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Two-solitons with logarithmic separation

Consider (NLSγ) iut + uxx − γδu + |u|p−1u = 0 γ ≥ 0, p > 2, p ̸= 5

• note (NLSγ) is well-posed in H1(R).

First consider γ = 0. For (NLS0), we have:

soliton solitons: u(t, x) = eitQ(x), Q(x) ∼ cpe−|x| as |x| → ∞

can boost: u(t, x) = ei(vx+θ(t))Q(x− vt) (also translate, scale, phase rotate)

multi-soliton solutions ([Martel-Merle 06]; [Côte-Martel-Merle 11]): e.g.,

∥u(t, ·)− eiθ
[
Q(· − z

2 ) + Q(·+ z
2 )
]
∥H1 → 0, z(t) ∼ ct (as t → ∞)

[Nguyen 19]: (NLS0) also admits such a solution with z(t) ∼ 2 log t

– the non-free asymptotic motion arises from nonlinear (attractive)
interaction of the solitons through their tails

– this construction also works in higher dimensions

– such a solution was previously known in the integrable case p = 3
(double-pole solution)
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Two-solitons with logarithmic separation
Consider (NLSγ) iut + uxx − γδu + |u|p−1u = 0 γ ≥ 0, p > 2, p ̸= 5

Thm [G-Inui]:
If γ < 3

2 , (NLSγ) admits a solution satisfying (as t → ∞)

• ∥u(t, ·)− eiθ
[
Q(· − z

2 ) + Q(·+ z
2 )
]
∥H1 ≲ 1

t

• |z(t)− 2 log t| ≲ 1

If γ > 2, (NLSγ) admits no such solution.

Remarks:

feature: the (repulsive) potential-soliton interaction is the same size
as the (attractive) soliton-soliton interaction

we expect such solutions should exist for all γ < 2

thresholds: the “action” S = E +M of such solution is S(u) = 2S(Q).
If γ < 2, (NLSγ) has a (even) ground state Qγ with S(Qγ) < 2S(Q)

our construction builds on [Nguyen 19] – here I will try to explain
how the additional potential-soliton interaction enters the picture

take p < 5 to avoid complication arising from soliton instability
3 / 11



Approximate solution
4 parameters:
– scale λ(s) ≈ 1: rescale y = x

λ , ds
dt =

1
λ2 , Λ = y∂y + 2

p−1

– phase θ(s) ≈ s : with u(t, x) = λ− 2
p−1 eiθw(s, y), (NLSγ) is

i∂sw + ∂2
yw − λγδw + |w|p−1w − i λ̇λΛw + (1 − θ̇)w = 0

– position z(s) ≫ 1
– velocity |v(s)| ≪ 1

approximate solution: P = P(y; z(s), v(s)) = χ [P1 + P2]

= χ(|y|)
[
ei

v
2 (y−

z
2 )Q(y − z

2 ) + e−i v2 (y+
z
2 )Q(y + z

2 )
]

where χ cuts off a neighbourhood of y = 0

its error: EP = i∂sP + ∂2
yP −���λγδP + |P|p−1P − i λ̇λΛP + (1 − θ̇)P

= ei
v
2 (y−

z
2 )m⃗ · M⃗Q(y − z

2 )+ reflection m⃗ ≈


λ̇/λ
ż − 2v
θ̇ − 1
v̇

, M⃗ = −


iΛ
i∂y
1
y


+|P|p−1P − |P1|p−1P1 − |P2|p−1P2 (nonlinear interaction)

+ error terms from cut-off χ
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Construction of true solution

solve (NLSγ) backwards from time s = sf , with final data

w(sf , y) = P(y; z(sf ), v(sf )),

λ(sf ) = 1, θ(sf ) = 0, with z(sf ), v(sf ) to be chosen

express solution as w(s, y) = P(y; z(s), v(s)) + ξ(y, s)

with parameters z(s), v(s), λ(s), θ(s) to be chosen

goal: establish uniform estimates

∥ξ∥H1 ≲ 1
s |z − 2 log s| ≲ 1 |v(s)| ≲ 1

s

for s ∈ [s0, sf ], s0 fixed, sf → ∞

then the existence of the desired solution follows from a compactness
argument (à la [Martel-Merle 06], [Nguyen 19])
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Parameter modulation
• express the PDE for the remainder term in the frame of a soliton: with

ξ(y, s) = w(y, s)− P(y; z(s), v(s)) = ei
v
2 (y−

z
2 )η(s, y − z

2 ),

(NLSγ) reads i∂sη − L+z η + NL(η) + m⃗ · M⃗η + ẼP + (1 − λ)γδ− z
2
η = 0

with linearized operator L+z = −∂2
y + 1 − pQp−1(y) + γδ− z

2

and the approximate solution error written as EP = ei
v
2 (y−

z
2 )ẼP(s, y − z

2 )

• dynamics of 3 parameters λ(s), θ(s), z(s) (but not yet v(s) !) are
determined by imposing 3 orthogonality conditions:

