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NLS with a potential

We consider the cubic Schrodinger equation with a potential
Oy = —02u + Vu + |ul?u.

Denote
H=-0>+V.

It is of great interest to study the global-in-time bounds and
long-time asymptotic behaviors for small initial data.
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1D cubic NLS with exponentially decaying potential

Theorem (P. Germain, F. Pusateri and F. Rousset, 2018)

Assume that V is decaying at a super-polynomial rate when

x — F00, H has no endpoint resonances at 0, there exists eg > 0
such that, if ug satisfies ||uo|| 3 + HLTOHHi = € < €, then a global
solution exists, which decays pointwisely:

lu(t) iz S o1+ [2]) 72
and is globally bounded in L? type spaces: for any time t,

HFHLﬁo([O,T];Li") + Ht%FHL?"([OJ]:Hi) Se

The approach in this paper is based on the use of the distorted
Fourier transform (Weyl-Kodaira-Titchmarsh theory), which will
allow the application of some Fourier analytical techniques to
nonlinear equations which involve external potentials.



Step potential: Scattering theory

We aim to extend this analysis to step-type potentials
V(x) > a- as x— —oo, V(x) = a; as x— +oo

with ai finite but a_ # a,.



1D cubic NLS with step potential

Consider
i0;u = —02u+ Vu + N (v)

where

0 ifx<O

N(u)=|u*u and V:1+(X):{1 >0

That is, the 1D NLS with cubic nonlinearity and Heaviside
potential.



Step potential: Scattering theory

We start by considering the standard Schrodinger operator
H=-02+V

as well as the equation
Hf = Ef



Step potential: Scattering theory
The spectrum o(H) and resolvent set p(H) are

o(H) =1[0,+00),  p(H) =C\o(H)

To express the kernel of the resolvent operator (H — E)~! for
E € p(H), we introduce the convention

» /E in the upper half-plane
» /1 — E in the right half-plane

E plane 1—E plane

o(H) a(H)




Step potential: Scattering theory
For E € p(H), consider ey (x, E) solving

Hei:Eei
given by
(x: E) eVEX L R (E)e ™VEX ifx<0
e X; =
T, (E)e Vi~Ex if x>0
where
2V E E—-iv1—E
TAE)zL, RJF(E):\F’—
VE+iV1—E VE+ivV1—E
and
(x: E) T_(E)e 'VEX if x<0
e_(x; =
eVITEX L R (E)e VI EX ifx>0
where
T (E)= 2ivVI—E R(E) = —VE+iv1—E
) VE+ivi—E’ ) VE+iV1I—E



Step potential: Scattering theory
These satisfy, for E € p(H)

ex(x, E) exponentially decays as x — +o0
Note that T (E) # T_(E), in fact
iVET_(E)= —V1— ET,(E)

so that
T_(1)=0, T,0)=0
Also the Wronskian W(E) satisfies
W(E) VIZE+i
_ W) ATE4iE
T_(E)T4(E)
Since W(E)
2 ) 40 at E=0,1
T(ET(E)

there are no endpoint or embedded resonances. This is also called
the generic case.



Step potential: Scattering theory
For E € p(H), the kernel of the resolvent (H — E)~1 is

_ 1 e_(x,E)es(y,E) ifx<y
(H =B = {e(y, E)e.(x.E) ify<x

By Stone's formula

1

2ri

(H—E)(x,y) dE = 6(x — y)

where integration is around the contour
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Step potential: Scattering theory

This gives
1 [t

i ey [(H—(E=i0)) ™ (x,y)~(H—(E+i0))*(x,y) dE = §(x~y)

With
E=kKk=p?+1
this jump in the resolvent kernel can be re-expressed to give
1 +oo 1 +o0

) = 5 | estekenbRdkg- [ e tepebrom du
— lj‘:




Step potential: Distorted Fourier transform

This gives two branches of the distorted Fourier transform
associated to the operator H:

N = FW == [ e Gm
1 [t
(F=H)m) = £-(n) = 7= /y:oo e—(y, 1) f(y) dy

The inverse is
+o0

Fra == | erx g bk [ e (e (n)d]

u=0

for g = (g1(k), &-(1))-
The distorted Fourier transform diagonalizes H:

He—2rv—r1(K 0 Vr
X 0 u?+1



Step potential: Scattering theory
Using the conversions

ivl—k? if0<k<1 5
p= . ) k=+vV1+p
Vk2 -1 ifk>1

We can express, for k >0

ikx R.(k —ikx ifx<0
e+(x,k)={e * Relk)e™™ ifx

T (k)emx if x>0
where ok P
—p
T (k)= ——, Ry(k)=-—
+(k) P +(k) P
and for 4 >0
(x. 1) T_(u)e % if x<0
e_(x,p) = . ) _
a e "M+ R_(u)e'™™ if x>0
where 5 Kt
0 —k+p
T (u)=-—""—, R_(p)=
(1) P (1) P



Step potential: Scattering theory

For later reference, we can rewrite these into free and outgoing
(but endpoint vanishing) pieces

e (x, k) =(e™ — e7™)1_(x) — free
+ T (k)(e ™ 1_(x) + "1, (x)) < outgoing
e_(x, k) =(e " — &)1, (x) + free

+ T_(p)(e™1_(x) + "1, (x)) <+ outgoing



Step potential: Decay estimate

Lemma (Pointwise decay)
Under our assumptions on the potential, for t > 1,

1 -
H _
e Al 0 S W”MHLM + |t|1/2Hh—||L°°
=+ ‘t’3/4Hakh+HL2 + | ‘3/4"8 h HL2

Lemma (Enhanced local decay)
Under our assumptions on the potential, for t > 1,

1) ™A = 1Bl

[t]



Step potential: Cubic interaction
Recall the cubic NLS

i0cu = Hu+N(u), N(u)=|ulu
becomes, with f = etHy,
i0,f = ™ N (e7 ™ F)
Taking the distorted Fourier transform,

i0:F, (k) = e™ FLIN (e ™ )] (k)

0 () = " WHFDF_N (e )] (n)
Into the nonlinearity N(e) substitute

[e ™ F(e, £)](x) = % /000 e,itk26+(X7 K)Fy (k) dk

1 [~ _ -
to [ e W e () () dp
™ Jo



Step potential: Cubic interaction

This gives the following representation for the solution, where we
replace (k, 1) with (¢,v), (m,§), and (n, o)

i0:F, (k) et e y,k) e*’”ze+(y,) L (0)
(AE) = I ] (552 (s 56
( e e, (y, m)F, (m) ) ( e+(y, mf.(n) ) J

“E e (y,)F-(¢)) \e ™ e (y,0)f-(0)

which actually represents 16 different terms, top/bottom in each of four
places and accordingly, the triple integral is over £ or v, mor &, n or o.




Step potential: Cubic interaction

Thus we obtain

i0,F. (k) :/// eit(k2fe2+m2*"2)/~t++++(k757 m, n)

(e (n)dldmdn

/// 2_y +m —n )H+7++(kay7m’n)

o (v)f(m)fy(n) dv dmdn

+---(6 more)
where
o0 .
pg+++(k, €, m, n) = / er(y, k)ex(y, O)es(y, mer(y, n) dy
y=—00

and similarly, for the other 15 terms.



Step potential: Cubic interaction

Using that

— 1

1.(§) = iE + m(€)
we can calculate each term. For example, when we split each ey
into free and outgoing parts

e =errteno,  err(y.k) = (" — e )1 (y)

we obtain for the e, r only part

0
E Oéﬁ’)/G / e—aikyeﬂifye—'yimyeeiny dy
oy ,ee{~1,1} -

1
a,Byy,ee{-1,1} (ak + Bl — ym + en)i



Step potential: Cubic interaction

Since (o, 8,7, €) = (—a, —B, —7, —¢€) keeps the sign of afye
unchanged by flips the sign of the pv term,

= Z afved(ak + L —ym+ en)
o,B,y,ee{-1,1}

so that this term behaves like a product of four free (no potential)
linear Schrodinger solutions.



