Variation of pointead
p-adic Ceresa classes

ongoing joint work with Wanlin Li



Which cycle classes are useful tor
detecting non-torsion Ceresa cycles?



Ftale Ceresa classes

X/K a curve with a basepoint x € X(K).

_descending central series
_ qion(+Qy_. 5
L = Lie (n1 (Xz;x)) /T

/,/' Hlet(Xl?JQf)
0>V, >L->Vi—0

N2V JusT

f-adic Ceresa class Cer(X,x) € HY(Gg,Vy @ V,).
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Corey—Ellenberg—Li:
it K =C((t)), then Cer(X,x) = 0.

Also holds for K a p-adic field with £ # p.
In fact, H1 (G, Vy @ V) = 0.

Reason: weights = every extension of V; by V, splits uniquely.

What if £ = p?



Generic non-triviality of p-adic Ceresa
classes

m: X — S a smooth proper relative curve defined over a p-adic
field K, x:S — X a section.

Theorem (B.—Li, in progress):
If X — S satisfies a big monodromy condition, then the set of

s € S(K) such that Cer(X;,x(s)) # 0 is open and dense in S(K).




Generic non-triviality of p-adic Ceresa
classes

m: X — S a smooth proper relative curve defined over a p-adic
field K, x:S — X a section.

Theorem (B.—Li, in progress):
It X — S satisfies a big monodromy condition, then the set of

s € S(K) such that Cer(X;,x(s)) # 0 is open and dense in S(K).

Hain—Matsumoto: if X — S satisties a different big monodromy
condition, then Cer (Xn,x(n)) * 0.
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 The family of curves y3 = x* + 2tx% + 1 over Al \ {+1}.
« Laga—Snidman = X; has non-torsion Ceresa cycle for all but finitely
many t € Q, \ {£1}.

* Our result = X; has non-torsion Ceresa class for t in an open dense
set.



How does L vary as (X, x) varies
in a family?



Fontaine’s functor D,

If V is a nice representation of Gk, Fontaine attaches to it a
vector space D, (V) endowed with:

* some semilinear algebraic data;
* a filtration on Dy (V).
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Fontaine’s functor D,

__de Rham

IfVisa nice’?epresentation of Gg, Fontaine attaches to it a

vector space D, (V) endowed with:
_.--discrete (¢, N, Gg)-module

e some semilinear algebraic datg;
* a filtration on Dy (V).

““Hodge filtration

The original representation VV can be reconstructed from these
two extra structures on Dy, (V).



Reinterpreting Cer(X,x) = 0
(X, x) a pointed curve as before.
0>V, ->L->V,-0

0- Dpst(Vz) — Dpst(L) - Dpst(Vl) -0



Reinterpreting Cer(X,x) =0
(X, x) a pointed curve as before.
0>V, ->L->V,-0

0- Dpst(Vz) — Dpst(L) - Dpst(Vl) -0

Weights = unique splitting iy compatible with semilinear
algebraic data. (Y is the pst-splitting.)

Consequence: Cer(X,x) = 0 & ¥ compatible with filtrations.
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Backtom: X - S, x:S - X a family of pointed curves.
There is a sequence of Q,-local systems on Sg;:
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where L is the Lie algebra attached to (X;, x(s)).
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Variation of semilinear algebraic data

Backtom: X - S, x:S - X a family of pointed curves.
There is a sequence of Q,-local systems on Sg;:

0-V,>L->V;->0

where L is the Lie algebra attached to (X;, x(s)).

Fact: L is
de Rham.

Fors,s" € S(K) sufficiently close, D¢ (ILg) = Dpyge(ILgr)
compatibly with semilinear-algebraic data.
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Variation of filtration

Have a similar sequence

0>V, > L->V, >0

of filtered vector bundles with integrable connection on §S.

Fact: £ and LL
are associated.

Forall s € S(K), Dpst(ILs) ¢ = L compatibly with filtrations.



