The Rank of the Normal Function of the Ceresa Cycle

Richard Hain

Duke University
ICERM
Brown University
May 16, 2024

The Ceresa cycle

Throughout C will be a smooth projective curve (over \mathbb{C}) of genus $g \geq 2$. For each $x \in C$ the Abel-Jacobi map

$$
\alpha_{x}: C \rightarrow \mathrm{Jac} C
$$

takes y to the divisor class of $y-x$. Denote its image by C_{x}. This is an algebraic 1 -cycle in $\operatorname{Jac} C$. Let ι be the involution $u \mapsto-u$ of $\mathrm{Jac} C$. Set

$$
C_{x}^{-}=\iota_{*} C_{x} .
$$

Since ι acts as -1 on $H^{1}(\operatorname{Jac} C)$, it acts as $(-1)^{k}$ on $H^{k}(\operatorname{Jac} C)$. So the algebraic 1 -cycle

$$
C_{x}-C_{x}^{-}
$$

on $\mathrm{Jac} C$ is homologous to 0 . This is the Ceresa cycle of (C, x).

Detecting homologically trivial cycles via Hodge theory

Suppose that $Z=\sum_{j} n_{j} Z_{j}$ is an algebraic d-cycle on a smooth projective variety X. When $[Z]=0$ in $H_{2 d}(X)$, there is an extension

$$
0 \rightarrow H_{2 d+1}(X)(-d) \rightarrow E_{Z} \rightarrow \mathbb{Z}(0) \rightarrow 0
$$

Pull back the LES of $(X,|Z|)$ along $c_{z}: \mathbb{Z} \rightarrow H_{2 d}(|Z|)$:

$$
\begin{aligned}
& 0 \rightarrow H_{2 d+1}(X) \rightarrow H_{2 d+1}(X,|Z|) \rightarrow H_{2 d}(|Z|) \rightarrow H_{2 d}(X) \\
& \| \quad \uparrow \quad \uparrow d_{x} \\
& 0 \longrightarrow H_{2 d+1}(X) \longrightarrow E_{Z}(d) \longrightarrow \mathbb{Z}(d) \longrightarrow 0
\end{aligned}
$$

The extension E_{Z} is generated by $H_{2 d}(X)$ and Γ, where $\partial \Gamma=Z$.

The group of 1-extensions

Suppose that V is a Hodge structure of negative weight, then

$$
\operatorname{Ext}_{\mathrm{MHS}}^{1}(\mathbb{Z}, V) \cong J(V):=V_{\mathbb{C}} /\left(V_{\mathbb{Z}}+F^{0} V\right)
$$

Given an extension of MHS

$$
0 \rightarrow V \rightarrow E \rightarrow \mathbb{Z} \rightarrow 0
$$

have exact sequences

$$
0 \rightarrow V \rightarrow E \rightarrow \mathbb{Z} \rightarrow 0
$$

and

$$
0 \rightarrow F^{0} V \rightarrow F^{0} E \rightarrow \mathbb{C} \rightarrow 0
$$

Choose lifts $e_{\mathbb{Z}} \in E_{\mathbb{Z}}$ and $e_{F} \in F^{0} E$ of 1 . Their difference lies in $V_{\mathbb{C}}$ and is well defined $\bmod V_{\mathbb{Z}}+F^{0} V$. The class of the extension is the image of $e_{\mathbb{Z}}-e_{F}$ in $J(V)$.

If V has weight -1 , then $V_{\mathbb{C}}=F^{0} V \oplus \overline{F^{0} V}$, which implies that

$$
V_{\mathbb{R}} \rightarrow V_{\mathbb{C}} / F^{0} V
$$

is an \mathbb{R}-linear isomorphism. It induces an isomorphism

$$
J\left(V_{\mathbb{R}}\right):=V_{\mathbb{R}} / V_{\mathbb{Z}} \rightarrow J(V)
$$

of tori. In particular, $J(V)$ is compact (but typically not algebraic).

