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NLS with a potential

We consider the cubic Schrödinger equation with a potential

i∂tu = −∂2
xu + Vu + |u|2u.

Denote
H = −∂2

x + V .

It is of great interest to study the global-in-time bounds and
long-time asymptotic behaviors for small initial data.
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1D cubic NLS with exponentially decaying potential

Theorem (P. Germain, F. Pusateri and F. Rousset, 2018)

Assume that V is decaying at a super-polynomial rate when
x → ±∞, H has no endpoint resonances at 0, there exists ϵ0 > 0
such that, if u0 satisfies ∥u0∥H3

x
+ ∥ũ0∥H1

λ
= ϵ < ϵ0, then a global

solution exists, which decays pointwisely:

∥u(t)∥L∞x ≲ ϵ0(1 + |t|)−1/2

and is globally bounded in L2 type spaces: for any time t,

∥f̃ ∥L∞t ([0,T ];L∞λ ) + ∥t−αf̃ ∥L∞t ([0,T ];H1
λ)

≲ ϵ

The approach in this paper is based on the use of the distorted
Fourier transform (Weyl-Kodaira-Titchmarsh theory), which will
allow the application of some Fourier analytical techniques to
nonlinear equations which involve external potentials.



Step potential: Scattering theory

We aim to extend this analysis to step-type potentials

V (x)→ a− as x → −∞ , V (x)→ a+ as x → +∞

with a± finite but a− ̸= a+.



1D cubic NLS with step potential

Consider
i∂tu = −∂2

xu + Vu +N (u)

where

N (u) = |u|2u and V = 1+(x) =

{
0 if x < 0

1 if x > 0

That is, the 1D NLS with cubic nonlinearity and Heaviside
potential.



Step potential: Scattering theory

We start by considering the standard Schrödinger operator

H = −∂2
x + V

as well as the equation
Hf = Ef



Step potential: Scattering theory
The spectrum σ(H) and resolvent set ρ(H) are

σ(H) = [0,+∞) , ρ(H) = C\σ(H)

To express the kernel of the resolvent operator (H − E )−1 for
E ∈ ρ(H), we introduce the convention

▶
√
E in the upper half-plane

▶
√
1− E in the right half-plane

E = 1E = 0
(H)

E plane

E = 1 E = 0
(H)

1 E plane



Step potential: Scattering theory
For E ∈ ρ(H), consider e±(x ,E ) solving

He± = Ee±

given by

e+(x ;E ) =

{
e i

√
E x + R+(E )e

−i
√
E x if x < 0

T+(E )e
−
√
1−E x if x ≥ 0

where

T+(E ) =
2
√
E√

E + i
√
1− E

, R+(E ) =

√
E − i

√
1− E√

E + i
√
1− E

and

e−(x ;E ) =

{
T−(E )e

−i
√
E x if x ≤ 0

e
√
1−E x + R−(E )e

−
√
1−E x if x > 0

where

T−(E ) =
2i
√
1− E√

E + i
√
1− E

, R−(E ) =
−
√
E + i

√
1− E√

E + i
√
1− E



Step potential: Scattering theory
These satisfy, for E ∈ ρ(H)

e±(x ,E ) exponentially decays as x → ±∞

Note that T+(E ) ̸= T−(E ), in fact

i
√
ET−(E ) = −

√
1− ET+(E )

so that
T−(1) = 0 , T+(0) = 0

Also the Wronskian W (E ) satisfies

W (E )

T−(E )T+(E )
= −
√
1− E + i

√
E

Since
W (E )

T−(E )T+(E )
̸= 0 at E = 0, 1

there are no endpoint or embedded resonances. This is also called
the generic case.