Parallel transport

For s, s’ € S(K) sufficiently close, can identify the fibres of £ via
parallel transport

V ., -
TS,S’.LS — LS’

Let ®(s’) be the filtration on L, corresponding to the given
filtration on L.

So Dyst(ILgr) = Dyt (Lg) compatibly with semilinear algebraic
data, and its filtration corresponds to ®(s").






p-adic period maps
Fix s € S(K) and a small neighbourhood U € S(K). The map

®: U — G, = {filtrations on L; compatible with Lie bracket}

is called the p-adic period map. Itis analytic.

Let G;(Y) € G, be the subset of filtrations compatible with the
pst-splitting Y of
0- Dpst(vz,s) - Dpst(ILs) - Dpst(vl,s) -0



A period map criterion

Lemma:
For s’ € U; we have Cer(XSr,x(S’)) =0iff d(s") € G, ().




A period map criterion

Lemma:

For s’ € Us we have Cer(XSr,x(s’)) =0iff d(s") € G, ().

Proof: the identifications of the sequences
0 = Dpst(Vz,5r) = Dpse(Lgr) = Dpse(Vy ) = 0
0- Dpst(vz,s) - Dpst(ILs) - Dpst(vl,s) -0

are compatible with pst-splittings. We saw that Cer(XSr,x(S’)) =
0 iff the pst-splitting is compatible with filtrations.



Large image of period maps
The set of s’ € U, with Cer(XSr,x(s’)) #+ 0 is either

open and dense in Ug  if im(®) € G,(y)
1) else



Big monodromy



Comparison with complex period maps

Embed K inside C. Let Q; € S(C) be a contractible open
neighbourhood of s. Using complex-analytic parallel transport
in Lc, we obtain a complex analytic period map

De: g — gs,(C



Comparison with complex period maps

Embed K inside C. Let Q; € S(C) be a contractible open
neighbourhood of s. Using complex-analytic parallel transport
in Lc, we obtain a complex analytic period map

De: g — gs,(C

Lemma:

im(Pc)?%" = (im(P)**)¢

Reason: the period maps are given by the same power series.




Monodromy

11 (S(C); s) acts on L ¢ by parallel transport, hence on G, .

Llemma:

im(®)%%" contains the m; (S(C); s)-orbit of ®(s) (i.e. the Hodge
filtration on L ¢).

Reason: the complex period map extends to a universal
covering of S(C).




Big monodromy
The group of Lie algebra automorphisms of L ¢ is an extension
15 Ve ®Vose = Aut(Lsc) = GSp(Vysc) = 1

We let G © Aut(L; ) denote the Zariski-closure of the image of

the monodromy representation w1 (S(C); s) —» Aut(Ls¢), and let
G' be the intersection of G with V; ;¢ @ Vy 5.

Definition:
m:X = S has big monodromy if ' € FO(V;sc ® Vas0)-




The main theorem

Theorem (B.—Li):
Suppose that m: X — S has big monodromy. Then the set of
s € S(K) with Cer(Xs,x(s)) # 0 is open and dense in S(K).




The main theorem

Theorem (B.—Li):
Suppose that m: X — S has big monodromy. Then the set of
s € S(K) with Cer(Xs,x(s)) # 0 is open and dense in S(K).

Proof sketch:
* Big monodromy = ®(s) is not fixed by G'.

* = G - P(s) € Gg ¢ contains two different filtrations on L ¢ with
the same induced filtration on V, ;.

* At most one filtration can lie in G, ().

+ = im(Pc)?* € Gs(Y)c, so im(P)** & G ().




Future directions

* Generalise to unpointed Ceresa classes.

* Give explicit one-parameter families where the big
monodromy condition is satisfied.

* Give explicit infinite families of curves over Q with non-trivial p-
adic Ceresa class. (cf. Laga—Shnidman, Qiu-Zhang)