1D cubic NLS with step potential

The bootstrap space is:

1F1lx = (kg + 17 () e
+ ()7L — kO (k )IIL§>O+<t>_1/4+||3uf—(u)llLi
)

0— 0—
(OR3P A (K iz_, + (O I (W)l 2,
The extra factor |1 — k|9 is needed to deal with

{i\/l—kQ if k<1
/,L:

>0

Vk2 -1 ifk>1



1D cubic NLS with step potential

Theorem (J. Holmer and Z. Z., ongoing work)

Consider the 1D cubic Schrodinger equation with the Heaviside
step potential V/(x) described above:

i0iu = —02u + Vu + |ul?u.

We have:
There exists 0 < ey < 1 such that for all € < ¢y and ug with

luol| s + lIxuol| 2 <€,

then a global solution u € C(R, H*(R)) exists, with
u(0, x) = up(x); this solution satisfies the sharp decay rate

lu(t) e < e(1+[e)) 72,

Iflx S e



Black/dark solitons of the 1D Gross-Pitaevskii equation

Consider the 1D Gross-Pitaevskii equation
i0eu + 02u+ (1 — |u*)u=0.

The black/dark solitons of the 1D GP equation are solitary wave
with non-zero asymptotics when |x| — oo, which brings the
challenge of non-decaying property of the linearized operator as
|x| = oo:

V2 —c? 2 —c2 +,c

Uc(x) := 5 tanh(

It is called a grey soliton when ¢ # 0, and a black soliton when
c=0.



Black/dark solitons of the 1D Gross-Pitaevskii equation
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Orbital stability of the black soliton
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Black/dark solitons of the 1D Gross-Pitaevskii equation
Let v = U. + w. Write

() ()

and denote the vector Schrodinger operator
92 0 Vi V_
wemerv=(G ) (V)

Ve =1-2U]? V_=-U2

where

The linearized Gross-Pitaevskii equation around the dark/black
soliton can be written as

i0:W + HW = {nonlinear}.

Compared to the linearization around the bright soliton, this
linearized (matrix) operator H has non-zero and step-like
asymptotes at +oo0.



Black/dark solitons of the 1D Gross-Pitaevskii equation

It is expected that the perturbation of size O(e) will evolve as a
"spreading shelf” of length O(t). This is indicated in numerical
simulations in Ablowitz-Nixon-Horikis-Frantzeskakis (2011), where
the perturbations of dark solitons under additional small forcing is
observed via numerics. Hence we need to consider some L?-based
functional space that is truncated to be supported away from zero.



Black/dark solitons of the 1D Gross-Pitaevskii equation

core soliton ' ' inner region !
- 2 fouter " ! 1 ~outer
i ' -
region |_region
'

= e 0 ' moving shelf '
S
-2 ‘
=50 0 50




Black/dark solitons of the 1D Gross-Pitaevskii equation

A linear toy model of linearizing around W(x) = 1: Taking
u(t,x) = V(x) + w(t,x) =1+ w(t, x), and writing
w(t, x) = f(t,x) + ig(t, x), we obtain the following linear part:

o (g)= ("2 ) (5)



Black/dark solitons of the 1D Gross-Pitaevskii equation

Taking the (flat) Fourier transform, we can see
Oif = —€(& +2)f,
0ig = —€*( +2)g.

In low frequency, the linear model has a wave-like behavior. We
can solve out

~ ~ H 2
F(t,€) = cos(EV/E2 + 26)7(0,€) + fs'”iﬁg 204(0,¢),

g(t,€) = cos(/€2 + 2t)g(0, €) — V€2 + 2ssin( g\/git)

£(0,¢).



Black/dark solitons of the 1D Gross-Pitaevskii equation

When [¢| < [t]7Y/2,

g(t.x) ~ (cos(V2¢)(0, )"
— L sgn(x) * (Vasin(vV2£0)F(0,€))"
~ (cos(v2£1)g(0,€))”
V2 () « (€2 — eV 7(0,€))

The second term on the RHS indicates the existence of the
"spreading shelf” of length O(t) at the linear level.

lg(t. )iz = 8, )l 2 [£[2.



Thank you!



