Ceresa cycles of Fermal curves
 (Based on joint work with Kumar Murty)

Payman Eskandari (University of Winnipeg) ICERM, May 2024

Three equivalence relations on alg. cycles: rational, algebraic, homological equivalence

$$
\text { rat. equivalent } \underset{\substack{\text { (trivial) }}}{\Longrightarrow} \text { alg. equivalent } \underset{\text { (Thy of Griffith) }}{\Longrightarrow} \text { nom. equivalent }
$$

The (Griffith '69): If X is a general quintic in \mathbb{P}^{4}, then

$$
\frac{\mathscr{L}_{1}(X)^{\text {hoo }}}{\mathscr{L}_{1}(X)^{\text {alg }}} \otimes \mathbb{Q} \neq 0 .
$$

Thy (Ceresa '83): If X is a general curve of genus >2, the Ceresa cycle of \bar{X} is algebraically nontrivial.
$X=($ smooth projective $)$ curve $/ \mathbb{C}$, genus $9>0$
$\operatorname{Jac}=\operatorname{Jac}(X)=$ Jacobian of $X=\frac{\operatorname{Div}^{0}(X)}{\text { princ. div's }}$
$e \in X \backsim X \hookrightarrow J a c \quad$ Image $=: X_{e} \in \mathscr{E}_{1}(J a c)$
Base pt

$$
x \mapsto x-e \quad \text { 1-dim'l alg. cycle on JaG }
$$

Ceresa cycle of X with base pt $e=\operatorname{Cer}_{e}(X):=X_{e}-(-1)_{*} X_{e} \in \mathscr{X}_{1}^{\text {ham }}(\mathrm{Jac})$
$\operatorname{Cer}_{e}(X) \bmod$ different equiv. relations:

Mod hom. \sim	Trivial
Mod alg. \sim	Independent of e
Mod rat. \sim	Depends on e

Ceresa's chm ('83): If $X=$ a general curve of genus >2, then $\operatorname{Cer}(X)$ is alg. nontrivial.

Still at this point, no explicit example given!

Ceresa cycles of Fermat curves
Notation: $F_{n}=$ Fermat curve of degree n, given by $x^{n}+y^{n}=z^{n}$
Thy* (B. Harris, '83): $\operatorname{Cer}\left(F_{4}\right)$ is alg. nontrivial.

Thu* (Bloch, '84): $\operatorname{Cer}\left(F_{4}\right)$ is alg. of infinite order.
Further adaptations by Tadokoro, Otsubo, Kimura,... to other Fermat curves and quotients. In particular:
Thy* (Kimura, 2000): $\operatorname{Cer}\left(F_{7}\right)$ is alg. of infinite order.
Thy* (Otsubo, 2012): $\operatorname{Cer}\left(F_{n}\right)$ is alg. nonzero for all $4<n \leq 1000$.

Thu* (Tadokoro, 2016): Ceresa cycle is alg. nonzero for some $) 4$| Adaptation of |
| :---: |
| Harris'. | quotients of F_{p} for prime $p<1000$ and $\equiv 1 \bmod 3$.

* Uses Hodge theoretic (Griffiths) Abel-Jacobi map.
* Uses L-adic Abel-Jacobi map.

Both methods have their limitations. Bloch's gives stronger results, but much harder to implement.

Harris' argument in a nukshell

- \forall variety Y : $\mathscr{X}_{d}(Y) / \sim_{\text {rat }}=: C H_{d}(Y) \supset C H_{d}^{\text {hom }}(Y)$ (Hom. trivial subgroup)
- Griffiths Abel-Jacobi map

$$
A J: C H_{d}^{h o m}(Y) \rightarrow J H_{2 d+1}(Y):=H_{2 d+1}(Y, \mathbb{C}) /\left(F^{-d} H_{2 d+1}+H_{2 d+1}(Y, \mathbb{Z})\right)
$$

$$
\begin{aligned}
\Gamma \mapsto & \int_{\partial-\Gamma} \\
\Rightarrow & A J(\Gamma) \text { "vanishes" on } F^{d+2} H_{d R}^{2 d+1}(Y)
\end{aligned}
$$

- with $Y=\operatorname{Jac}(X), d=1, Z=\operatorname{Cer}(X)(X=a$ curve $)$, get:
$\operatorname{Cer}(X)$ alg. trivial $\Longrightarrow \operatorname{AJ}(\operatorname{Cer}(X))$ "vanishes" on $H^{3,0}(\operatorname{Jac}(X))=\bigwedge^{3} H^{1,0}(X)$
- In his "long paper" in '83, Harris calculates $A J(\operatorname{Cer}(X))$ in terms of iterated integrals.

