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(Variable-Speed) Continuous-Time Random Walk
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Let (G, r) be a finite graph with r : E(G)→ [0,∞). Continuous-time
random walk crosses an incident edge e at rate r(e). It thus leaves
x ∈ V(G) at rate r(x) :=

∑
e∼x r(e).
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Graph Laplacian
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∆ =


7 −3 −4 0 0
−3 14 −5 −6 0
−4 −5 17 0 −8
0 −6 0 15 −9
0 0 −8 −9 17



The Laplacian matrix ∆(G,r) has entries

∆(x , y) :=


−r(x , y) if x 6= y and x ∼ y ,

0 if x 6= y and x 6∼ y ,

r(x) if x = y .

The Laplacian is symmetric, and all its row sums are 0.
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Continuous-Time Random Walk and the Laplacian

Let (G, r) be a finite graph with r : E(G)→ [0,∞). Continuous-time
random walk crosses an incident edge e at rate r(e). It thus leaves
x ∈ V(G) at rate r(x) :=

∑
e∼x r(e). The Laplacian matrix ∆(G,r) has

entries

∆(x , y) :=


−r(x , y) if x 6= y and x ∼ y ,

0 if x 6= y and x 6∼ y ,

r(x) if x = y .

The Laplacian is symmetric, and all its row sums are 0.

The infinitesimal generator is −∆, meaning that the transition probability
pt (x , y) is the (x , y)-entry of e−t∆, which equals 〈e−t∆1y , 1x〉. The
stationary distribution is uniform

(1 is an eigenvector of ∆ with eigenvalue
0, and so 1 is an eigenvector of e−t∆ with eigenvalue 1).
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Well-Known Properties

Observation
The Laplacian ∆(G,r) is positive semidefinite (written ∆ ≥ 0).

Proof sketch

Each edge e corresponds to r(e) ·
[

1 −1
−1 1

]
≥ 0, so ∆ is a sum of p.s.d.

matrices.

Corollary
The return probabilities pt (x , x) are monotone decreasing in t .

Proof sketch
The eigenvalues λi of ∆ are nonnegative. If fi are orthonormal
eigenvectors of ∆, then

pt (x , x) = 〈e−t∆1x , 1x〉 =

|V(G)|∑
i=1

e−tλi |fi(x)|2 .
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Two Problems on Cayley Graphs

Both our problems concern random walks in random environments on
Cayley graphs, where the law of the environment is invariant under group
translations. In the first problem, the environment is primarily percolation.

The first problem is open for amenable Cayley graphs, whereas the
second is open for nonamenable ones.
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Cayley Graphs and Diagrams

If Γ is a group generated by S (i.e., the smallest subgroup containing S is
Γ), then the corresponding Cayley graph G has vertices Γ and edges{

(x , xs) ; x ∈ Γ, s ∈ S
}

.

If (x , xs) is labeled by s, we get the Cayley
diagram.

We take the Cayley graph to have unoriented edges.

Note that for all γ ∈ Γ, we have (γx , γxs) is an edge when (x , xs) is an
edge, so Γ acts transitively on G by left multiplication.
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A Finite Cayley Diagram of S4 (Tilman Piesk via Wikimedia)
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An Amenable Cayley Diagram (credit: NSF, Cornell)

The standard Cayley diagram of Z2.
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A Nonamenable Cayley Diagram, (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z)

The presentation is 〈a, b, c | a2, b2, c2〉.
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The (2, 3, 7)-Triangle Group (Nonamenable) Credit: Matthias Weber

The presentation is 〈a, b, c | a2, b2, c2, (ab)2, (bc)3, (ca)7〉.
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Percolation on Cayley Graphs

How similar are infinite percolation clusters on a Cayley graph to the whole
Cayley graph itself?

The motivating question:

Conjecture (Benjamini–L.–Schramm, 1999)
If G is an (infinite) Cayley graph on which (discrete-time) simple random
walk escapes at zero speed, then a.s. simple random walk on each
(infinite) cluster of Bernoulli percolation escapes at zero speed.