The Griffiths invariant

A homologically trivial d-cycle on X thus determines a point ${ }^{1}$

$$
\nu_{Z} \in J\left(H_{2 d+1}(X)\right)
$$

So the Ceresa cycle $C_{x}-C_{x}^{-}$determines

$$
\nu_{C, x} \in J\left(H_{3}(\operatorname{Jac} C)\right)
$$

It is

$$
\int_{\Gamma} \in \operatorname{Hom}\left(F^{2} H^{3}(\operatorname{Jac} C), \mathbb{C}\right) / H_{3}(\operatorname{Jac} C ; \mathbb{Z}) \cong J\left(H_{3}(\operatorname{Jac} C)\right)
$$

where $\partial \Gamma=C_{X}-C_{x}^{-}$. This intermediate jacobian is not algebraic.
${ }^{1}$ From now on I will suppress the Tate twist - always twist so that the odd weight Hodge structure V in $J(V)$ has weight -1 .

Eliminating the base point

Set $H=H_{1}(C)$ and

$$
\theta=\sum_{j=1}^{g} a_{j} \wedge b_{j} \in \Lambda^{2} H
$$

where $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ is a symplectic basis of H. The inclusion

$$
H \xrightarrow{\wedge \theta} \Lambda^{3} H \cong H_{3}(\operatorname{Jac} C) .
$$

induces an inclusion

$$
\operatorname{Jac} C=J(H) \hookrightarrow J\left(\Lambda^{3} H\right)
$$

The primitive part of $H_{3}(\operatorname{Jac} C)$ is the quotient

$$
\Lambda_{0}^{3} H=\left(\Lambda^{3} H\right) /(\theta \cdot H)
$$

Its intermediate jacobian is

$$
J\left(\Lambda_{0}^{3} H\right)=J\left(\Lambda^{3} H\right) / \operatorname{Jac} C
$$

Proposition (Pulte)

If $x, y \in C$, then

$$
\nu_{C, x}-\nu_{C, y}=\text { the image of } 2([x]-[y]) \in \operatorname{Jac} C \subset J\left(\Lambda^{3} H\right)
$$

Consequently, the image of $\nu_{C, x}$ in $J\left(\Lambda_{0}^{3} H\right)$ does not depend on $x \in C$. It vanishes when C is hyperelliptic.

Notation: Denote the image of $\nu_{C, x}$ in $J\left(\Lambda_{0}^{3} H\right)$ by ν_{C}.
One can study ν_{C} by letting C vary and use variational methods.

Families of homologically trivial cycles

Suppose that $f: X \rightarrow S$ is a smooth projective morphism and that Z an algebraic cycle on X whose restriction to each fiber is homologically trivial and has codimension e and dimension d :

Set

$$
\mathbb{V}=R^{2 e-1} f_{*} \mathbb{Z}_{X}(e)
$$

This has fiber $H_{2 d+1}\left(X_{s}\right)(-d)$ over $s \in S$ and weight -1 . We have the family

$$
J(\mathbb{V}) \rightarrow S
$$

of intermediate jacobians.

The normal function of a family of cycles

These data give rise to an extension over S of VMHS

$$
0 \rightarrow \mathbb{V} \rightarrow \mathbb{E} \rightarrow \mathbb{Z}_{S} \rightarrow 0
$$

It corresponds to the section

$$
\nu_{Z}: s \mapsto \nu_{Z_{s}} \in J\left(V_{s}\right)
$$

of $J(\mathbb{V})$. It is holomorphic and satisfies Griffiths infinitesimal period relation:

$$
\nabla \tilde{\nu} \in F^{-1} \mathcal{V} \otimes \Omega_{S}^{1}
$$

where (\mathcal{V}, ∇) is the associated flat bundle $\mathbb{V} \otimes \mathcal{O}_{S}$ and $\tilde{\nu}$ is a local lift of ν to a section of \mathcal{V}.

It also satisfies strong conditions "at infinity" which correspond to the existence of a limit MHS on \mathbb{E} at points of $\bar{S}-S$.

The relative Ceresa cycle: setup

Here $S=\mathcal{M}_{g, 1}$, the moduli space of smooth pointed genus curves (C, x), and X is the universal jacobian \mathcal{J} over it. Let

$$
\mathscr{C} \stackrel{x}{\stackrel{x}{\leftrightarrows}} \mathcal{M}_{g, 1}
$$

be the universal curve over $\mathcal{M}_{g, 1}$ with tautological section x.
We have the diagram

$$
\begin{aligned}
& \mathscr{C} \xrightarrow{\mu_{x}} \mathcal{J} \longmapsto \iota \\
& \times{ }_{\mathcal{M}}{ }_{\downarrow} f \\
& \mathcal{M}_{g, 1}=\mathcal{M}_{g, 1}
\end{aligned}
$$

where μ_{x} is the relative Abel-Jacobi map.