Step potential: Scattering theory

For E ∈ ρ(H), the kernel of the resolvent (H − E )−1 is

(H − E )−1(x , y) =
1

W (E )

{
e−(x ,E )e+(y ,E ) if x < y

e−(y ,E )e+(x ,E ) if y < x

By Stone’s formula

1

2πi

∮
(H − E )−1(x , y) dE = δ(x − y)

where integration is around the contour



Step potential: Scattering theory

This gives

1

2πi

∫ +∞

E=0
[(H−(E−i0))−1(x , y)−(H−(E+i0))−1(x , y)] dE = δ(x−y)

With
E = k2 = µ2 + 1

this jump in the resolvent kernel can be re-expressed to give

δ(x−y) = 1

2π

∫ +∞

k=0
e+(x , k)e+(y , k) dk+

1

2π

∫ +∞

µ=0
e−(x , µ)e−(y , µ) dµ



Step potential: Distorted Fourier transform
This gives two branches of the distorted Fourier transform
associated to the operator H:

(F+f )(k) = f̃+(k) =
1√
2π

∫ +∞

y=−∞
e+(y , k) f (y) dy

(F−f )(µ) = f̃−(µ) =
1√
2π

∫ +∞

y=−∞
e−(y , µ) f (y) dy

F f = f̃ = (f̃+(k), f̃−(µ))

The inverse is

(F−1g)(x) =
1√
2π

[ ∫ +∞

k=0
e+(x , k)g+(k)dk +

∫ +∞

µ=0
e−(x , µ)g−(µ)dµ

]
for g = (g+(k), g−(µ)).
The distorted Fourier transform diagonalizes H:

H = −∂2
x + V = F−1

(
k2 0
0 µ2 + 1

)
F .



Step potential: Scattering theory
Using the conversions

µ =

{
i
√
1− k2 if 0 < k < 1√
k2 − 1 if k > 1

, k =
√

1 + µ2

We can express, for k ≥ 0

e+(x , k) =

{
e ikx + R+(k)e

−ikx if x < 0

T+(k)e
iµx if x > 0

where

T+(k) =
2k

k + µ
, R+(k) =

k − µ

k + µ

and for µ ≥ 0

e−(x , µ) =

{
T−(µ)e

−ikx if x < 0

e−iµx + R−(µ)e
iµx if x > 0

where

T−(µ) =
2µ

k + µ
, R−(µ) =

−k + µ

k + µ



Step potential: Scattering theory

For later reference, we can rewrite these into free and outgoing
(but endpoint vanishing) pieces

e+(x , k) =(e ikx − e−ikx)1−(x) ← free

+ T+(k)(e
−ikx1−(x) + e iµx1+(x)) ← outgoing

e−(x , k) =(e−iµx − e iµx)1+(x) ← free

+ T−(µ)(e
−ikx1−(x) + e iµx1+(x)) ← outgoing



Step potential: Decay estimate

Lemma (Pointwise decay)

Under our assumptions on the potential, for t ≥ 1,

∥e itHh∥L∞ ≲
1

|t|1/2
∥h̃+∥L∞ +

1

|t|1/2
∥h̃−∥L∞

+
1

|t|3/4
∥∂k h̃+∥L2 +

1

|t|3/4
∥∂µh̃−∥L2

Lemma (Enhanced local decay)

Under our assumptions on the potential, for t ≥ 1,

∥⟨x⟩−1e itHh∥L∞x ≲
1

|t|
∥h̃+∥H1 +

1

|t|
∥h̃−∥H1 .



Step potential: Cubic interaction
Recall the cubic NLS

i∂tu = Hu +N (u), N (u) = |u|2u

becomes, with f = e itHu,

i∂t f = e itHN (e−itH f )

Taking the distorted Fourier transform,

i∂t f̃+(k) = e itk
2F+[N (e−itH f )](k)

i∂t f̃−(µ) = e it(µ
2+1)F−[N (e−itH f )](µ)

Into the nonlinearity N (•) substitute

[e−itH f (•, t)](x) = 1

2π

∫ ∞

0
e−itk2

e+(x , k)f̃+(k) dk

+
1

2π

∫ ∞

0
e−it(µ2+1)e−(x , µ)f̃−(µ) dµ



Step potential: Cubic interaction

This gives the following representation for the solution, where we
replace (k , µ) with (ℓ, ν), (m, ξ), and (n, σ)(

i∂t f̃+(k)

i∂t f̃−(µ)