Speed here is the limit of graph distance divided by time as time→∞.

Bernoulli percolation is the random subgraph obtained by deleting each
edge with the same probability and independently of all other edges.
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Corresponding Questions on Finite Graphs

Let X = (Xt )t≥0 be (variable-speed) continuous-time random walk.

Open Question (L.)
Is there some constant c <∞ such that

if G is a finite graph with two rate
functions r ≤ r ′ and X0 is a uniformly random vertex, then is

Er
[
dist(X0,X1)

]
≤

c

Er ′
[
dist(X0,X1)

]
?
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The Connection

Theorem (essentially Kaimanovich, 1990, after Avez, 1974, . . . )
Let G be a Cayley graph and ω be a random subgraph whose law is
invariant under group translations. Let Zt be simple random walk on ω
starting at o. Then

lim
t→∞

dist(Zt , o)

t
= 0

iff

lim
t→∞

H(Zt )

t
= 0.

In other words, zero escape speed is equivalent to zero asymptotic
entropy.

It follows that if G has subexponential growth, then these conditions hold.
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What’s Known

Theorem (Benjamini–L.–Schramm, 1999)
Let G be a nonamenable Cayley graph. Then a.s. simple random walk on
each infinite cluster of Bernoulli percolation escapes at positive speed.

This leaves open the case of amenable Cayley graphs of exponential
growth.

(Aside) A converse to our motivating conjecture:

Conjecture (Benjamini–L.–Schramm, 1999)
If G is an (infinite) Cayley graph on which simple random walk escapes at
positive speed, then a.s. simple random walk on each infinite cluster of
Bernoulli percolation escapes at positive speed.

One might hope for monotonicity of the escape speed in general for
continuous-time random walk; this would prove our motivating conjecture.
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Counterexamples to Speed Monotonicity: Z/(nZ) ∗ Z/(2Z) (Schramm, L.–White)

Increasing both rates within the cyclic group can decrease escape speed.

Converting rates to percolations: use rational rates to approximate the real
rates and then parallel edges to convert to percolations.
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Near Distance Monotonicity?

Suppose we had a positive answer to

Open Question (L.)
Is there some constant c <∞ such that if G is a finite graph with two rate
functions r ≤ r ′ and X0 is a uniform vertex, then
Er
[
dist(X0,X1)

]
≤ c Er ′

[
dist(X0,X1)

]
?

Then on an (infinite) amenable Cayley graph, G, we would get that zero
speed on G implies zero speed on every invariant percolation on G. (The
same would hold for Bernoulli percolation on every sofic Cayley graph.)

Observation (M. Braverman, 2009)

If (G, rG) is a finite network, t ≤ t ′, and X0 is a uniform vertex, then
E
[
d(X0,Xt )

]
≤ 2 E

[
d(X0,Xt ′)

]
.

The factor 2 is sharp.

Note that changing time is the same as multiplying all rates by the same
factor.
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Entropy Monotonicity?

Conjecture (Benjamini–L.–Schramm, 1999)
If G is an (infinite) Cayley graph and ω, ω′ are two invariant percolations
on G with ω ⊆ ω′, then the asymptotic entropy of delayed simple random
walk on ω is at most that on ω′.

If so, then we could take ω′ to be all of G and deduce that if simple
random walk on G has zero speed, then so does simple random walk on
ω. For example, ω could be Bernoulli percolation.

This conjecture remains open. Suppose we had a positive answer to

Open Question (L. and White)
Is there some constant c <∞ such that if G is a finite graph with two rate
functions r ≤ r ′, X0 is a uniform vertex, and H is entropy, then

E
[
H
(
Lr (X1 | X0)

)]
≤ c E

[
H
(
Lr ′(X1 | X0)

)]
?
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Then on an (infinite) amenable Cayley graph, G, we would get that zero
speed on G implies zero speed on every invariant percolation on G. (The
same would hold for Bernoulli percolation on every sofic Cayley graph.)