The relative Ceresa cycle and its normal function

 Set$$
\mathbb{H}=\left(R^{1} f_{*} \mathbb{Z}\right)^{\vee} \text { and } \mathbb{V}=\Lambda_{0}^{3} \mathbb{H}(-1)
$$

The restriction of the algebraic cycle

$$
Z=\left(\mu_{X}\right)_{*} \mathscr{C}-\iota_{*}\left(\mu_{x}\right)_{*} \mathscr{C} \subset \mathcal{J}
$$

to the fiber Jac C of \mathcal{J} over $[C, x]$ is $C_{x}-C_{x}^{-}$. It gives rise to the admissible normal function

$$
J\left(\Lambda^{3} \mathbb{H}\right) \stackrel{\nu_{x}}{\longleftrightarrow} \mathcal{M}_{g, 1}
$$

which descends to the Ceresa normal function

$$
J\left(\Lambda_{0}^{3} \mathbb{H}\right) \stackrel{\nu}{\longleftrightarrow} \mathcal{M}_{g}
$$

It vanishes on the hyperelliptic locus and thus in genus 2.

The rank of a normal function

Suppose that ν is a normal function section of $J(\mathbb{V}) \rightarrow S$. The inclusion $\mathbb{V}_{\mathbb{R}} \hookrightarrow \mathbb{V}_{\mathbb{C}}$ induces a canonical isomorphism

$$
\mathbb{V}_{\mathbb{R}} / \mathbb{V}_{\mathbb{Z}}=: J\left(\mathbb{V}_{\mathbb{R}}\right) \rightarrow J(\mathbb{V})
$$

So ν corresponds to a section $\nu_{\mathbb{R}}$ of $J\left(\mathbb{V}_{\mathbb{R}}\right)$ over S.
The bundle $J\left(\mathbb{V}_{\mathbb{R}}\right)$ is a flat family of compact real tori. So locally $\nu_{\mathbb{R}}$ is a map
$\tilde{\nu}_{\mathbb{R}}: U \rightarrow V_{\mathbb{R}}, \quad$ where $U \subset S$ is contractible.
The rank of $\nu_{\mathbb{R}}$ at s is defined to be the rank of $\nabla \tilde{\nu}_{\mathbb{R}}$ at s. Set

$$
\mathrm{rk} \nu=\frac{1}{2} \max _{s \in S} \mathrm{rk} \nu_{\mathbb{R}}
$$

This is an integer. The rank of a torsion section is zero.

The main theorem

> Theorem
> The rank of the normal function of the Ceresa cycle has maximal rank $3 g-3$ for all $g \geq 3$.

The theorem is false in genus 2 as, in that case, the Ceresa normal function is identically zero.

The proof is by induction. The base case is $g=3$. I will discuss the proof there and sketch the inductive setup.

I understand that Ziyang Gao has also given a proof using Ax-Schanuel.

Zhang's application

The Gross-Schoen cycle $\mathrm{GS}_{C, \xi}$ of a curve C and a point $\xi \in \mathrm{Pic}^{1} C$ is a homologically trivial algebraic 1 -cycle in C^{3}. Its normal function is an integer multiple (6 , I believe) of the Ceresa normal function of (C, ξ). Below ξ is a $(2 g-2)$ nd root of K_{C}.
Theorem (S.-W. Zhang)
For each $g \geq 3$, there is a non-empty Zariski open subset U of $\mathcal{M}_{g} / \mathbb{Q}$ such that:

- Northcott property of Bloch-Beilinson height of the Gross-Schoen cycle: for $H, D \in \mathbb{R}_{+}$
$\#\left\{[C] \in U(\overline{\mathbb{Q}}): \operatorname{deg}[C]<D\right.$ and $\left.\left\langle\mathrm{GS}_{C, \xi}, \mathrm{GS}_{C, \xi}\right\rangle_{B B}<H\right\}<\infty ;$
- for all $[C] \in U(\mathbb{C})-U(\overline{\mathbb{Q}}), \mathrm{GS}_{C, \xi}$ has infinite order in $\mathrm{CH}^{2}\left(C^{3}\right)$.