)
=

∫∫∫ ∫
y

(
e itk

2

e+(y , k)

e it(µ
2+1)e−(y , µ)

)(
e−itℓ2e+(y , ℓ)f̃+(ℓ)

e−it(ν2+1)e−(y , ν)f̃−(ν)

)
(

e itm
2

e+(y ,m)f̃+(m)

e it(ξ
2+1)e−(y , ξ)f̃−(ξ)

)(
e−itn2e+(y , n)f̃+(n)

e−it(σ2+1)e−(y , σ)f̃−(σ)

)
dy

which actually represents 16 different terms, top/bottom in each of four
places and accordingly, the triple integral is over ℓ or ν, m or ξ, n or σ.



Step potential: Cubic interaction

Thus we obtain

i∂t f̃+(k) =

∫∫∫
e it(k

2−ℓ2+m2−n2)µ++++(k, ℓ,m, n)

· f̃+(ℓ)f̃+(m)f̃+(n) dℓ dm dn

+ e−it

∫∫∫
e it(k

2−ν2+m2−n2)µ+−++(k , ν,m, n)

· f̃−(ν)f̃+(m)f̃+(n) dν dm dn

+ · · · (6 more)

where

µ++++(k , ℓ,m, n) =

∫ +∞

y=−∞
e+(y , k)e+(y , ℓ)e+(y ,m)e+(y , n) dy

and similarly, for the other 15 terms.



Step potential: Cubic interaction

Using that

1̂±(ξ) = ±
1

iξ
+ πδ(ξ)

we can calculate each term. For example, when we split each e+
into free and outgoing parts

e+ = e+,F + e+,O , e+,F (y , k) = (e iyk − e−iyk)1−(y)

we obtain for the e+,F only part

∑
α,β,γ,ϵ∈{−1,1}

αβγϵ

∫ 0

−∞
e−αikyeβiℓye−γimyeϵiny dy

=
∑

α,β,γ,ϵ∈{−1,1}

αβγϵ

(
1

(αk + βℓ− γm + ϵn)i
+ πδ(αk + βℓ− γm + ϵn)

)



Step potential: Cubic interaction

Since (α, β, γ, ϵ)→ (−α,−β,−γ,−ϵ) keeps the sign of αβγϵ
unchanged by flips the sign of the pv term,

= π
∑

α,β,γ,ϵ∈{−1,1}

αβγϵ δ(αk + βℓ− γm + ϵn)

so that this term behaves like a product of four free (no potential)
linear Schrödinger solutions.



1D cubic NLS with step potential

The bootstrap space is:

∥f ∥X =∥f̃+(k)∥L∞k>0
+ ∥f̃−(µ)∥L∞µ>0

+ ⟨t⟩−1/4+∥|1− k |0+∂k f̃+(k)∥L2k>0
+ ⟨t⟩−1/4+∥∂µf̃−(µ)∥L2µ>0

+ ⟨t⟩0−∥⟨k⟩3f̃+(k)∥L2k>0
+ ⟨t⟩0−∥⟨µ⟩3f̃−(µ)∥L2µ>0

The extra factor |1− k |0+ is needed to deal with

µ =

{
i
√
1− k2 if k < 1√
k2 − 1 if k > 1



1D cubic NLS with step potential

Theorem (J. Holmer and Z. Z., ongoing work)

Consider the 1D cubic Schrödinger equation with the Heaviside
step potential V (x) described above:

i∂tu = −∂2
xu + Vu + |u|2u.

We have:
There exists 0 < ϵ0 ≪ 1 such that for all ϵ ≤ ϵ0 and u0 with

∥u0∥H3 + ∥xu0∥L2 ≤ ϵ,

then a global solution u ∈ C (R,H1(R)) exists, with
u(0, x) = u0(x); this solution satisfies the sharp decay rate

∥u(t)∥L∞x ≲ ϵ(1 + |t|)−1/2,

∥f ∥X ≲ ϵ.



Black/dark solitons of the 1D Gross-Pitaevskii equation

Consider the 1D Gross-Pitaevskii equation

i∂tu + ∂2
xu + (1− |u|2)u = 0.