When r ′/r is constant, the inequality holds with c = 1, even if X0 is fixed.
In this sense, increasing time works better for entropy than for distance.
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PROBLEM
TWO
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Random Environments on Cayley Graphs

The motivating question:

Open Question (Fontes and Mathieu)

If G is an infinite Cayley graph, is E
[
p1(o, o; rG)

]
monotone decreasing in

the rates, rG, among random rate functions with invariant law? I.e., if
rG(e) ≤ r ′G(e) a.s. for all edges e and the laws of rG and r ′G are invariant
under left multiplication, then is E

[
p1(o, o; rG)

]
≥ E

[
p1(o, o; r ′G)

]
?

This is open even on regular trees.
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Finite Graphs of Different Sizes

Let G and H be finite graphs. Write U(G) for G with a uniform, random
root. Say that G dominates H, written G < H, if U(G) stochastically
dominates U(H),

that is, if there is a probability measure on pairs
(X ,Y ) ∈ V(G)× V(H) such that (i) the marginal distributions of X and Y
are each uniform and (ii) almost surely there is a rooted isomorphism from
(H,Y ) to a subgraph of (G,X ).

The finite question:

Open Question (L., 2017)
If G < H, then does continuous-time simple random walk satisfy

1
|V(G)|

∑
x∈V(G)

p1(x , x ; G) ≤ 1
|V(H)|

∑
x∈V(H)

p1(x , x ; H)?
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What’s Known

Proposition (Benjamini and Schramm, 2005)
On every finite graph, G, the average return probability at each time is
monotone decreasing in the rates, rG.

Proof sketch
If r(e) ≤ r ′(e) for all edges e, then ∆(G,r) ≤ ∆(G,r ′), whence the i th
eigenvalue of the former is at most the i th eigenvalue of the latter. The
sum of the return probabilities is the trace of e−t∆, which equals∑|V(G)|

i=1 e−tλi .

The average return probability equals |V(G)|−1 tr e−t∆G =: Tr e−t∆G . If
(G, rG) is (vertex-)transitive, then this equals pt (o, o) for any vertex, o.
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What’s Known

A rate function r on a Cayley graph is transitive if r(x , xs) depends on the
generator s but not on the vertex x .

Theorem (Brown, 2000)
If G is a Cayley graph, then p1(o, o; rG) is monotone decreasing in the
rates, rG, among transitive rate functions. That is, if rG(x , xs) ≤ r ′G(x , xs)
for all vertices x and generators s, then p1(o, o; rG) ≥ p1(o, o; r ′G).

This is because for so-called equivariant operators A, Tr A := 〈A1o, 1o〉
defines a normalized trace, meaning that A 7→ Tr A is linear, Tr A ≥ 0 for
A ≥ 0, Tr I = 1, and Tr(AB) = Tr(BA).

Theorem (Fontes and Mathieu, 2006)

If G is an amenable Cayley graph, then E
[
p1(o, o; rG)

]
is monotone

decreasing in the rates, rG, among random rate functions with invariant
law.

25



What’s Known

A rate function r on a Cayley graph is transitive if r(x , xs) depends on the
generator s but not on the vertex x .

Theorem (Brown, 2000)
If G is a Cayley graph, then p1(o, o; rG) is monotone decreasing in the
rates, rG, among transitive rate functions. That is, if rG(x , xs) ≤ r ′G(x , xs)
for all vertices x and generators s, then p1(o, o; rG) ≥ p1(o, o; r ′G).

This is because for so-called equivariant operators A, Tr A := 〈A1o, 1o〉
defines a normalized trace, meaning that A 7→ Tr A is linear, Tr A ≥ 0 for
A ≥ 0, Tr I = 1, and Tr(AB) = Tr(BA).

Theorem (Fontes and Mathieu, 2006)

If G is an amenable Cayley graph, then E
[
p1(o, o; rG)

]
is monotone

decreasing in the rates, rG, among random rate functions with invariant
law.

25



What’s Known

A rate function r on a Cayley graph is transitive if r(x , xs) depends on the
generator s but not on the vertex x .