Technical tools

This is a summary of work of Griffiths, Green, Nori, with a few additions. Suppose that $\mathbb{V} \rightarrow S$ is a PVHS of weight -1. Let

$$
\mathcal{V}=\mathbb{V} \otimes \mathcal{O}_{S} \text { and } \nabla: \mathcal{V} \rightarrow \mathcal{V} \otimes \Omega_{S}^{1}
$$

be the associated flat bundle and its connection. It satisfies Griffiths transversality

$$
\nabla: F^{p} \mathcal{V} \rightarrow F^{p}\left(\mathcal{V} \otimes \Omega_{S}^{1}\right)=F^{p-1} \mathcal{V} \otimes \Omega_{S}^{1}
$$

A basic tool for studying a normal function $\nu: S \rightarrow J(\mathbb{V})$ is the complex $\mathcal{V} \otimes \Omega_{S}^{\bullet}$ and its Hodge graded quotients

$$
\operatorname{Gr}_{F}^{p}\left(\mathcal{V} \otimes \Omega_{S}^{\bullet}\right): 0 \rightarrow \operatorname{Gr}_{F}^{p} \mathcal{V} \rightarrow \operatorname{Gr}_{F}^{p-1} \mathcal{V} \otimes \Omega_{S}^{1} \rightarrow \operatorname{Gr}_{F}^{p-2} \mathcal{V} \otimes \Omega_{S}^{2} \rightarrow
$$

Its differential $\bar{\nabla}$ is \mathcal{O}_{S}-linear. So this is a complex of holomorphic vector bundles.

The Green-Griffiths infinitesimal invariant

- Locally a normal function $\nu: S \rightarrow J(\mathbb{V})$ can be lifted to a holomorphic section $\tilde{\nu}$ of \mathcal{V}. It is well defined up to a section of $F^{0} \mathcal{V}$.
- The Griffiths infinitesimal invariant $\delta(\nu)$ of ν is the image of $\nabla \tilde{\nu}$ in

$$
H^{0}\left(S, \mathcal{H}^{1}\left(F^{0}\left(\mathcal{V} \otimes \Omega_{S}^{\bullet}\right)\right)\right)
$$

- Green's variant - the Green-Griffiths invariant - is its image $\bar{\delta}(\nu)$ in $H^{0}\left(S, \mathcal{H}^{1}\left(\operatorname{Gr}_{F}^{0}\left(\mathcal{V} \otimes \Omega_{S}^{\bullet}\right)\right)\right.$).

A canonical cocycle representative of $\bar{\delta}(\nu)$

- The $(1,0)$ component of the derivative $\nabla \nu_{\mathbb{R}}$ of a real lift of ν is an element $\nabla^{\prime} \nu_{\mathbb{R}}$ of

$$
H^{0}\left(S, \operatorname{Gr}_{F}^{-1} \mathcal{V} \otimes \Omega_{S}^{1}\right)
$$

that provides a canonical 1-cocycle that represents $\bar{\delta}(\nu)$.

- For each $s \in S$, it can be regarded as a \mathbb{C} linear map

$$
\nabla^{\prime} \nu_{\mathbb{R}}: T_{s} S \rightarrow \operatorname{Gr}_{F}^{-1} V_{s}
$$

This has rank equal to the rank of ν at s.

Genus 3: introduction

Every non-hyperelliptic curve C of genus 3 is a plane quartic via its canonical embedding

$$
C \rightarrow \mathbb{P}\left(H^{0}\left(\Omega_{C}^{1}\right)\right)^{\vee} .
$$

Collino and Pirola showed that away from the hyperelliptic locus

$$
\mathcal{H}^{1}\left(\operatorname{Gr}_{F}^{0}\left(\mathcal{V} \otimes \Omega^{\bullet}\right)\right)
$$

is a vector bundle with fiber $S^{4} H^{0}\left(\Omega_{C}^{1}\right) \otimes \operatorname{det} H^{0}\left(\Omega_{C}^{1}\right)^{\vee}$ over $[C]$.
Theorem (Collino-Pirola, 1995)
If C is a non-hyperelliptic curve of genus 3, the Green-Griffiths invariant $\bar{\nabla} \nu$ at C is a defining equation of the canonical image of C.