Harris' argument in a nutshell

- \forall variety Y : $\mathscr{X}_{d}(Y) / \sim_{\text {rat }}=: C H_{d}(Y) \supset C H_{d}^{\text {hom }}(Y)$ (Home. trivial subgroup)
- Griffith s Abel-Jacobi map

$$
A J: C H_{d}^{h o m}(Y) \rightarrow J H_{2 d+1}(Y):=H_{2 d+1}(Y, \mathbb{C}) /\left(F^{-d} H_{2 d+1}+H_{2 d+1}(Y, \mathbb{Z})\right)
$$

$$
\Gamma \mapsto \int_{\partial-\Gamma}^{2 a-}
$$

Γ alg. trivial $\Longrightarrow A J(\Gamma)$ "vanishes" on $F^{d+2} H_{d R}^{2 d+1}(Y)$

- with $Y=\operatorname{Jac}(X), d=1, Z=\operatorname{Cer}(X)(X=a$ curve $)$, get:
$\operatorname{Cer}(X)$ alg. trivial $\Longrightarrow A J(\operatorname{Cer}(X))$ "vanishes" on $H^{3,0}(\operatorname{Iac}(X))=\bigwedge^{3} H^{1,0}(X)$
- In his "long paper" in '83, Harris calculates $A J(\operatorname{Cer}(X))$ in terms of iterated integrals.
In his "short paper" (also '83): Specializes to F_{4}, deduces $\xrightarrow{\substack{\text { Long paper }+ \text { above + } \\ \text { Ronricich on } H H^{\prime}\left(F_{H}\right)}}$
$\operatorname{Cer}\left(F_{4}\right)$ alg. trivial \Longrightarrow Certain period integral is an integer.
\qquad - torsion \Longrightarrow \qquad " \qquad rational.
$\operatorname{AJ}\left(\operatorname{Cer}\left(F_{4}\right)\right)$ alg. trivial \Longrightarrow Certain period integral is an integer.
\qquad
\qquad torsion \Longrightarrow \qquad
\qquad rational.
- Can check nontriviality numerically.
- Adapted to other Fermat curves and some quotients by Tadokoro and Otsubo. There is a numerically verifiable sufficient condition for nontriviality mod alg. equiv. for a given F_{n}.

Limitations (due to it algorithmic nature and reliance on numerical approximations):

1) Can only check nontriviality (modulo algebraic equivalence)
2) Can only be used for finitely* many Fermat curves/quotients.

Modulo rational equivalence
Thy (E. - K. Murky, '21). For every prime $p>7$ and every choice of base point, $\left|\operatorname{AJ}\left(\operatorname{Cer}_{e}\left(F_{p}\right)\right)\right|=\infty$. In particular, $\operatorname{Cer}_{e}\left(F_{p}\right)$ is of infinite order modulo rational equivalence.

Proof was a combination of:

- Harris' and Pulte's works on Ceresa cycles and Hodge theory of π_{1}
- Works of Kaenders and Darmon-Rotger-Sols on alg. cycles and Hodge theory of π_{1}
- Rohrlich's analogue of Manin-Drinfeld
- Gross-Rohrlich's work on nontorsion points on Jacobians of the F_{n} We'll sketch a simplified version of the proof that doesut directly refer to Hodge theory of π_{1}.

Proof (simplified version)

Step 1) Reduction to the case where e is a cusp (i.e. satisfies $x y z=0$).

$$
A J\left(\operatorname{Cer}_{e}(X)\right)=\underbrace{\left.A J\left(\operatorname{Cer}_{e}(X)\right)\right|_{H_{p r i m}^{3}(J a c)}}_{\text {Harris: Independent of e. }} \oplus \underbrace{\left.A J\left(\operatorname{Cer}_{e}(X)\right)\right|_{H^{1}(X) \wedge c l(\Delta(X))}}_{\begin{array}{l}
\text { Pulse ('88): linear comb. } \\
\text { of e and the can. divisor } \\
\text { (as a pt on Jac) }
\end{array}})
$$

Step 2) Work with the modified diagonal cycle in X^{3} instead
$\Delta_{G K S, e}(X):=\{x, x, x\}-\{e, x, x\}-\{x, e, x\}-\{x, x, e\}+\{x, e, e\}+\{e, x, e\}+\{e, e, x\} \in C H_{1}^{h o m}\left(X^{3}\right)$ (Modified diagonal cycle of Gross, Kudla and Schoen)
Colombo and van Geeman ('93): $\operatorname{AJ}\left(\operatorname{Cer}_{e}(X)\right) \sim_{\mathbb{Q}^{x}} \operatorname{AJ}\left(\Delta_{G K S, e}(X)\right)$ So we can instead show $\left|A J\left(\Delta_{G K S, e}(X)\right)\right|=\infty$.