Theorem (Brown, 2000)
If G is a Cayley graph, then p1(o, o; rG) is monotone decreasing in the
rates, rG, among transitive rate functions. That is, if rG(x , xs) ≤ r ′G(x , xs)
for all vertices x and generators s, then p1(o, o; rG) ≥ p1(o, o; r ′G).

This is because for so-called equivariant operators A, Tr A := 〈A1o, 1o〉
defines a normalized trace, meaning that A 7→ Tr A is linear, Tr A ≥ 0 for
A ≥ 0, Tr I = 1, and Tr(AB) = Tr(BA).

Theorem (Fontes and Mathieu, 2006)

If G is an amenable Cayley graph, then E
[
p1(o, o; rG)

]
is monotone

decreasing in the rates, rG, among random rate functions with invariant
law.

25



What’s Known

Extension:

Theorem (Aldous and L., 2007)

If G is any Cayley graph, then E
[
p1(o, o; rG)

]
is monotone decreasing in

the rates, rG, among random rate functions provided the law of (rG, r ′G) is
invariant, where rG ≤ r ′G.

This depends on the fact that for equivariant random operators A, we have
a normalized trace A 7→ E

[
〈A1o, 1o〉

]
.

The motivating question assumed only that the laws of rG and r ′G are
individually invariant, not the law of the pair. What is then required is to
compare two different traces. We attempt to attack this problem via a
similar question for finite graphs. Since we can always average on a finite
graph to get a normalized trace, this appears impossible. But the essence
is to compare two different traces, so we use two different graphs.
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Domination of Finite Graphs

Recall that G dominates H, written G < H, if there is a probability
measure on pairs (X ,Y ) ∈ V(G)× V(H) such that (i) the marginal
distributions of X and Y are each uniform and

(ii) almost surely there is a
rooted isomorphism from (H,Y ) to a subgraph of (G,X ). The way to think
of domination is that G looks bigger than H from the point of view of a
typical vertex.

This graph dominates an edge:

(choose X and Y independently).

If there are rates on the edges, we require that the rooted isomorphism
from (H,Y ) to a subgraph of (G,X ) is rate increasing.
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Domination of Finite Graphs

The graph on the left dominates a triangle.

28



Fractional Tiling

The graph on the left does not dominate the graph on the right:

An edge fractionally tiles the graph on the left and tiles the graph on the right.

H fractionally tiles G if there is an integer number of copies of H in G
such that each vertex of G is covered the same number of times by these
copies of H.

If that latter number is 1, then H tiles G.
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Fractional Tiling and Domination

G:

If H fractionally tiles
G, then G < H:
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Domination of Finite Graphs: Model Question

Open Question (L., 2017)
If G < H, then does continuous-time simple random walk satisfy

1
|V(G)|

∑
x∈V(G)

pt (x , x ; G) ≤ 1
|V(H)|

∑
x∈V(H)

pt (x , x ; H)?

This inequality holds for t near 0 and near∞.

Theorem (L., 2017)
This inequality holds if H fractionally tiles G.

THANK YOU!
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Entropy on Finite Graphs

Why do we need X0 to be uniform to get near monotonicity of entropy?

Let K2n and Kn2 be disjoint complete graphs. Choose a ∈ V(K2n ) and
b ∈ V(Kn2). Join both a and b to a new vertex, o. Let r and r ′ be 1 on
E(K2n ) ∪ E(Kn2) and r(o, a) := 1 =: r ′(o, a). Let r(o, b) := 0 and
r ′(o, b) := n. At time 2, the r -random walk is mostly uniform on K2n with
entropy, therefore, about n log 2, whereas the r ′-random walk is mostly
uniform on Kn2 with entropy 2 log n.

(However, if we increase time on any graph with any fixed rates, we get
decrease in the majorization order for any fixed X0, and therefore increase
in entropy.)
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Theorem (Aldous and L., 2007)
If ν is a unimodular probability measure on rooted graphs with a pair of
rate functions, r1 and r2, with r1 ≤ r2 a.s., then∫

p1(o, o; r1) dν ≥
∫

p1(o, o; r2) dν.