Linear algebra

- Suppose that C is a genus 3 curve. Set

$$
A=F^{0} H_{1}(C) \text { and } B=\operatorname{Gr}_{F}^{-1} H_{1}(C)=H^{0}\left(\Omega_{C}^{1}\right) \text {. }
$$

The intersection pairing induces an isomorphism $A \cong B^{\vee}$.

- If C is non-hyperelliptic, there are natural isomorphisms

$$
T_{[C]}^{\vee} \mathcal{M}_{3} \cong H^{0}\left(\Omega_{C}^{\otimes 2}\right) \cong S^{2} H^{0}\left(\Omega_{C}^{2}\right) \cong T_{[\text {Jac } C]}^{\vee} \mathcal{A}_{3} \cong S^{2} B .
$$

- The fiber over [C] of the complex $\operatorname{Gr}_{F}^{0}\left(\mathcal{V} \otimes \Omega_{\mathcal{M}_{3}}^{\circ}\right)$ is

$$
\frac{A \otimes \Lambda^{2} B}{B} \rightarrow \frac{\Lambda^{2} A \otimes B}{A} \otimes S^{2} B \rightarrow \Lambda^{3} A \otimes \Lambda^{2} S^{2} B .
$$

It is a complex of GL(B) modules.

- The differential $\bar{\nabla}$ is induced by $B \rightarrow A \otimes S^{2} B$ adjoint to $B^{\otimes 2} \rightarrow S^{2} B$.
- A little representation theory shows that the group of 1 -cocycles is

$$
S^{2} S^{2} B \otimes \operatorname{det} A=S^{4} B \otimes \operatorname{det} A+S^{2} A \otimes \operatorname{det} B
$$

and the group of 1 -coboundaries is $S^{2} A \otimes \operatorname{det} B$.

- This gives the Collino-Pirola computation $H^{1}\left(\operatorname{Gr}_{F}^{0}\left(V \otimes \Omega^{\bullet}\right)\right)=S^{4} B \otimes \operatorname{det} A$.
- The computation implies that, away from the hyperelliptic locus, $\nabla^{\prime} \nu_{\mathbb{R}}$ is a symmetric bilinear form

$$
S^{2} A \otimes S^{2} A \rightarrow \operatorname{det} A
$$

Its rank is the rank of ν at C.

- The part coming from $S^{4} B \otimes \operatorname{det} A$ is

$$
S^{2} A \otimes S^{2} A \rightarrow \mathbb{C}, \quad u \otimes v \mapsto f(u v), \quad u, v \in S^{2} A
$$

where $f \in S^{4} B$ is a quartic defining equation of C. This and its rank are easily computed from f.

Proposition

If C is the Klein quartic, then the coboundary component of $\nabla^{\prime} \nu_{\mathbb{R}}$ vanishes and the other part has rank 6.

Corollary

The genus 3 Ceresa normal function has maximal rank on a dense open subset of \mathcal{M}_{3}.

Conjecture

If C is not hyperelliptic, then the component of $\nabla^{\prime} \nu_{\mathbb{R}}$ in
$S^{2} A \otimes \operatorname{det} B$ vanishes.

- I believe I have a proof. It uses recent work of Cléry, Faber and van der Geer. If this component were not zero, it would have to be a Teichmüllar modular form of type ($0,2,-1$), of which it appears there are none.
- The component of $\nabla^{\prime} \nu_{\mathbb{R}}$ with values in $S^{4} B \otimes \operatorname{det} A$ is a non-zero multiple of the Teichmüller modular form $\chi_{4,0,-1}$ that plays a significant role in their paper. This should also yield a new proof of the Collino-Pirola theorem.
- If the conjecture is true, one can explicitly compute the rank of ν at all non-hyperelliptic curves.

Higher genus

The proof in the higher genus is not nearly as explicit. Here is a very brief sketch of the main ideas.