Step 3) Relate to points on the Jacobian (Idea of Darmon-Rotger-Sols)
Let $\Gamma \in C H_{1}\left(X^{2}\right)$. The correspondence

$$
\Gamma \times \Delta(X) \in C H_{2}\left(X^{2} \times X^{2}\right)=C H_{2}\left(X^{3} \times X\right)
$$

gives a map

$$
\begin{aligned}
& C H_{1}^{\text {hom }}\left(X^{3}\right) \rightarrow C H_{0}^{\text {hom }}(X) \stackrel{A J}{=} \operatorname{Jac}(X) \\
& \Omega \mapsto\left(p r_{4}\right)_{*}\left(p r_{123}^{*}(\Omega) \cdot(\Gamma \times \Delta(X))\right)
\end{aligned}
$$

Let $P_{\Gamma}:=$ the image of $\Delta_{G K S, e}(X)$.
If $\left|P_{\Gamma}\right|=\infty$ for some Γ, then $\left|A J\left(\Delta_{G K S, e}(X)\right)\right|=\infty$. (By functoriality of AJ .)

Step 4) Pick a suitable $\Gamma \in C H_{1}\left(F_{p} \times F_{p}\right)$.
Take Γ to be the graph of

$$
\begin{aligned}
\beta: F_{p} & \rightarrow F_{p} \\
(x, y, z) & \mapsto(-y, z, x)
\end{aligned}
$$

$\operatorname{Set} Q=\left(\zeta_{6}, \overline{\zeta_{6}}, 1\right) \in F_{p}$. Then

$$
P_{\Gamma}=(Q+\bar{Q}-2 e)+a \underbrace{p k \text { supp. on the cusps }}_{\text {Torsion by Rohrlich }}
$$

Gross-Rohrlich ('78): If p>7, then $|Q+\bar{Q}-2 e|=\infty\left(\right.$ in $\left.\operatorname{Jac}\left(F_{p}\right)\right)$.

Some questions

1) Fermat quotients

- Fix $p>7$. For $1 \leq s \leq p-2$, consider

$$
C_{s}: y^{p}=x(1-x)^{s} .
$$

- The maps

$$
F_{p} \rightarrow C_{s} \quad(x, y, 1) \mapsto\left(x^{p}, x y^{s}, 1\right)
$$

$$
\begin{aligned}
& \qquad \operatorname{Jac}\left(J_{p}\right) \sim \prod_{1 \leq s \leq p-2} \operatorname{Jac}\left(C_{s}\right) \\
& \text { (Non-hyperelliptic cases) }
\end{aligned}
$$

- Gross-Rohrlich: If $s \notin\{1,(p-1) / 2, p-2\}$, the image of $Q+\bar{Q}-2 e$ in $\operatorname{Jac}\left(C_{s}\right)$ is of infinite order.
- Question: Can the argument be adapted to these non-hyperelliptic quotients?
- Partial answer: (Nemoto, 2024) Suppose $s^{2}+s+1 \equiv 0 \bmod p$. Then $\left|A J\left(C e r_{e}\left(C_{s}\right)\right)\right|=\infty$ for every e.
"pf": β descends to C_{s}. (In fact, this happens of $s^{2}+s+1 \equiv 0 \bmod p$.) What about other quotients?

2) Algebraic equivalence and connection bo Beilinson-Bloch conj. Supp. p, s as above with $\left|A J\left(\operatorname{Cer}_{e}(X)\right)\right|=\infty$.

$$
\operatorname{AJ}\left(\operatorname{Cer}_{e}\left(C_{s}\right)\right) \in \operatorname{Ext}^{1}(\mathbb{Q}(-1), \underbrace{\bigwedge_{H^{1}} H_{s}}_{\text {Decomposes into many components. }}))
$$

How does $\operatorname{Cer}_{e}\left(C_{s}\right)$ (or its Abel-Jacobi image) decompose?

$$
L\left(\bigwedge^{3} H^{1}(X), s\right) \text { should have a zero at } 2 .
$$

Which factors have zeros?
3) Possible strategy for ...

Given $\Gamma^{\prime} \in C H_{n}\left(X^{2 n}\right)=C H_{n}\left(X^{2 n-1} \times X\right)$
\leadsto

$$
\begin{aligned}
& C H_{n-1}^{h o m}\left(X^{2 n-1}\right) \xrightarrow{\Gamma^{\prime} ;} \operatorname{Jac}(X) \\
& \Delta_{G K S S_{e}(X) \times \Delta(X)^{n-2} \mapsto P_{\Gamma^{\prime}}}
\end{aligned}
$$

Try to pick Γ^{\prime} so that $P_{\Gamma^{\prime}}$ is nontorsion.
3) Possible strategy for ...

Given $\Gamma^{\prime} \in C H_{n}\left(X^{2 n}\right)=C H_{n}\left(X^{2 n-1} \times X\right)$
\leadsto

$$
\begin{aligned}
& \mathrm{CH}_{n-1}^{\text {hom }}\left(X^{2 n-1}\right) \xrightarrow{\Gamma_{4}^{\prime}} \operatorname{Jac}(X) \\
& \Delta_{G K S, c}(X) \times \Delta(X)^{n-2} \mapsto P_{\Gamma^{\prime}}
\end{aligned}
$$

Try to pick Γ^{\prime} so that $P_{\Gamma^{\prime}}$ is nontorsion.

Thank you