Proof.
We have ∆1 ≤ ∆2, so −∆1 ≥ −∆2. Therefore∫

p1(o, o; r1) dν = Trν e−∆1 ≥ Trν e−∆2 =

∫
p1(o, o; r2) dν .

Open Question (Aldous and L., 2007)
If µ1 and µ2 are unimodular probability measures on rooted networks
(G, o, ri) such that there is a coupling (G, o, r1, r2) that is monotone, i.e.,
r1 ≤ r2 a.s., then is

∫
p1(o, o) dµ1 ≥

∫
p1(o, o) dµ2? I.e., is

Trµ1 e−∆ ≥ Trµ2 e−∆?

When there is a unimodular monotone coupling ν, we have
Trµi e−∆ = Trν e−∆i .
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Domination of Finite Graphs

One can show that if f is any decreasing convex function and H
fractionally tiles G, then

Tr f (∆G) ≤ Tr f (∆H) .

However, it is not true that this inequality holds whenever G < H; a
counter-example is provided by taking f (s) := (4− s)+ for these graphs:

The graph G on the left dominates the graph H on the right.
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Domination and Finite Transitive Graphs

If H is transitive, then G < H iff every vertex of G belongs to a copy of H.
If G is transitive, then G < H iff G contains a copy of H. In both cases, the
independent coupling of roots works.

If H fractionally tiles G, then G < H. Conversely, if G is transitive and
dominates H, then H fractionally tiles G.
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Fractional Tiling: Generalization and Strengthening

Theorem (L., 2017)
Let G be a finite graph with positive rates r on its edges. Suppose that Hi

is a subgraph of G with positive rates ri on its edges for i = 1, . . . , k with
the following two properties:

there is a constant m such that for every x ∈ V(G),∣∣{i ; x ∈ V(Hi)
}∣∣ = m ,

for every e ∈ E(G),

w(e) ≥ 1
m

∑
i ; e∈E(Hi )

wi(e) .

Then for all t > 0, we have

1
|V(G)|

∑
x∈V(G)

pt (x ; G) ≤ 1∑k
j=1 |V(Hj)|

k∑
i=1

∑
x∈V(Hi )

pt (x ; Hi) .
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Spanning Trees: Tr log ∆

Let τ(G) denote the number of spanning trees of a finite connected graph,
G.

Recall that τ(G) = det ∆o, where ∆o indicates striking the row and
column of ∆ corresponding to o.

Conjecture (L., 2017)
If G < H, then

τ(G)1/|V(G)| ≥ τ(H)1/|V(H)| .

Theorem (L., 2017)
This holds if either G or H is transitive, or [J. Kahn] if H fractionally tiles G.

Note that log τ(G)1/V(G) = V(G)−1 tr log ∆o.

An infinitary version of the conjecture holds. Define the tree entropy of µ
as

h(µ) := Trµ log ∆ =

∫
(log ∆)(o, o) dµ(G, o) .
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Tree Entropy

Theorem (L., 2005, 2010)
If µ1 6= µ2 are unimodular probability measures on rooted weighted
connected infinite graphs that both satisfy∫

log wG(o) dµi(G, o) ∈ [−∞,∞)

and µ1 stochastically dominates µ2, then h(µ1) > h(µ2).
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Tree Entropy

This depends on another representation for tree entropy:

Theorem (L., 2010)
If µ is a unimodular probability measure on rooted weighted infinite graphs
that satisfies ∫

log wG(o) dµ(G, o) ∈ [−∞,∞) ,

then

h(µ) =

∫ ∞
0

(
s

1 + s2 −
∫

R(G, o, s) dµ(G, o)

)
ds .

Here, given a network G, one of its vertices x , and a positive number s, let
R(G, x , s) be the effective resistance between x and∞ in the network Gs

formed from G by adding an edge of conductance s between every vertex
and∞, where∞ is also a vertex of Gs.

This allows us to use Rayleigh’s monotonicity principle pointwise.
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