The black/dark solitons of the 1D GP equation are solitary wave
with non-zero asymptotics when |x | → ∞, which brings the
challenge of non-decaying property of the linearized operator as
|x | → ∞:

Uc(x) :=

√
2− c2

2
tanh(

√
2− c2

2
x) + i

c√
2
.

It is called a grey soliton when c ̸= 0, and a black soliton when
c = 0.



Black/dark solitons of the 1D Gross-Pitaevskii equation

▶ L. Di Menza and C. Gallo (2007), Linear stability of black
solitons

▶ F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets (2008),
Orbital stability of the black soliton

▶ F. Béthuel, P. Gravejat, and D. Smets (2015), Asymptotic
stability in the energy space for dark solitons using
hydrodynamics formulation, does not apply to black solitons

▶ P. Gravejat and D. Smets (2015), Asymptotic stability of the
dark/black soliton, weak convergence in time in H1



Black/dark solitons of the 1D Gross-Pitaevskii equation
Let u = Uc + w . Write

W =

(
W1

W2

)
=

(
w
w

)
,

and denote the vector Schrödinger operator

H = H0 + V =

(
∂2
x 0
0 −∂2

x

)
+

(
V+ V−
−V− −V+

)
,

where

V+ = 1− 2|Uc |2, V− = −U2
c .

The linearized Gross-Pitaevskii equation around the dark/black
soliton can be written as

i∂tW +HW = {nonlinear}.

Compared to the linearization around the bright soliton, this
linearized (matrix) operator H has non-zero and step-like
asymptotes at ±∞.



Black/dark solitons of the 1D Gross-Pitaevskii equation

It is expected that the perturbation of size O(ϵ) will evolve as a
”spreading shelf” of length O(t). This is indicated in numerical
simulations in Ablowitz-Nixon-Horikis-Frantzeskakis (2011), where
the perturbations of dark solitons under additional small forcing is
observed via numerics. Hence we need to consider some L2-based
functional space that is truncated to be supported away from zero.



Black/dark solitons of the 1D Gross-Pitaevskii equation



Black/dark solitons of the 1D Gross-Pitaevskii equation

A linear toy model of linearizing around Ψ(x) ≡ 1: Taking
u(t, x) = Ψ(x) + w(t, x) = 1 + w(t, x), and writing
w(t, x) = f (t, x) + ig(t, x), we obtain the following linear part:

∂t

(
f
g

)
=

(
0 −∂2

x

∂2
x − 2 0

)(
f
g

)
.



Black/dark solitons of the 1D Gross-Pitaevskii equation

Taking the (flat) Fourier transform, we can see

∂2
t f̂ = −ξ2(ξ2 + 2)f̂ ,

∂2
t ĝ = −ξ2(ξ2 + 2)ĝ .

In low frequency, the linear model has a wave-like behavior. We
can solve out

f̂ (t, ξ) = cos(ξ
√

ξ2 + 2t)f̂ (0, ξ) +
ξ sin(ξ

√
ξ2 + 2t)√

ξ2 + 2
ĝ(0, ξ),

ĝ(t, ξ) = cos(ξ
√

ξ2 + 2t)ĝ(0, ξ)−
√
ξ2 + 2 sin(ξ

√
ξ2 + 2t)

ξ
f̂ (0, ξ).



Black/dark solitons of the 1D Gross-Pitaevskii equation

When |ξ| ≪ |t|−1/2,

g(t, x) ∼ (cos(
√
2ξt)ĝ(0, ξ))ˇ

− i

2
sgn(x) ⋆ (

√
2 sin(

√
2ξt)f̂ (0, ξ))ˇ

∼ (cos(
√
2ξt)ĝ(0, ξ))ˇ

−
√
2

4
sgn(x) ⋆ ((e

√
2iξt − e−

√
2iξt)f̂ (0, ξ))ˇ

The second term on the RHS indicates the existence of the
”spreading shelf” of length O(t) at the linear level.

∥g(t, x)∥L2x = ∥ĝ(t, ξ)∥L2ξ ≳ |t|1/2.



Thank you!