0 ≡ ⟨η,Q⟩ ≡ ⟨η, yQ⟩ ≡ ⟨η, iΛQ⟩

• coercivity: ∥ξ∥2
H1 ∼ ∥η∥2

H1 ≲ “almost conserved”
linearized energy + localized momentum
≲ 1

s2

• ODE estimates from computing ⟨∂tη, {Q, yQ, iΛQ}⟩:∣∣∣ λ̇λ ∣∣∣+ ∣∣∣θ̇ − 1
∣∣∣ ≲ log s

s2 , |ż − 2v| ≲ log s
s2 +|⟨η, iQ′⟩|

• so we must still somehow control |⟨η, iQ′⟩|. Need |⟨η, iQ′⟩| ≲ 1
s log s
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Perturbed eigenfunction
• problem is to control |⟨η, iQ′⟩|
• observation: Q′ lies in the nullspace of the free linearized operator:
L+Q′ = 0, L+ = −∂2

y + 1 − pQp−1(y)

• our actual linearized operator is perturbed by the potential:

L+z = L+ + γδ− z
2

• idea: replace Q′ with the perturbed eigenfunction L+z Tz = νzTz

• we need quite detailed properties:

• rough sizes:
0 < νz ≲ e−z ∥Tz − Q′∥H1 ≲ e−

z
2 |Tz(− z

2 )| ≲ e−
z
2

• refined upper and lower bounds:
2
γ [1 + γ −

√
1 + 2γ] (1 − o(1)) ≤ ∥Q′∥2

2
c2
pe−z νz ≤ 2γ

γ+2 (1 + o(1))

1
γ [1 + γ −

√
1 + 2γ] (1−o(1)) ≤

[
1 − Tz(− z

2 )

cpe
− z

2

]
≤ γ

γ+2 (1+o(1))

– obtained by variational and ODE methods
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Estimating ⟨η, iTz⟩

• so we replace ⟨η, iQ′⟩ 7→ ⟨η, iTz⟩; now we must control the latter

• using PDE i∂sη − L+z η + NL(η) + m⃗ · M⃗η + ẼP + (1 − λ)γδ− z
2
η = 0,

d
ds ⟨η, iTz⟩ = −⟨L+z η, Tz⟩

+ 1
2

[
⟨η · F ′′(P̃)η, Q′⟩+ (ż − 2v)⟨iQ′, ∂yη⟩

]
+⟨ẼP , Tz⟩ + O( 1

s2 log s )

• ⟨L+z η, Tz⟩ = ⟨η, L+z Tz⟩ = ⟨η, νzTz⟩ = O(νz∥η∥H1) = O(e−z 1
s ) = O( 1

s3 )

– this is exactly the reason for replacing ⟨η, iQ′⟩ 7→ ⟨η, iTz⟩

• 1
2

[
⟨η · F ′′(P̃)η, Q′⟩+ (ż − 2v)⟨iQ′, ∂yη⟩

]
≈ d

ds Im
∫
R η(s, y)∂yη(s, y)(1 − χ)

(
|y|
log s

)
dy = d

dsO(
1
s2 )

• we try to impose |⟨ẼP , Tz⟩| ≲ 1
s3

• then time integration yields the desired estimate |⟨η, iTz⟩| ≲ 1
s log s

8 / 11



Emergence of the soliton motion law

• so we want |⟨EP , ei
v
2 (·−

z
2 )Tz(· − z

2 )⟩| ≲
1
s3

• recall: the approximate solution error is

EP ≈ ei
v
2 (y−

z
2 )m⃗ · M⃗Q(y − z

2 )
+|P|p−1P − |P1|p−1P1 − |P2|p−1P2

+(2∂yχ∂y + ∂2
yχρ)(P1 + P2)

• key computation:

⟨EP , e−i v2 (·+
z
2 )Tz(·+ z

2 )⟩ = C1 [v̇ + f (z)e−z ] + O( 1
s3 )

where f (z) = C2

[
1 − γ

Tz(− z
2 )

cpe−z

]
captures the competing soliton-soliton and potential-soliton interactions

• for the desired estimate, impose motion law v̇(s) = −f (z(s))e−z(s)

• using our refined eigenfunction estimate:

γ < 3
2 =⇒ f (z) > 0 (net attraction)

γ > 2 =⇒ f (z) < 0 (net repulsion)
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Final step: land on the correct trajectory

• suppose γ < 3
2 , so f (z) > 0 (attractive)

• the final position z(sf ) and velocity v(sf ) must still be chosen to ensure
the desired uniform estimates hold

• this argument proceeds as in [Nguyen 19]:

– our dynamical system
{

ż = 2v
v̇ = −f (z)e−z

}
has conserved energy

E = v2 − F (z), F (z) =
∫∞
z f (z ′)e−z′dz ′

– our desired trajectory is the separatrix with E = 0

– so choose v(sf ) =
√

F (z(sf ))

– z(sf ) is chosen by continuity argument to ensure |z(s)− 2 log s| ≲ 1
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Some concluding remarks

summary: in this approach, the soliton-potential interaction is
mediated through the eigenfunction of L+ perturbed by the potential

non-existence for γ > 2 (repulsive motion law) is proved using similar
estimates

t → −∞ behaviour of this solution?
3
2 ≤ γ ≤ 2? Attractive delta potential?

other potentials and higher dimensions?
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