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Two-solitons with logarithmic separation

Consider (NLS,) ‘ iup 4 Uy — You + |ulP"lu=10

720, p>2,p#5

e note (NLS,) is well-posed in H'(R).

First consider v = 0. For (NLS), we have:

soliton solitons:  u(t, x) = e"Q(x), Q(x) ~ e M as x| = o0
can boost: u(t, X) = ei(vx+0(t))Q(X — Vt) (also translate, scale, phase rotate)

multi-soliton solutions ([Martel-Merle 06]; [Cote-Martel-Merle 11]): e.g.,
fu(t,)) —e?[Q(-—2)+Q(-+ )] [[m — 0, z(t) ~ct (ast— o0)

[Nguyen 19]: (NLS,) also admits such a solution with | z(t) ~ 2log t

- the non-free asymptotic motion arises from nonlinear (attractive)
interaction of the solitons through their tails

— this construction also works in higher dimensions

- such a solution was previously known in the integrable case p = 3
(double-pole solution)
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Two-solitons with logarithmic separation
Consider (NLS,) ‘ iUy + Uy —You+ |ulPlu=0] v>0, p>2,p#5

Thm [G-Inui]:

If v < 2, (NLS,) admits a solution satisfying (as t — c0)
o llu(t-) =€ [Q( =)+ al+3)]lm S %
o |z(t) —2logt| <1

If v > 2, (NLS,) admits no such solution.

Remarks:

@ feature: the (repulsive) potential-soliton interaction is the same size
as the (attractive) soliton-soliton interaction

@ we expect such solutions should exist for all v < 2

@ thresholds: the “action” S = E + M of such solution is S(u) = 25(Q).
If v < 2, (NLS,) has a (even) ground state Q, with S(Q,) < 25(Q)
@ our construction builds on [Nguyen 19] — here | will try to explain

how the additional potential-soliton interaction enters the picture

o take p < 5 to avoid complication arising from soliton instability .



Approximate solution

@ 4 parameters:

~ 1 —x ds _ 1 — 2
-scale A(s)~1: rescaley =%, 9 =z, /\—yaerp_1

- phase 0(s) ~s: withu(t,x)= AT el w(s,y), (NLSy)is
i0sw + Ow — Ayow + [w|P~Tw — i%/\w—i— (1—0)w=0 ‘

— position z(s) > 1
- velocity |v(s)| < 1
@ approximate solution: P = P(y; z(s), v(s)) = x [P1 + P,]
= x(yD) [e207DQ(y = 5) + e 507Dy + )]
where x cuts off a neighbourhood of y = 0
o itserror: Ep = iO,P + P — XxdP + |PPTIP — iAAP + (1 )P

MA in
=eir=3m. /\_/'lQ(y — %)Jr reflection m~ 29-12: M= — ”?y
v y

_Hp|P—1p — |P1 |p—1p] — |p2‘p—1p2 (nonlinear interaction)

+ error terms from cut-off x
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Construction of true solution

@ solve (NLS,) backwards from time s = s, with final data

w(sy,y) = Py: 2(s7), v(sy)),
Asg) =1, 0(sr) =0, with z(sf), v(sr) to be chosen

@ express solution as ‘ w(s,y) = P(y; z(s), v(s)) + &(y, s) ‘

with parameters z(s), v(s), A(s), 0(s) to be chosen

@ goal: establish uniform estimates

€l <5 lz—2logs| <1 V()] S5

s

for s € [so, s¢], so fixed, s — 00

@ then the existence of the desired solution follows from a compactness
argument (a la [Martel-Merle 06], [Nguyen 19])
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Parameter modulation
e express the PDE for the remainder term in the frame of a soliton: with

E(y:5) = wly, s) = Ply; 2(s), v(s)) = €30 (s, y — 3),
(NLS,) reads | idsn — Ln+ NL(n) + m- My + Ep + (1 — A)yd_zn =0

with linearized operator L} = —0] +1— pQ’~'(y) +vd_:
and the approximate solution error written as Ep = €30/~ Ep(s,y — 2)

e dynamics of 3 parameters \(s), 0(s), z(s) (but not yet v(s)!) are
determined by imposing 3 orthogonality conditions:

]0 =(n,Q = (n,yQ = (n,iNQ) \

e coercivity: [[£]|%, ~ ||n]|2, < “almost conserved”

~Y
linearized energy + localized momentum
< 1

g
e ODE estimates from computing (9;n, {Q, yQ, iNQ}):
3 +]0-1] sk Jz-2v S BB, @)

e so we must still somehow control |(1, iQ')|. Need [(n, iQ)| S ;o
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Perturbed eigenfunction
e problem is to control |(n, iQ')|

e observation: Q' lies in the nullspace of the free linearized operator:
LtQ' =0, LT = 70)2, +1—pQr(y)
o our actual linearized operator is perturbed by the potential:

Ly =L +~0_:

e idea: replace Q' with the perturbed eigenfunction

o we need quite detailed properties:

e rough sizes:
0<y,le” T, — Q| Se? IT,(=%)| Se:

~ ~

o refined upper and lower bounds:
H§

2149 — yTF 2] (1-o(1) < Ly, < 22 (14 o(1))
114y — VTF ] (1-o(1)) < [1 - T"i?] < 55 (1+o(1))

— obtained by variational and ODE methods
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Estimating (n, iT,)

e so we replace (1, iQ') — (n, iT,); now we must control the latter
e using PDE ids — Lin+ NL(n) + m- My +Ep + (1 — A)yo—zn =0,
&, i) = =(Lfn, T.)

+5 [@ F'(Pyn, @) + (2 — 2v)(i@, 0yn)]

+<5P7 Z> + 0(52|0g5)
(Lin, T2) = (n, LI T2) = (n, v2Tz) = O(vz|Inlln) = O(e™5) = O(5)
— this is exactly the reason for replacing (n, iQ') — (n, iT,)
%[(U F'(P)n, @) + (2 —2v)(i@, 9yn)]

Lim f, (s, )Oy(s, y)(1 - )(.J,;L) dy = 40(35)

e we try to impose \<5~p, TH <3

~ §3

1
|N slogs

then time integration yields the desired estimate |(n, iT,)
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Emergence of the soliton motion law

sowe want [(Ep, 10T, (- — NS 53

recall: the approximate solution error is
Epm e50—3)m. A71Q(y— z)
+[PIPTIP = [P1[PTIP — |PofPT TPy
+(20,x0, + c)yxp)(P1 + P)
key computation:

(€p, e HFDT( + 5)) = Ci [V + f(2)e "] + O(35)

where |f(z) =G, {1 — Cp(:f)}

captures the competing soliton-soliton and potential-soliton interactions

for the desired estimate, impose motion law | v(s) = —f(z(s))e~ %)

using our refined eigenfunction estimate:

v<3 = f(z) >0 (netattraction)
v>2 = f(z) <0 (netrepulsion)
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Final step: land on the correct trajectory

e suppose v < 3,50 f(z) > 0 (attractive)

o the final position z(sf) and velocity v(sf) must still be chosen to ensure
the desired uniform estimates hold

e this argument proceeds as in [Nguyen 19]:
z=2
v=—f(z)e*
E=v-F(z),  F)= [Ff()e d

- our desired trajectory is the separatrix with £ = 0

- our dynamical system { } has conserved energy

- so choose v(s¢) = /F(z(sf))

- z(sf) is chosen by continuity argument to ensure |z(s) — 2logs| < 1
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Some concluding remarks

@ summary: in this approach, the soliton-potential interaction is
mediated through the eigenfunction of L* perturbed by the potential

@ non-existence for v > 2 (repulsive motion law) is proved using similar
estimates

@ t — —oo behaviour of this solution?
° % < v < 2? Attractive delta potential?

@ other potentials and higher dimensions?
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