- The proof is by induction on g. The base case is $g=3$.
- Suppose that $g>3$. Denote by Δ_{0} the boundary divisor of $\overline{\mathcal{M}}_{g}$ whose generic point is an irreducible nodal curve of genus g with one node.
- Denote the smooth locus of Δ_{0} by Δ^{\prime}. It is the quotient of $\mathcal{M}_{g-1,2}$ (the moduli space of smooth curves of genus $g-1$ and an ordered pair of distinct points) by the involution that swaps the two marked points.
- The idea is to regard ν as an admissible variation of MHS over \mathcal{M}_{g} and and study its asymptotic properties along Δ_{0} and normal to it.
- To do this, we approximate it by its family of limit MHS along the punctured (normalized) normal bundle L of Δ^{\prime} in $\overline{\mathcal{M}}_{g}$. This is the quotient of the $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$bundle $\mathcal{M}_{g-1,2} \rightarrow \mathcal{M}_{g-1,2}$ by the \mathbb{C}^{\times}action

$$
\lambda:\left[C, \vec{v}_{p}, \vec{v}_{q}\right] \mapsto\left[C ; \lambda \vec{v}_{p}, \lambda^{-1} \vec{v}_{q}\right]
$$

and the involution $p \leftrightarrow q$. Denote its orbit by $\left[C ; \vec{v}_{p} \otimes \vec{v}_{q}\right]$.

- The point $\left[C ; \vec{v}_{p} \otimes \vec{v}_{q}\right.$] corresponds to a first order smoothing of $C /(p \sim q)$ and thus a point of L^{\prime}.
- The variation \mathbb{E}_{g} associated to the genus g Ceresa cycle "restricts" to a family $\mathbb{E}^{\text {nil }}$ of nilpotent orbits of limit MHS over L^{\prime}.
- It comes equipped with a second weight filtration M_{\bullet}, the relative weight filtration.
- Using it one constructs a residual normal function ν_{0} over Δ^{\prime} and one shows that

$$
\text { rk } \nu=\text { rk } \nu_{0}+\text { the "normal rank" of } \nu
$$

- One computes the monodromy of the variation $\mathbb{E}^{\text {nil }}$ using the homomorphism

$$
\Gamma_{g-2,2} \stackrel{\text { index } 2}{\longrightarrow} \pi_{1}\left(L^{\prime}\right) \longrightarrow \Gamma_{g} \cong \pi_{1}\left(\mathcal{M}_{g}\right)
$$

It forces the normal rank to be 1.

- Up to isogeny, which does not change the rank,

$$
\nu_{0}=\text { the genus }(g-1) \text { Ceresa normal function }+\kappa
$$

where κ is the section

$$
[C ; p, q] \mapsto(g-1)(p+q)-K_{C}
$$

of the universal jacobian over $\mathcal{M}_{g-1,2} / C_{2}$.

- By induction, the genus $g-1$ Ceresa normal function has rank $3(g-1)-3=3 g-6$. The normal function κ has rank 2. So

$$
\text { rk } \nu_{0}=(3 g-6)+2=3 g-4
$$

- Finally

$$
\mathrm{rk} \nu=1+\mathrm{rk} \nu_{0}=3 g-3
$$

Ceresa volume

- One can associate a $(1,1)$ form ϕ to a normal function $\nu: S \rightarrow J(\mathbb{V})$. If \mathbb{V} is polarized, it is semi-positive. The rank of ν is the maximum r such that ϕ^{r} is non-zero.
- Since the genus g Ceresa normal function has maximal rank, $\phi^{3 g-3}$ is a non-negative form which defines a positive measure on $\mathcal{M g}_{g}$.
- At least in codimension 1 , this form is locally L_{1} on $\overline{\mathcal{M}}_{g}$. So it appears that the Ceresa cycle determines a positive measure on $\overline{\mathcal{M}}_{g}$.

References

- F. Cléry, C. Faber, G. van der Geer: Concomitants of ternary quartics and vector-valued Siegel and Teichmüller modular forms of genus three. Selecta Math. 26 (2020).
- R. Hain: The Rank of the normal function of the Ceresa cycle, notes (February, 2024) and manuscript (in preparation, 2024).
- S.-W. Zhang: A Northcott property for Gross-Schoen cycles and Ceresa cycles, manuscript, April, 2024.

