Rn.



Open Problems

Breathers in Higher dimensions
Prove/disprove that equations (NLS, KG, WE or systems) with
nonlinear Interactions of the form N (ψ, t) have no Breather
solutions in dimension 2 or higher.
Quantum Ping-Pong
Prove/disprove that any interaction that is bounded, localized in
space, and non-negative has no localized solutions.
Inverse Scattering
(a) How to determine bound solutions energies and resonances
from a known nonlinear S-Matrix?
(b) How adding a nonlinear term to a linear equation can improve
the solution of the inverse problem with partial data?



THE END


